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Abstract

We provide a simple protocol for reconstructing the secret in a secret sharing scheme, and
prove that it is fair when executed with many rational parties together with a small minority
of honest parties. That is, when all parties follow the protocol, everyone obtains the secret, and
the rational parties have no incentive to deviate from the protocol (because it is a subgame-
perfect coalition-proof Nash equilibrium under natural assumptions on the utility functions of the
rational parties). The protocol only requires a standard (synchronous) broadcast channel, and
tolerates fail-stop deviations from the protocol (i.e. early aborts, but not incorrectly computed
messages).

Previous protocols for this problem in the cryptographic or economic models have either
required an honest majority, used strong communication channels that enable simultaneous
exchange of information, or settled for approximate notions of fairness.
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1 Introduction

A major concern in the design of distributed protocols is the possibility that parties may deviate
from the protocol. Historically, there have been two main paradigms for modeling this possibility.
One is the cryptographic paradigm, where some parties are honest, meaning they will always follow
the specified protocol, and others are malicious, meaning they can deviate arbitrarily from the
protocol. The other is the economic paradigm, where all parties are considered to be rational,
meaning that they will deviate from the protocol if and only if it is in their interest to do so.

Recently, some researchers have proposed studying mixtures of these traditional cryptographic
and economic models, with various combinations of honest, malicious, and rational participants.
One motivation for this that it may allow a more accurate modeling of the diversity of participants
in real-life executions of protocols. Along these lines, the papers of Aiyer et al. [3], Lysyanskaya and
Triandopoulos [28], and Abraham et al. [2] construct protocols that achieve the best of both worlds.
Specifically, they take protocol properties that are known to be achievable in both the cryptographic
model (with honest and malicious parties) and the economic model (with only rational parties),
and show that protocols with the same properties can still be achieved in a more general model
consisting of malicious and rational parties.

Our work is of the opposite flavor. We consider properties that are not achievable in either the
cryptographic or economic models alone, and show that they can be achieved in a model consisting
of both honest and rational parties. Specifically, we consider the task of secret reconstruction in
secret sharing, and provide a protocol that is fair, meaning that all parties will receive the out-
put, given rational participants together with a small minority of honest participants. In standard
communication models, fairness is impossible in a purely economic model (with only rational par-
ticipants) [22, 24] or in a purely cryptographic model with a small minority of honest participants
(and the rest malicious). Previous works achieved fairness by assuming strong communication
primitives that allow simultaneous exchange of information [22, 20, 2, 24, 26, 27, 23]1 or settled for
approximate notions of fairness [13, 8, 18, 33, 24], whereas we only use a standard (i.e. synchronous
but not simultaneous) broadcast channel and achieve the standard notion of fairness.

Thus, our work illustrates the power of a small number of honest parties to maintain equilibria
in protocols. These parties follow the specified strategy even when it is not in their interest to do
so, whether out of altruism or laziness. Actually, it turns out that, in our protocol, such moves
are almost never required during equilibrium play, but instead serve as a threat to keep rational
players from deviating. It is the presence of honest players that aligns the incentives of rational
players with faithfully following the protocol. We remark that we study our protocol in a simplified
model (of only “fail-stop” deviations) that seems to retain the essence of the issues at hand. This
enables us to obtain a particularly clean protocol with a clear intuition, which we hope will make
it easier for similar ideas to be used in future works handling more complex settings.

Below, we review the cryptographic and economic paradigms in more detail. We then introduce
the secret-sharing problem we study and survey recent works on this problem in the purely economic
model. We then describe our results and compare them to what was achieved before.

The Cryptographic Paradigm. Here we allow for a subset of the parties to deviate from
the protocol in an arbitrary, malicious manner (possibly restricted to computationally feasible
strategies), and the actions of these parties are viewed as being controlled by a single adversary.

1Actually, the impossibility results of [22, 24] also hold in the presence of a simultaneous broadcast channel and
thus the works of [22, 20, 2, 24] use additional relaxations, such as allowing the number of rounds and/or the sizes of
the shares to be unbounded random variables.
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Intuitively, this captures worst-case deviations from the protocol, so protocols protecting against
such malicious and monolithic adversaries provide a very high level of security. Remarkably, this
kind of security can be achieved for essentially every multiparty functionality, as shown by a series of
beautiful results from the 1980’s [39, 19, 9, 6, 34]. However, considering arbitrary (and coordinated)
malicious behavior does have some important limitations. For example, it is necessary to either
assume that a majority of the participants are honest (i.e. not controlled by the adversary) or
allow for protocols that are unfair (i.e. the adversary can prevent some parties from getting the
output). This follows from a classic result of Cleve [11], who first showed that there is no fair 2-party
protocol for coin-tossing (even with computational security), and then deduced the general version
by viewing a multiparty protocol an interaction between two super-parties, each of which controls
half of the original parties. Lepinski et al. [26] bypass this impossibility result by assuming a strong
communication primitive (“ideal envelopes”) which allow simultaneous exchange of information, but
it remains of interest to find ways of achieving fairness without changing the communication model.

The Economic Paradigm. Here parties are modeled as rational agents with individual prefer-
ences, and will only deviate from the protocol if this is in their own self interest. This approach
has become very popular in the computer science literature in recent years, with many beautiful
results. There are two aspects of this approach:

1. Design computationally efficient mechanisms (i.e. functionalities that can be implemented by
a trusted mediator) that give parties an incentive to be truthful about their private inputs,
while optimizing some social choice function, which measures the benefit to society and/or
the mechanism designer [30, 25, 5].

2. Implement these mechanisms by distributed protocols, with computational efficiency empha-
sized in distributed algorithmic mechanism design [14, 15, 16] and extended to also emphasize
additional equilibrium considerations in distributed implementation [36, 31, 32], so that par-
ties are “faithful” and choose to reveal private information as well as perform other message
passing and computational tasks. More recent works achieve a strong form of distributed
implementation, with provably no additional equilibrium [27, 23], but require strong commu-
nication primitives and have less focus on computational efficiency.

Note that distributed algorithmic mechanism design is different in spirit from the traditional
problem considered in cryptographic protocols, in that parties have “true” private inputs (whereas
in cryptography all inputs are considered equally valid) and there is freedom to change how these
inputs are mapped to outcomes (whereas in cryptography, the functionality is pre-specified.) Nev-
ertheless, recent works have explored whether we can use the economic model to obtain ‘better’
solutions to traditionally cryptographic problems, namely to compute some pre-specified function-
alities. One potential benefit is that we may be able to incentivize parties to provide their “true”
private inputs (whereas in cryptography all inputs are considered equally valid) along the lines of
Item 1 above; the papers [29, 37] explore for what functionalities and kinds of utility functions this
is possible.

A second potential benefit is that rational deviations may be easier to handle than malicious
deviations (thus possibly leading to protocols with better properties), while also preferable to
assuming a mixture of players at the honest and malicious extremes. This has led to a line of work,
started by Halpern and Teague [22] and followed by [20, 2, 24], studying the problems of secret
sharing and multiparty computation in the purely economic model, with all rational participants.
One can also require notions of equilibria that are robust against coalitions of rational players [2].
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While this approach has proved to be quite fruitful, it too has limitations. Specifically, as pointed
out in [20, 24], it seems difficult to construct rational protocols that are fair in the standard
communication model, because parties may have an incentive to abort once they receive their own
output. The works [22, 20, 2, 24], as well as [27, 23] applied to appropriately designed mediated
games, achieve fairness by using strong communication primitives (simultaneous broadcast, “ballot
boxes”) that allow simultaneous exchange of information.

As mentioned above, we achieve fairness in the standard communication model by considering
a mix of rational participants together with a small minority of honest participants. Note that
Cleve’s [11] proof that an honest majority is necessary in the cryptographic setting, by reduction
to the two-party case, no longer applies. The reason is that we cannot view a subset of the rational
parties as being controlled by a single super-party. Even in coalitional notions of equilibria, each
individual in that subset would only agree to a coordinated (joint) deviation if it is in its own
interest to do so.

Our protocol is for the share reconstruction problem in secret sharing, which we now describe
in more detail.

Secret Sharing. In a t-out-of-n secret-sharing scheme [35, 7], a dealer takes a secret s and
computes n (randomized) shares s1, . . . , sn of s, which are distributed among n parties. The
required properties are that (a) any set of t parties can reconstruct the secret s from their shares,
but (b) any set of fewer than t parties has no information about s (i.e. they would have been
equally likely to receive the same shares for every possible value of s).

Secret sharing is a fundamental building block for cryptographic protocols [19, 6, 9, 34]. Typi-
cally, these protocols are structured as follows. First, every party shares its private input among all
the parties. Then the computation of the functionality is done on shares (to maintain privacy). And
at the end, the parties reveal their shares of the output so that everyone can reconstruct it. Our fo-
cus in this paper is on this final reconstruction step. Typically, it is assumed that there are enough
honest parties in the protocol to ensure that the secret can be reconstructed from the revealed
shares, even if some parties refuse to reveal their shares. A more challenging scenario is one where
some parties may reveal incorrect values, which is handled by use of verifiable secret sharing [10],
but for simplicity in this paper we only consider fail-stop deviations, where a party may abort the
protocol early but otherwise follows the prescribed strategy. (For example, this models people who
may disconnect their computer from the network in the middle of the protocol, but do not have
the time or skill to reprogram the software.) If we allow arbitrary fail-stop deviations, then it is
clear that having k ≥ t honest parties are necessary and sufficient to have a reconstruction protocol
that is fair, where everyone obtains the secret if anyone does. (In applications of secret sharing to
secure multiparty computation, it is typically also important that the threshold is greater than the
number of malicious parties, i.e. t > n − k. Combined with the previous statement, this implies
that there are more honest parties than malicious ones, i.e. we need an honest majority.)

Rational Secret Sharing. It is natural to ask whether we can bypass this lower bound by con-
sidering only rational deviations from the protocol. The study of secret sharing with only rational
participants was initiated by Halpern and Teague [22], and there have been several subsequent
works [20, 24, 2]. In these works, it is assumed that participants prefer to learn the secret over not
learning the secret, and secondarily, prefer that as few other agents as possible learn it. As pointed
out in [20], any protocol where rational participants reveal their shares sequentially will not yield a
Nash equilibrium. It is rational for the t’th player to abort, as she can already compute the secret
from the shares of the first t − 1 players and her own, and aborting may prevent the first t − 1
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players from learning it.
One way to get around this difficulty is to assume a simultaneous broadcast channel, where all

parties can broadcast values at the same time, without the option of waiting to see what values
the other parties are broadcasting. All parties simultaneously revealing their shares is a Nash
equilibrium. That is, assuming all of the other parties are simultaneously revealing their shares, no
party can increase their utility by aborting instead of revealing. However, this basic protocol has
several deficiences:

1. A simultaneous broadcast channel is a strong (and perhaps unrealistic) communication prim-
itive, particularly in the context of trying to achieve fairness, where the typical difficulties are
due to asymmetries in the times that parties get information. For example, fair coin-tossing
is trivial with a simultaneous broadcast channel (everyone broadcasts a bit, and the out-
put is the exclusive-or), in contrast to Cleve’s impossibility result for synchronous broadcast
channels [11].

2. Nash Equilibrium in this context is a very weak guarantee. For example, as argued by Halpern
and Teague [22], it seems likely that rational parties would actually abort. The reason is that
aborting is never worse than revealing, and is sometimes better (if t− 1 other parties reveal,
then the tth party will always learn the secret and can prevent the other parties from doing so
by an abort.) In addition, plain Nash Equilibrium does not consider deviations by coalitions
of participants.

Halpern and Teague [22] and follow-up works [20, 2, 24] focus on the second issue. That is, they
allow simultaneous broadcast, and explore whether stronger solution concepts than plain Nash
equilibrium can be achieved. Halpern and Teague [22] propose looking for an equilibrium that
survives “iterated deletion of weakly dominated strategies.” They prove that no bounded-round
protocol can achieve a fair outcome in equilibrium when adopting this solution concept. However,
they and subsequent works by Gordon and Katz [20] and Abraham et al. [2] show that it fair
outcomes are possible even with this equilibrium refinement using a probabilistic protocol whose
number of rounds has finite expectation. Moreover, Abraham et al. [2] shows how to achieve an
equilibrium that is resistant to deviations by coalitions of limited size. Kol and Naor [24] argue
that “strict equilibria” is a preferable solution concept to the iterated deletion notion used by [22],
and show how to achieve it with a protocol where the size of shares dealt is an unbounded random
variable with finite expectation. (They also show that a strict equilibrium cannot be achieved if
the shares are of bounded size.) In all of the above works, the protocols’ prescribed instructions
crucially depend on the utilities of the various players.

The works of Lepinski et al. [27] and Izmalkov et al. [23] also can be used to obtain fair
protocols for secret sharing by making an even stronger physical assumption than a simultaneous
broadcast channel, namely “ballot boxes.” Specifically, they show how to compile any game with a
trusted mediator into a fair ballot-box protocol with the same incentive structure. Since the share-
reconstruction problem has a simple fair solution with a trusted mediator (the mediator takes all
the inputs, and broadcasts the secret iff all players reveal their share), we can apply their compiler
to obtain a fair ballot-box protocol.

Our Results. We focus primarily on the first issue: our goal is to achieve fairness without a
simultaneous broadcast channel, but only a synchronous broadcast channel. That is, the protocol
should proceed in rounds, and only one party can broadcast in each round.2 When all parties are

2For round efficiency, sometimes people use a slightly more general channel where many parties can broadcast
in a single round, but deviating parties are can perform ‘rushing’ — wait to see what others have broadcast before
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rational, the only positive result is in independent work by Kol and Naor [24], who achieve an
approximately fair solution (specifically, a fair ε-Nash equilibrium). We instead assume that there
is a small number k of honest participants (which can be much smaller than the secret-sharing
threshold t), and the rest are rational. Our main result is that in this setting, there is a simple
protocol that achieves fair outcomes in a very robust equilibrium refinement.

Our protocol is simple to describe. We assume that there is a random ordering π of the partici-
pants, chosen and published at the start of the protocol, say by the dealer of secret-sharing scheme.
Then the participants proceed according to this ordering, broadcasting their shares sequentially.
(There are some cases that participants are instructed to abort, if certain earlier participants
aborted.)

If all parties follow the specified strategy, then everyone will reveal their share and we have a
fair outcome. We show that with very high probability, namely 1 − (t/n)k, over the permutation
π, the specified strategy is an equilibrium. It is not just a plain Nash equilibrium, but achieves
a number of stronger and attractive solution concepts. First, it is subgame perfect, which means
that the strategy is rational to follow regardless of the previous history of messages; intuitively,
this means that the equilibrium does not rely on irrational empty threats (where one player will
punish another player for deviating even at his own expense). Second, it is coalition-proof in the
sense of Bernheim, Peleg, and Whinston [4]; intuitively, this means that no coalition of players
can deviate in a way that is stable and (Pareto) improves their utilities. As mentioned above,
the previous works [22, 20, 2, 24] also use strengthenings of Nash equilibria (iterated admissible
equilibria, k-resilient equilibria, strict equilibria). Those notions are incomparable to ours, but
our point is to achieve results without using a simultaneous broadcast channel. In addition, our
protocol is significantly simpler than the previous ones and is independent of the numeric values in
the utility functions of the players, in contrast to [22, 20, 2, 24]. In this sense, the protocol is “detail-
free” in the sense of Wilson’s critique [38] of approaches in mechanism design that require detailed
information about the preferences of parties and achieves additional robustness. Our protocol
also has a bounded number of rounds and does not require changing the underlying secret-sharing
scheme.

Notice that if t = αn for some constant α ∈ (0, 1) and k = ω(log n) � t, we achieve an
equilibrium with all but negligible (1/nω(1)) probability over the permutation π. In contrast, if we
had malicious participants rather than rational ones, then we would need k ≥ t honest parties to
have a fair solution where everyone learns the secret. On the other hand, there is no fair solution
with only rational parties. Thus, by considering a mixture of rational and honest participants,
we achieve something that is impossible in either the purely cryptographic or purely economic
frameworks.

2 The Protocol

In this section we define the game-theoretic setting in which the secret-sharing reconstruction
protocol is performed, and describe the prescribed strategy that all parties will be asked to follow
(whether rational or honest). We also define our model for the preferences of rational parties for
different outcomes of the protocol and make precise our communication model. We delay making
explicit our particular rational/honest mixture model until Section 3.

broadcasting their own values.
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2.1 Our Protocol Setting

Here we informally describe the setting of our protocol, which we will subsequently formalize as a
game with a specified strategy.

Recall the informal description of secret sharing from the Introduction. We assume an honest
dealer D holding a (uniformly random) secret σ, and n players 1, . . . , n. There is also a threshold
t ≤ n, known to all players, which is fixed at the outset. At the beginning of the protocol, D
computes shares s1, . . . , sn of the secret s, and distributed share si to player i. The properties of
a secret-sharing scheme tell us that no subset of fewer than t players should have any information
about σ at this point. The dealer also distributes a uniformly chosen permutation π ∈ Sn. ¿From
that point on, the dealer does not take part in the protocol.

Now, our protocol proceeds in a sequence of rounds, where in each round a single player can
broadcast her share to all other parties (using a synchronous broadcast channel). The order in which
the players proceed is determined by the permutation π. Specifically, at round ` of the protocol, it
is the turn of player i = π(`) to broadcast. She can either reveal her share si or abort the protocol.
The specified strategy of our protocol will require that she reveals si unless one of the first t − 1
parties to speak (i.e. parties π(1), . . . , π(t− 1)) has aborted, in which case she should also abort.

We will consider fail-stop deviations from this protocol, which means that a party may abort
the protocol even when the specified strategy says that she should reveal her share. That is, parties
cannot broadcast out of turn or send values other than their correct share. We do not banish (or
punish) a party that aborts; that is, the party continues to hear subsequent broadcasts on the
channel. By the properties of secret sharing, it follows that a party will be able to compute
the secret at the end of the protocol if at least t − 1 other parties have revealed their shares, and
otherwise she has no information about the secret.

2.2 Formalization as a Game

We now abstract the protocol described in the previous section as a game with a specified strategy
profile.

Definition 2.1 (Secret Sharing Game). Let π ∈ Sn be a permutation. The secret sharing game is
defined as the extensive form game Γπ = (N,H, P π, u), where:

• The set of players is N = {1, . . . , n},

• the set of histories is H =
⋃n

`=0{REVEAL, ABORT}`,

• for any h ∈ H of length `− 1, the next message function satisfies P π(h) = π(`), and

• the set Z of terminal histories consists of all h = (a1, . . . , an) of length n.

For any fixed π the game tree of Γπ is a full binary tree of depth n, where the `th level of the
tree fully corresponds to player i where i = π(`). In other words, the only level in which player i
takes action is level ` = π−1(i), and player i is the only player to take action in this level. Note that
each game Γπ refers to a fixed permutation π. The reason that the dealer chooses the permutation
at random is that our results will only establish equilibrium properties of Γπ for most choices of π.

A protocol is defined through a prescribed strategy s = (s1, . . . , sn) for the game Γπ. If for all
i ∈ N , player i follows strategy si, the vector s will represent a joint execution of the protocol by
all n players. The value o(s) will then represent the game’s outcome, and ui(s) the actual value of
player i’s payoff.
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Definition 2.2 (Protocol for secret sharing). A protocol for secret sharing is a pair (Γπ, s), where
Γπ is the secret sharing game, and s = (s1 . . . , sn) is a strategy vector for Γπ.

We now formally describe the prescribed strategy corresponding to our protocol. Our ultimate
objective is to demonstrate that this strategy achieves various notions of equilibria (given natural
assumptions on the utilities of the players) and thus we can expect that it will be followed by
rational players.

Definition 2.3 (The Prescribed strategy). The prescribed strategy for Γπ is the strategy vector
s = (s1 . . . , sn) defined as follows. For i ∈ N , the input to the strategy function si is a non-terminal
history h = (a1, . . . , a`−1) ∈ H\Z, where i = π(`). In accordance with the definition of the game Γπ,
we will have that the next player P π(a1, . . . , a`−1) to take action is player i. Player i’s prescribed
strategy is defined as follows.

si(a1, . . . , a`−1) =
{

REVEAL if aj = REVEAL for all j < min{`, t}
ABORT if aj = ABORT for some j < min{`, t} (1)

Note that if all players follow s then all n players (and in particular at least t out of the n
players) eventually reveal their share. Thus, if we can argue that it is rational for all players to
follow s we will have obtained a fair solution to the secret sharing problem (since all players learn
the secret following the protocol’s execution).

A crucial property of the prescribed strategy is that even players that adhere to it do not
necessarily reveal their share. This happens as soon as one of the first t− 1 players aborts. On the
other hand, if none of the first t−1 players aborts, the prescribed strategy instructs to reveal, even
if the subsequent history (i.e., somewhere after the first t− 1 rounds) does contain an abort.

2.3 Assumptions on the Utility Functions

We now describe our assumptions regarding the utility functions of the rational players. For a
particular history h ∈ H in the game Γπ, we let δi(h) be a Boolean value denoting whether or
not player i learns the secret from the history so far. In particular, given a specific outcome o
of the game (which is merely a terminal history o ∈ Z), the bit δi(o) indicates whether or not i
learns the secret from the execution of the protocol. That is, δi(o) = 1 iff at least t − 1 parties
other than i revealed during the protocol. Let num(o) =

∑
i δi(o); i.e., num(o) is simply the total

number of players who learn the secret from the protocol’s execution. Let ui(o) denote the utility
of player i for the outcome o. Following [22, 20], we make the following assumptions about the
utility functions of the players:

1. δi(o) > δi(o′) ⇒ ui(o) > ui(o′).

2. If δi(o) = δi(o′), then num(o) < num(o′) ⇒ ui(o) > ui(o′).

That is, player i first prefers outcomes in which he learns the secret; as long as δi remains constant,
player i prefers strategies in which the fewest number of other players learn the secret. These
ordinal utility function assumptions will be sufficient for the analysis of the equilibrium properties
of the protocol. In fact, our analysis will in fact hold even if we replace condition (2) above with a
somewhat weaker condition:

3. If δi(o) = δi(o′), then learn(o) ( learn(o′) ⇒ ui(o) > ui(o′),
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where for an outcome o, we define learn(o) to be the set of players j ∈ N for which δj(o) = 1.
In other words, as long as δi remains constant, player i has a preference of an outcome o over an
outcome o′ only if the set of players that learn the secret in o is strictly contained in the set of
players that learn the secret in o′.3

3 Introducing an Honest Minority

Recall that our goal is to argue that: (1) it is rational for the players to follow the prescribed
strategy, and (2) if everybody follows the prescribed strategy at least t shares are revealed. (Note
that revealing only t− 1 shares will not be sufficient because the parties that revealed one of these
shares will not themselves learn the secret.)

3.1 Impossibility if Everybody is Rational

The setting described in Section 2 is quite demanding and makes the task of designing fair protocols
challenging, There are two main sources of difficulty: (1) The only communication channel allowed
to the players is synchronous broadcast, and (2) the number of communication rounds in the
protocol is a-priori bounded by n (as every player is allowed to broadcast only once).

Here we argue that, in the above setting, any protocol for secret sharing for which the prescribed
strategy s is a subgame perfect equilibrium for Γπ, the outcome o = o(s) of the protocol (Γπ, s)
necessarily satisfies num(o) = 0. While, strictly speaking, this is not considered a violation of
fairness (since nobody eventually learns the secret), it still implies that no satisfactory solution
would be possible in this setting (though alternative settings are not inconceivable). Thus, in order
to obtain a meaningful result in the context of fairness, some modification will be necessary. As we
have already mentioned, our way to bypass the impossibility result will be to assume that a small
subset of honest players honestly follows the prescribed strategy.

Proposition 3.1. Let s be a subgame perfect equilibrium for the game Γπ, Then, num(o) = 0.

3.2 Restricted Games

To get around the above impossibility result, we will assume that a small subset of honest players
always follows the prescribed strategy (whether or not this is the best response to other players’
actions). In order to formalize this situation, we introduce the notion of a “restricted game” for the
remaining rational players. Restricted games will also be useful at a later stage in defining various
notions of coalition proof equilibria. Loosely speaking, a restricted game is obtained by fixing the
strategies of some players outside of some subset K to follow a pre-specified strategy vector s. A
formal definition can be found in the Appendix.

As mentioned in Section 2.2, the prescribed strategy s may in some cases instruct an honest
player to abort. Allowing honest players to sometimes abort ensures that players who deviate from
the protocol’s prescribed strategy in early rounds (the first t− 1) are penalized and unable to learn
the secret themselves. On the other hand, the honest players will continue to report their share
even if a deviation occurs in the tth round; this ensures that the players in the first t−1 rounds will
learn the secret in addition to the other players, and thus maintains fairness. It is helpful to think
of the honest players as distributing the role of a trusted mediator: they make sure that fairness

3To see why condition (3) is weaker than (2), observe that whenever learn(o) is not contained in learn(o′), player
i will have no preference, even if num(o) ≥ num(o′).
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is guaranteed for all participants and allow for a game-theoretic solution without simultaneous
communication.

3.3 Good Permutations

We begin by defining a condition on a permutation π that is sufficient in order to guarantee that
s satisfies our various notions of equilibria for the game Γπ

s−K
.

Definition 3.2 (Good permutation). Let K ⊂ N . A permutation π ∈ Sn is said to be K-good if
there exist k ≥ t so that π(k) ∈ N \K. Otherwise, it is said to be K-bad.

In other words, a permutation π is K-good if there exists an honest player whose turn to
broadcast occurs after the (t− 1)st round of the game Γπ. We observe that most permutations are
good.

Proposition 3.3. For every set K ⊂ N , the probability that a randomly chosen permutation π is
K-bad is at most (t/n)|N\K|.

Thus, as long as the set N \ K of honest players is of size at least ω((log n)/ log(n/t)), a
random π will be K-bad with only negligible (n−ω(1)) probability. Thus, unless t is very close to
n, a very small minority of honest players suffices. We remark that instead of having the dealer
choose the permutation at random, one might instead use a random selection protocol, whereby the
participants choose the permutation themselves. In particular, the random selection protocols of
[21] only require a minority of honest participants, and will maintain the property that the selected
permutation is K-bad with vanishingly small probability.

4 Subgame Perfect Equilibrium

We prove that for any set K ⊂ N and any K-good permutation π, the prescribed strategy vector
sK is a subgame perfect equilibrium for the extensive game Γπ

s−K
.

Theorem 4.1 (Subgame perfect equilibrium). Let K ⊂ N and suppose π is a K-good permutation.
Then, the strategy vector sK is a subgame perfect equilibrium for the game Γπ

s−K
.

5 Coalition Proof Equilibrium

In this section, we strengthen our result from Section 4 and show that our secret sharing protocol
satisfies a stronger notion of equilibrium, namely our prescribed strategy s is resilient against
coalitional deviations, as opposed to just the single player deviations considered in Section 4.

Specifically, we show that our prescribed strategy is a perfectly coalition-proof Nash equilibrium
(PCPNE) in the sense of Bernheim, Peleg, and Whinston [4]. Informally, a strategy is PCPNE if
there is no self-enforcing coalition of players that can deviate and gain; by self-enforcing, we mean
that there is no subcoalition of players that can redeviate and “gain,” in such a way that their
redeviation is PCPNE. Observe that the notion of self enforcing and PCPNE is defined recursively.
We present a formal definition of PCPNE next.
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5.1 Perfectly Coalition-Proof Nash Equilibrium (PCPNE)

First, we define what it means for a coalition to “gain.” We use a Pareto improvement notion
instead of requiring that all players in the coalition strictly improve their utilities.

Definition 5.1 (Pareto improvement). For a game Γ = (N,H, P, u), strategy s is said to Pareto-
improve strategy s′ with respect to set C ⊆ N if for all i ∈ C, ui(s′) ≥ ui(s), and there exists a
j ∈ C such that uj(s′) > uj(s).

Following [4], we define PCPNE for an extensive game inductively on the number of players
and number of stages.

Definition 5.2 (perfectly coalition-proof Nash equilibrium, following [4]4). Strategy s∗ is a per-
fectly coalition-proof Nash equilibrium (PCPNE) in a game Γ = (N,H, P, u) with n players and r
stages, where (n, r) 6= (1, 1), if the following two conditions hold.

1. s∗ is perfectly self enforcing (PSE) in Γ, namely:

(a) for all C ( N , s∗C is PCPNE in Γs∗−C
, and

(b) the restriction of s∗ to any proper subgame forms a PCPNE in that subgame. In other
words, for every history h ∈ H \ {ε}, s∗|h is a PCPNE in Γ|h.

2. There does not exists another PSE strategy s in Γ that Pareto-improves s∗ with respect to N .

When (n, r) = (1, 1), strategy s∗ is a PCPNE (and PSE) in a single-player, single-stage game Γ if
u1(s∗) ≥ u1(s) for all s ∈ S.

Remark 5.1. Our definition above differs from the definition given by Bernheim, Peleg, and Whin-
ston [4] in that we increase the set of candidate deviations by allowing only Pareto improvement
in Item 1b above, whereas [4] require strict improvement for all players. Due to the recursive
nature of the definition, these two equilibrium concepts—ours and that of [4]—seem incomparable.
Requiring weak Pareto improvement, however, is more natural in our setting because we wish to
also allow for deviations in which some players may be indifferent.

PCPNE is a stronger equilibrium concept than the subgame-perfect equilibrium (SPE) concept
discussed in Section 4. The converse does not hold in general—there are games with strategies that
are SPE but not PCPNE (c.f., [4, Section 4]).

Claim 5.3. For any game Γ, if s∗ is PCPNE in Γ, then s∗ is SPE in Γ.

We now state our main theorem.

Theorem 5.4. Let protocol (Γπ
s−K

, sK) be defined as in Definition 2.2, with π being a K-good
permutation and s being our prescribed strategy. Then, strategy sK is PCPNE in the game Γπ

s−K
.

4See also Ferreira [17] for a discussion of possible additional considerations that are not incorporated within the
Bernheim, Peleg, and Whinston [4] definition. These additional considerations, however, seem irrelevant in our perfect
information extensive game in which each players moves at most once.
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A Preliminaries

A.1 Extensive Form Games with Perfect Information

Our protocol will consist of a prescribed strategy vector for an extensive form game with perfect
information. Considering extensive games allows us to model the sequential nature of protocols,
where each player considers his plan of action only following some of the other players’ actions.
The notion of perfect information captures the fact that each player, when making any decision, is
perfectly informed of all the events that have previously occurred.

Jumping ahead, we mention that the above choice is consistent with our protocol setting, where
players’ possible actions in a given round of a protocol amount to either broadcasting their value
or refusing to do so. In both cases the choice of the action is visible by all other players.

Definition A.1 (Extensive game with perfect information). An extensive form game with perfect
information (or game for short) is a tuple (N,H, P, u) where:

• N = {1, . . . , n} is the set of players.

• H is a set of (finite) history sequences satisfying that the empty word ε ∈ H. The components
of a history sequence h ∈ H are called actions. We let A(h) = {a : (h, a) ∈ H}. A history
h ∈ H is terminal if A(h) = ∅. The set of terminal histories is denoted Z.

• P : (H \ Z) → N is a function that assigns a “next” player to every non-terminal history.

• u = (u1, . . . , un) is a vector of payoff functions ui : Z → R.

We interpret an extensive form game as follows: after any nonterminal history h ∈ H \Z player
N(h) chooses an action from the set A(h). The empty history h0 = (ε) is the starting point of the
game. Player P (ε) chooses an action a ∈ A(ε). This induces a history h1 = (a), and player P (h1)
subsequently chooses an action from the set A(h1); this choice determines the next player to move,
and so on until a terminal history hfin ∈ Z is reached. The payoff of player i in the execution of
the game is then determined to be the value ui(hfin).

An extensive form game can be represented by a tree, where each node of the tree is labeled
with a different history h ∈ H. The label of the tree’s root, which represents the beginning of
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the game, is the empty history h = ε. The leaves are labeled with terminal histories h ∈ Z, and
correspond to the end of the game. Each internal node of the tree belongs to a player in the sense
that it represents a stage in the game in which it is that player’s move. Specifically, node h belongs
to player P (h), and its outgoing edges correspond to the set A(h). The leaves, which correspond
to terminal histories h ∈ Z, are also labeled with a corresponding vector (u1(h), . . . , un(h)). This
vector consists of the payoffs for every player in case that the combination of actions required to
reach that terminal node is eventually being played.

The action chosen by a player for every history after which it is his turn to move, is determined
by her strategy function. The strategy function is defined for all histories, even ones that would not
be reached if the strategy is followed.

Definition A.2 (Strategy). A (pure) strategy for player i ∈ N in the game (N,H, P, u) is a
function that assigns an action in A(h) to each nonterminal history h ∈ H \Z for which P (h) = i.

Note that we only consider pure (i.e. deterministic) strategies. While not all games have pure
Nash equilibria, the game we construct will in fact have such an equilibrium, and thus we do
not need to consider mixed (i.e. randomized) strategies. Indeed, for all the solution concepts we
consider, an equilibrium with respect to pure-strategy deviations is also an equilibrium with respect
to mixed-strategy deviations.

We let si denote the strategy employed by player i, and let s = (s1, . . . , sn) denote the vector
of players’ strategies (a.k.a. the strategy profile). Given a strategy vector s = (s1, . . . , sn) we define
the outcome o(s) of s to be the terminal history h ∈ Z that results when each player i ∈ N follows
the actions chosen by si. In particular, o(s) is a history h = (a1, . . . , a`) such that for j = 1, . . . , `−1
we have sP (a1,...,aj)(a1, . . . , aj) = aj+1.

The value of player i’s utility under strategy vector s is equal to ui(o(s)). For simplicity, it is
denoted by ui(s). We assume that rational players wish to maximize this value. The equilibrium
properties of our protocol will, however, only require ordinal assumptions about the preferences of
players regarding different outcomes.

A.2 Subgame Perfect Equilibrium

The most basic goal is to design protocols whose prescribed strategy vector s corresponds to a Nash
equilibrium (for the induced extensive form game). Let (s′i, s−i) = (s1, . . . , si−1, s

′
i, si+1, . . . , sn);

that is, (s′i, s−i) denotes the strategy vector s with i’s strategy changed to s′i.

Definition A.3 (Nash equilibrium). A vector of strategies s in the game Γ = (N,H, P, u) is said
to be a Nash equilibrium if given that all other players are following s−i, there is no incentive for
player i to deviate and follow any strategy other than si; That is, for all i ∈ N , and for any s′i 6= si,
it holds that ui(s′i, s−i) ≤ ui(s).

The basic notion of Nash equilibrium turns out to be an unsatisfactory solution concept for
extensive-form games. The reason is that a Nash equilibrium can rely on incredible threats by
players, which exist to maintain the equilibrium but never occur during the equilibrium play (and
would not be in the self-interest of the player if tested.)

A more appealing solution concept is that of subgame perfect equilibrium. This is a strength-
ening of the notion of Nash equilibrium in that it requires that the equilibrium strategy is a Nash
equilibrium in every subgame of the original extensive game.

Definition A.4 (Subgame). The subgame of Γ = (N,H, P, u) that follows a history h ∈ H is the
extensive game Γ(h) = (N,H|h, P |h, u|h), where H|h is the set of sequences h′ of actions for which
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(h, h′) ∈ H (that is, H|h = {h′ : (h, h′) ∈ H}), the function P |h is defined by P |h(h′) = P (h, h′)
for each h′ ∈ Hh, and for every i ∈ N , the function ui|h is defined by ui|h(h′) = ui(h, h′).5

Given a strategy si of player i and a history h in the extensive game Γ, denote by si|h the
strategy that si induces in the subgame Γ(h). That is, si|h(h′) = si(h, h′) for each h′ ∈ H|h. We
denote by o|h the outcome function of Γ(h), and let ui(s|h) be the value of player i’s utility under
strategy vector s|h in the game Γ(h).

Definition A.5 (Subgame perfect equilibrium). A vector of strategies s in the game Γ = (N,H, P, u)
is said to be a subgame perfect equilibrium if for every h ∈ H the vector s|h is a Nash equilibrium
for the game Γ(h). That is, for all i ∈ N , every non-terminal history h ∈ H \Z for which P (h) = i,
and any s′i|h 6= si|h, it holds that ui(s′i|h, s−i|h) ≤ ui(s|h).

In principle, in order to verify that a strategy vector s is a subgame perfect equilibrium we have
to check that for every player i and every subgame, there is no strategy that leads to an outcome
that player i prefers. The following lemma states that we can restrict our attention, for each player
i and each subgame, to alternative strategies that differ from si only in the actions they prescribe
after just the initial history of this subgame.

Lemma A.6 (The one deviation property). Let Γ = (N,H, P, u) be a (finite) extensive game with
perfect information. The strategy vector s is a subgame perfect equilibrium of Γ if and only if for
all i ∈ N , every h ∈ H \ Z for which P (h) = i, and for any s′i|h that differs from si|h only in the
action it prescribes after the initial history of Γ(h), it holds that ui(s′i|h, s−i|h) ≤ ui(s|h).

In other words, a strategy vector is a subgame perfect equilibrium if and only if for each
subgame the player who makes the first move cannot obtain a better outcome by only changing
his initial action in the corresponding subgame. We later establish that our protocol is also robust
against coalitional deviations but delay the definition of the appropriate game-theoretic concepts
for equilibrium given the possibility of coordination until then.

B Missing Proofs and Definitions

B.1 Impossibility if Everybody is Rational

Proposition 3.1 Let s be a subgame perfect equilibrium for the game Γπ, Then, num(o) = 0.

Proof: Let h = (a1, . . . , a`−1) ∈ H, and let rev(h) denote the number of REVEAL actions in h.
That is, rev(h) is the number of j ≤ `− 1 for which aj = REVEAL.

Lemma B.1. Let s be a subgame perfect equilibrium for the game Γπ, let h ∈ H so that rev(h) = t−1
and let i = P π(h). Then, si(h) = ABORT.

Proof: The proof proceeds by backward induction on the length of h. Let h = (a1, . . . , a`−1).
The base case is to consider histories h of length `− 1 = n− 1 (this is where we use the fact that
the number of rounds in the game Γπ is bounded). In this case, we have that player i = P π(h)
already knows t shares (t − 1 in h and the one player i is yet to reveal). In particular, no matter
what is the action taken by player i, the outcome o of any possible subtree rooted at h satisfies
δi(o) = 1. Notice that if player i sends an ABORT message then there will exist a j ∈ [` − 1] for

5When viewing the extensive game as a tree, a subgame that follows a history h corresponds to the subtree of the
game that is rooted at node h.
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which δπ(j)(o) = 0 (this will be one of the t − 1 players that has broadcasted its values in h). On
the other hand, if player i sends a REVEAL message then for all j ∈ N it will hold that δj(o) = 1
(since everybody would learn t shares). By our assumptions on the utility functions it will then
hold that player i strictly prefers sending an ABORT message over a REVEAL message. Thus, if s is a
subgame perfect equilibrium then it must be the case that si(h) = ABORT.

Consider now a history h of length ` − 1 < n. By our induction hypothesis, for any history
h′ = (h, h′′) (of longer length) it holds that sP (h′)(h′) = ABORT. Using the same argument as in the
base case, we are then in a situation where if player i sends an ABORT message then there will exist
a j ∈ [`−1] for which δπ(j)(o) = 0 (as in equilibrium all future players will send an ABORT message).
In addition, if player i sends a REVEAL message then for all j ∈ N it will hold that δj(o) = 1. By
our assumptions on the utility functions it will then hold that player i strictly prefers sending an
ABORT message over a REVEAL message. As before, if s is a subgame perfect equilibrium then it
must be the case that si(h) = ABORT.

By the above lemma, we may infer that any SPE strategy s must abort if exactly t− 1 reveals
took place in the history. Since the number of reveals increases by at most 1 per turn/stage, it is
impossible achieve t or more reveals at the end. Thus, for any outcome o = o(s) and any i ∈ N it
will hold that δi(o) = 1, and thus num(o) = 0.

B.2 Restricted Games

Definition B.2 (Restricted game). Let Γ = (N,H, P, ~u) be an extensive form game, let K ⊂ N ,
and let s be a strategy vector. The restricted game, Γs−K , is the extensive game that results from
playing Γ with players i ∈ N \K always following the strategy si; i.e., Γs−K = (K, Hs−K , Ps−K , uK),
where Hs−K is the set of sequences h = (a1, . . . , a`) ∈ H so that for all P (a1, . . . , aj) ∈ N \K, it
holds that aj+1 = sP (a1,...,aj)(a1, . . . , aj), and Ps−K is the function defined by

Ps−K (h) =
{

P (h) if P (h) ∈ K
Ps−K (h, sP (h)(h)) if P (h) ∈ N \K

We view the players in the set K as being rational, and thus are still free to deviate from the
strategy vector s, where the players in N \K are honest and will always follow s. We will show
there are enough honest players (but still a significant minority), then protocol (Γπ

s−K
, sK) will be in

(subgame perfect) equilibrium for the vast majority of permutations π. Notice that in the protocol
(Γπ

s−K
, sK), the prescribed instructions are identical for all players, honest or otherwise. This is

useful because one can motivate the existence of a small number of honest players by assuming
that some participants in a protocol are too disinterested, uninformed, or simply lazy to deviate
from the prescribed strategy (in addition to those who may be honest out of altruism).

B.3 Subgame Perfect Equilibrium

Theorem 4.1 (Subgame perfect equilibrium) Let K ⊂ N and suppose π is a K-good permutation.
Then, the strategy vector sK is a subgame perfect equilibrium for the game Γπ

s−K
.

Proof: Fix a set K ⊂ N and a K-good permutation π. By assumption, the players k ∈ N \K
always follow the prescribed strategy. Our goal is to show that the strategy vector sK is a subgame
perfect equilibrium for the restricted game Γ̄ = Γπ

s−K
(for simplicity, we denote sK by s). Let

Γ̄ = (K, H,P, u). By Lemma A.6, for any player i ∈ K and every subgame Γ̄(h) rooted at h so
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that P (h) = i, it will be sufficient to focus on comparing the payoffs i receives by playing s versus
playing (s′i, s−i) where s′i(h) 6= si(h).6

Let h = (a1, . . . , a`−1) be the root of the subtree, and let rev(h) denote the number of REVEAL
actions in h. That is, rev(h) is the number of j ≤ ` − 1 for which aj = REVEAL. We start by
analyzing the case in which rev(h) ≥ t.

Lemma B.3. Suppose that rev(h) ≥ t. Then, ui(REVEAL, s−i) = ui(ABORT, s−i).

Proof: By the time that it is the turn of player i to take action, the secret is already known
to all players. Thus, no matter what is the action taken by i, the outcome o of any possible
eventual subgame in the subtree rooted at h will satisfy δj(o) = 1 for all j ∈ [n]. From our
assumptions on the utility functions, we would then have that player i is indifferent between
outcomes that result from him playing REVEAL and outcomes that result from him playing ABORT;
i.e., ui(REVEAL, s−i) = ui(ABORT, s−i).

¿From this point on, we may thus assume that rev(h) < t. Our analysis distinguishes between
two cases, depending on whether one of the first t − 1 (or `− 1, in case that ` < t) actions in the
history is ABORT. More specifically, let

t∗
def= min{`, t}.

We distinguish between the case that there exist some j < t∗ for which aj = ABORT, and the case
that aj = REVEAL for all j ≤ t∗. Each of these cases will require a separate treatment, since in the
former case the prescribed strategy instructs player i to send an ABORT message, whereas in the
latter it instructs him to send a REVEAL message.

The following lemma deals with the first case, in which aj = ABORT for some j < t∗. By the
definition of the prescribed strategy si, we have si(h) = ABORT. Thus, what we will need to argue
is that, assuming all players π(k) for k > ` follow their prescribed strategy, player i = π(`) prefers
following si(h) = ABORT over the (only possible) alternative strategy s′i(h) = REVEAL.

Lemma B.4. Suppose that aj = ABORT for some j < t∗. Then, ui(REVEAL, s−i) ≤ ui(ABORT, s−i).

Proof: We distinguish between the following two cases, depending on the value of rev(h):

rev(h) < t − 1: Since there exists j < t∗ for which aj = ABORT and since t∗ ≤ t, then for all
k ≥ `, the prescribed action for player π(k) is to send an ABORT message. Thus, no matter
what is the action taken by player i, if all subsequent players π(k) follow their prescribed
strategies, the total number of shares that are eventually known by player i will be at most
rev(h) < t− 1. This means that for either actions available to player i, the outcome o of the
game will satisfy δi(o) = 0. By our assumptions on the utility functions, it then follows that
player i is indifferent between outcomes that result from him playing REVEAL and outcomes
that result from him playing ABORT; i.e., ui(REVEAL, s−i) ≤ ui(ABORT, s−i).7

rev(h) = t − 1: Since at the node in which the subtree is rooted player i is yet to broadcast its
value, we have that player i knows t shares. Thus, no matter what action player i chooses,
every possible outcome o in the subtree will satisfy δi(o) = 1. Now, since aj = ABORT for

6Since every player in Γ̄ plays exactly once, and since in every level of the game tree there is only one player that
is supposed to play, we may omit the restriction |h from si|h. This results in the simpler notation si.

7Note that if player i sends a REVEAL message then it is possible that for some k 6= i it will hold that δk(o) = 1
(while δi(o) = 0 no matter how player i acts). Thus, in some cases, player i might strictly prefer ABORT over REVEAL.
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some j < t∗, we have that for all k ≥ `, the prescribed action for player π(k) is to send an
ABORT message. Thus, if the action taken by player i is ABORT, and all subsequent players
π(k) follow their prescribed strategies, there will exist players m ∈ [n] that will eventually
learn at most t − 1 shares and for which δm(o) = 0. (These will be the players m = π−1(j),
who correspond to the t− 1 indices j ≤ ` for which aj = REVEAL.) If, on the other hand, the
action taken by player i is REVEAL, then we would have that δm(o) = 1 for all m ∈ [n]. By our
assumptions on the utility functions, it then follows that player i strictly prefers outcomes
that result from him playing ABORT over outcomes that result from him playing REVEAL; i.e.,
ui(REVEAL, s−i) ≤ ui(ABORT, s−i).

This completes the proof of Lemma B.4.

We now turn to handle the case in which aj = REVEAL for all j ≤ t∗. By the definition of the
prescribed strategy si, we have si(h) = REVEAL. Thus, what we will need to argue is that, assuming
all players π(k) for k > ` follow their prescribed strategy, player i = π(`) prefers sending a REVEAL
message over sending an ABORT message.

Lemma B.5. Suppose that π is K-good, and that aj = REVEAL for all indices j < t∗. Then,
ui(ABORT, s−i) ≤ ui(REVEAL, s−i).

Proof: We distinguish between the following two cases, depending on the value of rev(h):

rev(h) < t− 1: Since aj = REVEAL for all indices j < t∗, then the prescribed action for player i is
to send a REVEAL message. Thus, if player i indeed chooses to follow the prescribed strategy
an send REVEAL, then for all k > ` the prescribed action for a subsequent player π(k) will be
to send a REVEAL message. This would entail that the number of shares eventually revealed
is n and that δk(o) = 1 for all k ∈ [n] (and in particular δi(o) = 1).

On the other hand, if player i chooses to send an ABORT message, then the prescribed action
for subsequent players π(k) will be to send an ABORT message, resulting in δi(o) = 0. By our
assumptions on the utility functions, player i strictly prefers outcomes o for which δi(o) = 1
over outcomes o′ for which δi(o′) = 0. Thus, player i will strictly prefer to take the action
REVEAL over the action ABORT; i.e., ui(ABORT, s−i) ≤ ui(REVEAL, s−i).

rev(h) = t − 1: This is the place where we will be using our hypothesis that the permutation π
is K-good and that players k ∈ N \ K always act as prescribed. Since rev(h) = t − 1, and
since at the node in which the subtree is rooted player i is yet to broadcast its value, we have
that player i knows t shares. Thus, no matter what action player i chooses, every possible
outcome o in the subtree will satisfy δi(o) = 1. We will next need to argue that player i is
indifferent between REVEAL and ABORT. Given that δi(o) = 1, this can happen only if player
i’s action has no effect on the value of δk(o) for any k 6= i. Here we use the fact that the
permutation π is K-good.

Recall that K-goodness implies the existence of k ≥ t so that player π(k) ∈ N \ K, which
by definition of the restricted game Γ̄ = Γπ

s−K
, implies that player π(k) always follows the

prescribed strategy sπ(k). Since by hypothesis, aj = REVEAL for all j < t∗ and since k ≥ t ≥ t∗,
then in all subtrees rooted at h the strategy sπ(k) instructs player π(k) to send a REVEAL
message. As a consequence, for every terminal history o in the subtree, it will be the case
that ak = REVEAL.

Thus, no matter what is the action taken by player i, we will have that the total number of
shares eventually revealed is at least t (t−1 in h plus at least one by player π(k)). This implies
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that for any possible outcome o in the subtree it holds that δj(o) = 1 for all j ∈ [n]. By our
assumptions on the utility functions, having δj(o) = 1 for all j ∈ [n] regardless of how player i
acts implies that he is indifferent between outcomes that result from him playing ABORT over
outcomes that result from him playing REVEAL; i.e., ui(ABORT, s−i) ≤ ui(REVEAL, s−i).

This completes the proof of Lemma B.4

This completes the proof of Theorem 4.1.

B.4 PCPNE Implies SPE

Claim 5.3 For any game Γ, if s∗ is PCPNE in Γ, then s∗ is SPE in Γ.

Proof. Since strategy s∗ is PCPNE in the game Γ, then it follows that s∗ is PSE in Γ. Considering
only single player coalitions C = {i}, we have that s∗i is PCPNE in the restricted game Γs∗−i

. Hence,
there does not exists another strategy s′i such that ui(s′i, s

∗
−i) > ui(s∗). (Otherwise, s′i is a Pareto

improvement for player i in Γs∗−i
.) This property also holds for all proper subgames of Γ since s∗ is

PCPNE in all proper subgames of Γ, which follows from s∗ being PSE in Γ. Therefore, s∗ is SPE
in the game Γ.

B.5 Proof of PCPNE

Theorem 5.4 Let protocol (Γπ
s−K

, sK) be defined as in Definition 2.2, with π being a K-good
permutation and s being our prescribed strategy. Then, strategy sK is PCPNE in the game Γπ

s−K
.

Let the game Γπ
s−K

be denoted by Γ = (K, H,P , u). To prove the above theorem, we characterize
all PCPNE strategies for the game Γ by defining good strategies as follows: For a history h ∈ H
and a set of players C ⊆ K, we say strategy s is good with respect to C and h iff for every history
h′ ∈ H|h, letting i = P (h′), the following conditions are satisfied.

1. If i ∈ C, err(h′) = yes, and t− 2 ≤ rev(h′) ≤ t− 1, then si(h′) = abort.

2. If i ∈ C, err(h′) = no and rev(h′) < t− 1, then si(h′) = reveal. (Note that this implies that
we are at the (rev(h′) + 1)-th stage of the protocol.)

3. Otherwise, in all other cases, si(h′) is unconstrained, i.e., it can be either reveal or abort.

Recall that err(h′) denotes whether an abort occurred in the first t−1 rounds of h′, and rev(h′′)
is the number of reveals that took place in h′.

We establish four claims concerning the properties of good strategies. The first claim follows
from definition of the prescribed strategy s; see Section 2.2.

Claim B.6. The prescribed strategy sK is good with respect to all the rational players K and the
null history h = ε.

The second claim follows from the observation that whether a strategy s is good with respect
to C and h involves checking every node of the game tree after h in which a player in C moves;
hence a good strategy is “local” property.

Claim B.7. For any two sets C ′ and C such that C ′ ⊆ C ⊆ K, and any history h ∈ H, the
following two conditions are equivalent.
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1. Strategy s is good with respect to C and h.

2. Strategy s is good with respect to C ′ and h, and s is good with respect to C \ C ′ and h.

The third claim states that good strategies are “optimal,” in the sense that not playing good
strategies gives strictly inferior outcomes assuming everyone else plays good strategies.

Claim B.8. For any history h ∈ H, letting i = P (h) and C = K \{i}, if s that is good with respect
to K and h but s′ is not good with respect to {i} and h, then ui((si, s−i)|h) > ui((s′i, s−i)|h).

The final claim states that any two good strategies are “equally as good” for all the rational
players in our protocol.

Claim B.9. For every history h ∈ H, and any two good strategies s and s′ with respect to K and
h, we have ui(s|h) = ui(s|h) for all i ∈ K.

Proof. We consider every node in the game tree, with each node represented by a history h, and
argue that playing any two good strategies s|h and s′|h would end up with ui(s|h) = ui(s|h) for all
i ∈ K.

Consider the case when err(h) = yes. Then, si(h) is unconstrained only if rev(h) ≥ t or
rev(h) < t − 2. In the former case, when rev(h) ≥ t, it does not matter whether player i reveals
or aborts since every player would have learnt the secret. In the latter case, when rev(h) < t − 2,
si(h) = reveal would increase the number of revealed shares by one, but as soon as the number
of revealed shares reaches t − 2, the succeeding players would all abort (by condition 1 above),
resulting in an outcome where no player learns the secret. On the other hand, if si(h) = abort,
we would remain in the case where less than t− 2 shares have been revealed, and by induction, we
would also be in an outcome where no player learns the secret.

Next, consider the case when err(h) = no. In this case, si(h) is unconstrained only if rev(h) ≥
t − 1. Since err(h) = no and permutation π is K-good, there would be an honest player after the
t-th stage who would reveal her share. Therefore, everyone will learn the secret whether or not
player i reveals her share.

The next lemma shows that good strategies exactly characterizes the set of PCPNE strategies
in our game.

Lemma B.10. For every history h ∈ H and every set C ⊆ K, the following three conditions are
equivalent for strategies s that are good with respect to K \ C and h.

1. s is good with respect to C and h;

2. sC |h is PSE in Γs−C |h;

3. sC |h is PCPNE in Γs−C |h.

Theorem 5.4 follows from Lemma B.10 by taking C = K and h = ε, and by noting that the
prescribed strategy s is good with respect to K and h = ε, by Claim B.6.

Proof. We prove the equivalence by induction on the number of players n and number of stages r
in the game Γs−C |h. Note that n ≤ |C| and r ≤ |K| − |h|.

The base case where (n, r) = (1, 1) is handled Claim B.8, which states that playing good
strategies is “optimal” assuming every other subsequent rational player plays good strategies.

We now prove the inductive step. From now on, let game Γ′ = (C,H ′, P ′, u′) denote the game
Γs−C |h.
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(1) ⇒ (2) Since s is good with respect to C and h, and s that are good with respect to K \C and
h, then by Claim B.7, s is good with respect to K and h.

For any h′ ∈ H ′ \ {ε} and C ′ ( C, applying Claim B.7 again gives us: (i) s′ is good with
respect to C and h′, and s′ is good with respect to K \ C and h′; (ii) s′ is good with respect
to C ′ and ε, and s′ is good with respect to K \ C ′ and ε. Then by induction, s′ is PCPNE
in all proper subgames of Γ′, and also PCPNE in all proper coalitions C ′ ( C of Γ′. This
implies that s′ is PSE in Γ′.

(2) ⇒ (1) Assume for sake of contradiction that s′ is PSE in Γ′ but not good with respect to C and
h. By the definition of PSE, s′ is PCPNE in every proper subgame of Γ′, and by induction s′

is good with respect to C and any h′ ∈ H ′.

Consequently, it is the move of the immediate next player i = P ′(h′), namely s′i(h
′), that

contradicts the requirement of being good. In other words, s′ is not good with respect to {i}
and h′. By Claim B.8, the utility of player i when playing s′i is strictly inferior to playing a
good strategy s′′i . This contradicts the fact that s′ is PSE in Γ′.

(2) ⇒ (3) Having established the equivalence between good and PSE strategies, namely (1) ⇔ (2),
we use Claim B.9 to conclude that the choice of good (or equivalently, PSE) strategies in the
game Γ′ does not affect the utilities of the rational players. This implies that no PSE strategy
in Γ′ can Pareto improve any other PSE strategy. Hence, every PSE strategy is also PCPNE.

(3) ⇒ (2) This direction is immediate since PCPNE strategies must be PSE; see Definition 5.2.

B.6 Comments

Remark B.1. It may be helpful to contrast this approach with that of Lepinski et al. [23] who are
also concerned about coalitional deviations in the design of distributed protocols. Specifically, they
adopt cryptographic methods to ensure that there are no opportunities for coordinating on deviations
by sending messages within the message space of a protocol. The view adopted in our work is quite
different. The incentives in our protocol are naturally aligned such that even if (as in the standard
game theory story) the players are able to enter “smoke filled rooms” they can nevertheless not
agree on a useful deviation that will be stable against further deviations.

Remark B.2. In considering coalitional deviations we are entertaining the possibility that parties
in a protocol can communicate freely outside of the protocol in forming agreements about play within
the protocol. This is the standard game theory story for coalitional-proof Nash equilibrium, i.e. even
if groups of players can discuss in “cheap talk” how to play they will be unable to identify useful
deviations. Why, one might ask, would a coalition of players not simply proceed to share their
secret outside of the protocol. We give a response in two parts. (1) For concreteness consider
the following scenario. The protocol is executed in a room in which every party has his share of
the secret inside a sealed envelope on a table. The available actions of a party are to reveal (and
open the envelope) or abort (refuses to open the envelope). To consider coalitional deviations we
also allow players to freely leave the room in any round, but without the envelope, and engage in
discussion. The envelopes– and the shares –remain in the room. (2) Now, any subset of the players
may nevertheless choose to abort and leave the room with their envelopes (and unable now to return
to the room). But, if we assume neither a mediator nor a simultaneous broadcast (or similar)
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device outside the room that it seems incredible, for the same reasons as the impossibility results for
rational secret sharing [22, 20] for these players to be able to coordinate amongst themselves such
that they all learn the secret! Thus, we see that the players want to use the designed protocol (in
the room) with the small minority of honest players because it is precisely this protocol that allows
for secret sharing. One can also make the same argument for a different concrete setting in which
players can freely leave with their envelope and return. Again, while players may choose to engage
in “cheap talk” outside of the room about how to play inside the room it seems reasonable to assume
they will not begin to open envelopes outside of the room.
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