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ABSTRACT

A function f is extractable if it is possible to algorithmically “ex-
tract,” from any adversarial program that outputs a value y in the
image of f, a preimage of y. When combined with hardness proper-
ties such as one-wayness or collision-resistance, extractability has
proven to be a powerful tool. However, so far, extractability has
not been explicitly shown. Instead, it has only been considered as
a non-standard knowledge assumption on certain functions.

We make two headways in the study of the existence of ex-
tractable one-way functions (EOWFs). On the negative side, we
show that if there exist indistinguishability obfuscators for a cer-
tain class of circuits then there do not exist EOWFs where extrac-
tion works for any adversarial program with auxiliary-input of un-
bounded polynomial length.

On the positive side, for adversarial programs with bounded auxiliary-

input (and unbounded polynomial running time), we give the first
construction of EOWFs with an explicit extraction procedure, based
on relatively standard assumptions (e.g., sub-exponential hardness
of Learning with Errors). We then use these functions to construct
the first 2-message zero-knowledge arguments and 3-message zero-
knowledge arguments of knowledge, against the same class of ad-
versarial verifiers, from essentially the same assumptions.

*This is a merged version of two works: “How to construct ex-
tractable one-way functions against uniform adversaries” (IACR
Eprint 2013/468) and “Indistinguishability obfuscation vs. Ex-
tractable one-way functions: One must fall” (IACR Eprint
2013/641).
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1. INTRODUCTION

The ability to argue about what adversarial programs “know” in
the context of a given interaction is central to modern cryptography.
A primary facet of such argumentation is the ability to efficiently
“extract” knowledge from the adversarial program. Establishing
this ability is often a crucial step in security analysis of crypto-
graphic protocols and schemes.

Cryptographic proofs of knowledge are an obvious example for
the use of knowledge extraction. In fact, here ‘knowledge’ is de-
fined by way of existence of an efficient extraction procedure. The
ability to extract values from the adversary is also useful for as-
serting secrecy properties by simulating the adversary’s view of an
execution of a given protocol, as in the case of zero-knowledge or
multi-party computation [GMR89, GMW87]. A quintessential ex-
ample here is the Feige-Lapidot-Shamir paradigm [FLS99]. Other
contexts are mentioned within.

How is knowledge extracted? Traditionally, the basic technique
for extracting knowledge from an adversary is to run it on mul-
tiple related inputs to deduce what it “knows” from the resulting
outputs. The power of this technique (often called “rewinding”)
is in that it treats the adversary as a black-box and does not need
to know anything regarding its “internals”. However, as a num-
ber of impossibility results for black-box reductions and simula-
tion show, this technique is also quite limited. One main limitation
of rewinding-based extraction is that it requires multiple rounds of
interaction with the adversary. Indeed, proving security of candi-
date 3-message zero-knowledge protocols, succinct non-interactive
arguments (SNARGs), and other tasks are out of the technique’s
reach [GK96, GW11].

Starting with the work of Barak et al. [Bar0O1], a handful of
extraction techniques that go beyond the limitations of black-box
extraction have been developed. These techniques use the actual
adversarial program in an essential way, rather than only the adver-
sary’s input-output functionality. However, these too require sev-
eral rounds of protocol interaction, thus they do not work in the
above contexts.

Knowledge assumptions and extractable functions. Damgard
[Dam92] proposes an alternative approach to knowledge extraction
in the form of the knowledge of exponent assumption (KEA). The
assumption essentially states that it is possible to extract the secret
value = from any program that, given two random generators g, h
of an appropriate group G, outputs a pair of group elements of the
form g”, h”. This approach was then abstracted by Canetti and
Dakdouk [CD08, CD09] who formulated a notion of extractable
functions. These are function families {f.} where, in addition
to standard hardness properties, such as one-wayness or collision-
resistance, any (possibly adversarial) program A that given e out-



puts y in the image of f. has an “extractor” £ that given e and the
code of A, outputs a preimage of y.

Extractable functions provide an alternative (albeit non-explicit)
“extraction method” that does not rely on interaction with the ad-
versary. As an expression of the method’s power, KEA [HT98,

BPO04a], or even general extractable one-way functions [CD09, BCC*13],

are known to suffice for constructing 3-message zero-knowledge
protocols, and extractable collision-resistant hash functions are known

extractable functions, extractability with common auxiliary input is
needed. In other settings, the definition can be relaxed to consider
only the case where the common auxiliary input is taken from some
specific distribution that captures the “possible” auxiliary informa-
tion in a given system, see e.g. [BCCT12].

1.1 Overview of Results
We give two quite different answers to the above question. On

to suffice for constructing succinct non-interactive arguments (SNARGS) the negative side, following the common belief (first expressed in

[BCCT12]. KEA had also led to relatively efficient CCA construc-
tions [Dam92, BP04a].

The black-box impossibility of some of the above applications
imply that it is impossible to obtain extractable functions where
the extractor uses the adversary’s program A only as a black box.
Coming up with the suitable non-black-box techniques has been the
main obstacle in constructing extractable functions, and to date, no
construction with an explicit extraction procedure is known. In-
stead, for all the existing candidate constructions of extractable
functions (e.g., [Dam92, CD09, BCCT12, BC12]), the existence
of such an extractor is merely assumed. Such assumptions are ar-
guably not satisfying. For one, they do not qualify as “efficiently
falsifiable” [Nao03]; that is, unlike standard assumptions, here it
may not be possible to algorithmically test whether a given adver-
sary breaks the assumption. In addition, the impossibility of ex-
tractable functions with black-box extraction only further decreases
our confidence in such assumptions, as our current understanding
of non-black-box techniques and their limitations is quite partial.

Thus, a natural question arises:

Can we construct extractable functions from standard
hardness assumptions?

Alternatively, Can we show that extractable functions
cannot exist?

On the role of auxiliary input. It turns out that the question is
more nuanced. Specifically, we show that the answer crucially de-
pends on how we model the “auxiliary information” available to
the evaluator .A and the extractor £. Let us elaborate. One straight-
forward formulation of extractable functions requires that, for any
possible adversary (modeled as a uniform algorithm) there exists
an extractor (again, modeled as a uniform algorithm) that success-
fully extracts as described above given the adversary’s coin tosses.
An alternative is to model both the adversary and the extractor as
non-uniform families of deterministic polysize circuits.

However, it turns out that in many applications neither formula-
tion suffices. Indeed, when using extractable functions with other
components in a larger cryptographic scheme or protocol, an adver-
sary A may gather information z from other components and use it
as additional auxiliary input when evaluating the extractable func-
tion. To be useful in these cases, the extractor needs to be able to
deal with auxiliary information that’s determined affer the extractor
has been fixed. That is, we require that for any adversary A there
exists an extractor £ such that for any polysize z, and for a ran-
domly chosen key e, whenever .A(z, e) outputs an image y, £(z, )
output a corresponding preimage of y. In the above, we can either
model both the adversary A and the extractor £ as uniform poly-
time machines, or as non-uniform machines with polynomial size
advice. We call z the common auxiliary input, and if A and £ are
non-uniform we refer to their advice as individual auxiliary input.

We note that the concept of common auxiliary input appears
elsewhere in cryptography. For instance, to make sure that zero-
knowledge protocols remain zero-knowledge under sequential com-
position, the verifier and simulator get common auxiliary input. In-
deed, to obtain this standard formulation of zero-knowledge using

[HT98]), we give formal evidence that extractable one-way func-
tions with common auxiliary input of unbounded length may not
exist:

THEOREM 1 (INFORMAL). If there exist indistinguishability
obfuscators for a certain class of circuits, then there do not exist
extractable one-way functions with respect to common auxiliary-
input of unbounded polynomial length.

This seems to suggest that the concept of extractable one-way func-
tions (and other concepts that imply it, such as extractable collision-
resistant hashing or SNARKSs) may be shaky overall, especially in
light of the recent candidate indistinguishability obfuscator for all
circuits [GGH™ 13b].

Still, we show, for the first time, how to construct extractable one-
way functions with an explicit extraction procedure with respect
to auxiliary-input of bounded polynomial length (common or in-
dividual), and in particular, with respect to uniform adversaries.
More specifically, we first give a construction of extractable one-
way functions based on publicly-verifiable P-delegation schemes:

THEOREM 2 (INFORMAL). Assuming one-way functions and
publicly-verifiable P-delegation, there exist EOWFs with respect
to (common or individual) auxiliary-input of bounded polynomial
length.

While the existence of publicly-verifiable P-delegation schemes
is perhaps not considered as a standard assumption, it is a falsifiable
assumption [Nao03]," with candidates such as CS proofs [Mic00]
or SNARGs [BCCT13] (when restricted to P). We view this con-
struction mainly as a proof of concept, showing that ruling out such
extractable functions may be a hard task.

Trying to head towards a construction from standard assumptions,
we formulate a generalized variant of extractable one-way func-
tions (GEOWFs), capturing the properties which make EOWFs
useful, and indeed construct bounded-auxiliary-input GEOWFs from
relatively standard assumptions. Specifically, our construction re-
lies on the existence of privately-verifiable P-delegation, which was
recently established by [?], based, for instance, on the Learning
with Errors Assumption. We additionally show that the limitation
given by Theorem 1 also holds for GEOWFs.

Relying on GEOWFs, we give the first constructions from stan-
dard assumptions of 2-message zero-knowledge arguments and 3-
message zero-knowledge arguments of knowledge, against verifiers
with bounded-auxiliary-input.

THEOREM 3 (INFORMAL).

1. Assuming (even privately-verifiable) P-delegation, there ex-
ist GEOWF's with respect to (common or individual) auxiliary-
input of bounded polynomial length.

'See discussion in [CLP13] on the equivalent concept of 2-message
P-certificates.



2. Assuming GEOWFs, ZAPs [DNO7], and (even 1-hop [GHV10])

homomorphic encryption, there exists a 3-message ZK ar-
gument of knowledge against bounded-auxiliary-input veri-
fiers. Assuming the GEOWFs are one-way against subexpo-
nential adversaries, there exists a 2-message ZK argument
against bounded-auxiliary-input verifiers.

We now elaborate on each of the results.

1.2 TImpossibility with respect to Unbounded
Auxiliary-Input

To introduce the negative result regarding EOWFs with unbounded

(common) auxiliary-input, we first recall the notion of obfuscation,
and explain their contrast with auxiliary-input extractability.

Obfuscation. Program obfuscation is aimed at making code un-
intelligible while preserving its functionality, and has been long
considered to be a holy grail of cryptography, with diverse and far
reaching applications. Barak et al. [BGI™01] initiated the rigourous
treatment of obfuscation, formulating a number of definitions of se-
curity for the task. However, until recently, we only knew how to
obfuscate a number of restricted classes of programs under any of
these definitions. Furthermore, Barak et al. demonstrated a class
of programs that are unobfuscatable according the natural virtual
black-box (VBB) definition, guaranteeing that access to the obfus-
cated program gives no more power than access to an impenetrable
black box with the same input-output functionality.

This state of affairs changed with the work by Garg et al. [GGH™ 13b]

who proposed a candidate construction of general-purpose obfus-
cators. They show that, under algebraic assumptions closely re-
lated to multilinear maps [GGH13a, CLT13], their construction
satisfies the relaxed notion of indistinguishability obfuscation (10)
[BGIT01], for which no impossibility results are known. The IO
notion only requires that it is hard to distinguish an obfuscation of
C) from an obfuscation of C'1, for any two circuits Cp and C of
the same size that compute the exact same function.

Since the emergence of the Garg et al. candidate, 10 has been
shown to have variety of powerful positive applications, such as
functional encryption, public-key encryption from one way func-
tions, deniable encryption, 2-message multi-party computation, and
more [GGH™ 13b, SW13, HSW13, GGHR13, BZ13, KRW13].

The tension between obfuscation and extractable functions. As
noted already in the work of Hada and Tanaka [HT98], extractabil-
ity with respect to common auxiliary-input is a strong requirement.
Indeed, the common auxiliary-input z may potentially encode an
arbitrary circuit to be executed by the adversary in order to produce
an image y. The extractor should, thus, be able to efficiently “re-
verse engineer” such a circuit, in order to figure out a preimage of
y. This reveals a clear tension with obfuscation: if z contains ob-
fuscated code that chooses a preimage in some complicated way, it
may be impossible to extract from.

The question is how to turn this intuition into a formal impos-
sibility. While VBB obfuscation may be the natural choice, we
do not have any evidence that there exist VBB obfuscators for a
complicated task such as the one described above (in fact, there
is evidence that they do not [GKO5, ?]. We show that general 10
suffices to make this intuition rigorous.

Proof idea. We focus on the ‘hardest scenario’, where the auxiliary
input z may represent an arbitrary malicious and potentially obfus-
cated code. Specifically, we consider the following folklore case
(sketched for example in [BCCT12]) where z is an obfuscation of
a circuit C'y, that, given key e for an extractable function f., chooses
its preimage in an unpredictable way: it applies a pseudo-random

function PRFy, to the key, and outputs the result f.(PRFx(e)).

An adversary, given such an obfuscated circuit as auxiliary input
z, can run it on the key e for the extractable function and always
obtain a proper image. The question is whether the extractor, given
the same (e, z), can output a preimage. Intuitively, had we given
the extractor black-box access to the circuit C, instead of an obfus-
cation of C}, it would have to invert the one-way function to obtain
such a preimage. Indeed, since the oracle Cj, answers any query €’
with f.(PRFy(e")), it follows from pseudo-randomness that find-
ing a preimage of f.(PRF(e)) is as hard as finding a preimage of
fe(u), for a uniformly random w.

Can the above intuition be translated to a proof using IO? Indeed,
when z is an IO obfuscation ¢O(Cy) of the circuit Cy, it is not clear
what kind of information leaks on the PRF key k.> Nevertheless,
we show that the above intuition can still be fulfilled. The idea
is to consider an alternative to the the circuit C% that computes
the same function, but without actually “knowing” the preimage
PRF(e). This is achieved using the puncturing technique of Sahai
and Waters [SW13].

Specifically, instead of using any PRF family, we use a punc-
turable PRF. In such PRFs it is possible to puncture a given key &
at an arbitrary point £ in the domain of the function. The punc-
tured function PRFy_, , with punctured key k., preserves func-
tionality at any other point, but hides any information on the point
PRF(z*); namely, the value PRFy(x*) is pseudo-random, even
given (z*, ky= ). As shown in several recent works [BW13, BGI13,
KPTZ13], such puncturable PRFs follow from the GGM construc-
tion [GGMB&6].

Using a puncturable PRF in the implementation of Cj, we can
now show that if the extractor succeeds in finding a preimage of
y = fe(PRF(e)), it would also succeed had we provided it with
an obfuscation of the alternative circuit Cy, ,. The circuit Cy, 4
computes the same function as C', but in a different way: it only
has the punctured key ke, and has the value y = f.(PRF(e))
directly hardwired into it, so that it does not have to evaluate the
PRF in order to compute it. Thus, the fact that the extractor still
succeeds follows by the guarantee of indistinguishability obfusca-
tion. However, now by the pseudo-randomness guarantee at the
punctured point e, we know that PRF(e) is pseudo random, even
given the circuit C, 4, and thus the extractor can be used to invert
the one-way function f. from scratch.

Finally, we note that since puncturable PRFs can be constructed
from one-way functions, and any EOWF is in particular a OWF,
it follows that the impossibility of EOWFs is implied by indistin-
guishability obfuscation without any further assumptions. We also
note that the result naturally extends to the notion of generalized
EOWFs (presented in more detail in the following subsection).

So, is the knowledge of exponent assumption wrong? In its orig-
inal formulation [Dam92] and in subsequent formulations [HT98,
BP04a, BP04b], the knowledge of exponent assumption (KEA) was
not stated with respect to common auxiliary-input, but rather only
for individual auxiliary-input (or completely uniform machines),
where any .4 with advice z4 has an extractor £ with its own advice
zg, and the only common extra information is the adversary’s coin
tosses and key for the function. In particular, given a non-uniform
adversary A with an obfuscated code as advice z 4, the extractor is
allowed to have a different advice z¢, representing the “deobfus-
cated” code. Indeed, our result does not rule out such a notion of

’In fact, formalizing the above intuition is tricky even with VBB,
because one has to reduce extraction of one of perhaps many arbi-
trary pre-images to the task of predicting some deterministic pred-
icate of the PRF key k.



extraction (even assuming IO for all circuits).

Our result does not disvalidate the intuition that “the only way”
to compute (¢g°, h), given (g, h) is by “knowing” x. As we saw,
our adversary and auxiliary-input are devised so that z is actually
known, but only by an underlying obfuscated computation, and
thus cannot be figured out efficiently by an external extractor.

We also note that our result does not rule out extractable func-
tions with respect to common auxiliary input that is taken from
specific distributions that may be conjectured to be “benign”, e.g.
the uniform distribution, required in [BCCT12].

Subsequent work. The negative result presented above, in fact,
shows that for any candidate EOWF family F, there exists a distri-
bution Zr, and an adversary A, such that any extractor £ for A,
would fail with respect to common auxiliary-input sampled from
Zr. As noted by Boyle and Pass [BP13b], our result can be gen-
eralized so that Z does not depend on F, but only on some upper
bound 7' on its running time (by having Z encode a proper univer-
sal circuit). Boyle and Pass further show that, assuming a strength-
ening of 10 called extractable obfuscation (a.k.a. differing inputs
obfuscation), Z can be made independent of 7'r and only depend
on its output length ¢r; in particular, elements sampled from Z
can be longer than £r. We note that their result does not clash
with our positive result for bounded auxiliary-input, in which ¢ is
made longer than the bound on auxiliary inputs. We also note that
both ours and Boyle and Pass’ impossibility apply for a specific
and rather contrived distribution. No impossibility is yet known for
distributions that may be considered “benign”, such as the uniform
distribution.

1.3 Constructions with respect to
Bounded Auxiliary-Input

We first formulate a generalized version of EOWFs (GEOWFs),
and show how GEOWPFs can be constructed from standard assump-
tions. Then, we shall see that, under appropriate conditions, we can
leverage the same ideas in order to get standard EOWFs.

Generalized EOWFs. The essence of EOWFs, and what makes
them useful, is the asymmetry between a black-box inverter and a
non-black-box extractor: an inverter, which only gets a random im-
age y = fe(z) of an EOWF, cannot find a corresponding preimage
x’, whereas a non-black-box extractor, which is given a code that
produces such an image, can find a preimage =’. GEOWFs allow to
express this asymmetry in a more flexible way. Concretely, a func-
tion family F is now associated with a “hard” binary relation R
on image-witness pairs (fe(z),z’). Given y = f.(x) for a random
x, it is infeasible to find a witness ', such that R (y,z') = 1.
In contrast, a non-black-box extractor that is given a code that pro-
duces such an image can find such a witness z’.

It is natural to require that the relation R7 is efficiently test-
able, in this case we say that the GEOWF is publicly-verifiable.
However, we shall see that GEOWFs are useful, even for hard rela-
tions that are not publicly-verifiable. Specifically, we will consider
privately-verifiable GEOWFs where R (y, ) is not efficiently
testable given only (y = f.(x),z’), but can be efficiently tested
given z in addition.

The main idea behind the construction. To convey the basic
idea behind our constructions of GEOWFs with respect to bounded
auxiliary-input, consider the following first attempt. The GEOWF
f is key-less, it is simply a pseudorandom generator stretching in-
puts of length n to outputs of length 2n. The relation R” contains
pairs (y, M) such that the witness M is a description of a ma-
chine of length at most n, and M (1™) outputs y. The fact that the
relation R” (y, -) is hard to satisfy for y = f(z) and a random

z, follows from the pseudo-randomness of the output y. Indeed,
a truly random output that is indistinguishable from y would have
high Kolmogorov complexity. However, given any adversarial pro-
gram M 4 whose description size is bounded by n and that outputs
some y € {0, 1}*", the description of the program M 4 itself is a
witness that satisfies the relation R” (y, M _4), and thus extraction
is trivial.

The main problem is that the time required to test the relation
R7 (even given some preimage of y) is not bounded by any par-
ticular polynomial; indeed, the running time of M 4 may be an
arbitrary polynomial. One can try to fix this by padding the witness
M4 with 1* where ¢ is the running time of M 4. However, now
the length of the extracted witness depends on the running time of
the adversarial program M 4 and is not bounded by any particular
polynomial in the length of the image. Such generalized extractable
functions do not seem to be as powerful though; in particular, we
do not know how to use them for constructing 2-message and 3-
message ZK protocols.

A similar problem is encountered in Barak’s zero-knowledge
protocol [BarO1], where the entire computation of a malicious ver-
ifier is used as the simulation trapdoor. As in the protocol of Barak,
Lindell, and Vadhan [BLVO06], we get around this problem using
a non-interactive proof system that allows for quick verification of
(possibly long) computations. Instead of computing the output y of
the witness program M _4, R” will (quickly) verify a proof for the
fact that M 4 (1™) outputs y. That is, (y, (M, 7)) € R” only if 7
is a convincing proof that M(1™) = y. Intuitively, the soundness
of the proof guarantees that the relation is still hard to satisfy. Ex-
traction from a bounded-auxiliary-input adversary M 4 is done by
simply computing a proof for its computation.

P-delegation. The proof system required in our constructions is a
non-interactive computationally sound proof for deterministic poly-
time statements, from hereon referred to as a P-delegation scheme.
More precisely, in a P-delegation scheme, the verifier generates,
once and for all, an “offline message” o together with a private veri-
fication state 7 and sends o to the prover. Then, the prover can com-
pute a non-interactive proof 7 for any adaptively chosen statement
of the sort: “machine M outputs v within ¢ steps”. We require that
the verifier runs in time polynomial in the security parameter n, but
only polylogarithmic in ¢, and the prover runs in time polynomial in
(t,n). We say that a delegation scheme is publicly-verifiable if the
verification state 7 can be published without compromising sound-
ness. Otherwise we say that the scheme is privately-verifiable.

As mentioned in Section 1.1, while we do have candidates for
publicly-verifiable P-delegation, their security is not based on stan-
dard assumptions. In a recent breakthrough result, Kalai, Raz and
Rothblum [?] construct a privately verifiable P-delegation scheme

based on any private information retrieval scheme with sub-exponential

security. While the scheme of [?] only has non-adaptive soundness,
we use standard techniques to get soundness for a statement that is
adaptively chosen from a relatively small set of possible statements.
This is indeed what is required for our construction (see the body
for more details).

GEOWF from P-delegation. We now sketch how P-delegation is
used in our constructions. We obtain publicly-verifiable (respec-
tively, privately-verifiable) GEOWFs based on publicly-verifiable
(respectively, privately-verifiable) delegation. In both cases, the
GEOWEF f is key-less, it is given as input a seed s and a random
string 7. f applies a pseudo-random generator on s and obtains
an image v. f then uses the randomness r to sample an offline
message o together with a verification state 7 for a P-delegation
scheme. Finally, f outputs (v,o). We assume that if the delega-



tion scheme is publicly-verifiable, the offline message ¢ includes
the verification state 7. Also, if the delegation scheme is privately-
verifiable, we assume that 7 can be inefficiently computed from o.
(Both assumption are WLOG.)

The relation R” contains pairs consisting of an image (v, o) and
witness (M, ), such that the length of M is much shorter then the
length of v and 7 is an accepting proof for the statement “M (1)
outputs v”, with respect to the verification state T corresponding to
the offline message o. Indeed, if the delegation scheme is publicly-
verifiable, 7 can be efficiently computed from o, and therefore the
relation R” is efficiently testable. And if the delegation scheme is
privately-verifiable, 7 can be efficiently computed given a primage
of (v, o) that contains the randomness used to sample o and 7.

Constructing standard EOWFs. We show how to construct a

standard (not generalized) EOWF ¢ from a publicly-verifiable GEOWF

f. The basic high-level idea is to embed the structure of the GEOWF
f and the relation R” into the standard EOWF g. For this purpose,
g will get as input a string ¢ € {0, 1}", which intuitively picks one
of two branches for computing the function. If ¢ # 0™ (which is
almost always the case for a random input) the output is computed
in the “normal branch", where g takes an input = for the GEOWF
f and outputs f(x). If i # 0™, the output is computed in the “trap-
door branch", which is is almost never taken for a random input,
but is used by the extractor. In the trapdoor branch, g takes as in-
put a candidate output y for f and a witness =’ for R” (y,-). g
verifies that (y,2’) € R” and if so, it outputs 3. Given an adver-
sarial program M 4 that outputs y in the image of f, the extractor
for g can invoke the extractor for f, obtain a witness = such that
(y,z') € R”, and from this witness construct a valid (trapdoor
branch) primage (: = 0", y, z') for y.

The above transformation cannot start from a privately-verifiable
GEOWEF; indeed public-verification is required so to allow the func-
tion to efficiently evaluate the relation R” in the trapdoor branch.
We also note that the above transformation is oversimplified and
implicitly assumes that an adversarial evaluator cannot use the trap-
door branch of the function to produce an output that is in the im-
age of g but not in the image of f, in which case extraction may
fail. In the body, we show how to avoid this problem by relying
on the specific construction of publicly-verifiable GEOWFs from
publicly-verifiable P-delegation with an extra property (satisfied by
existing candidates).

1.4 Zero Knowledge against Verifiers with
Bounded Auxiliary-Input

We start by describing how to construct 2-message and 3-message
zero-knowledge protocols from standard (non-generalized) EOWFs,
and then explain how to replace the EOWFs with GEOWFs.

From EOWF to 3-message zero knowledge. The protocol follows
the Feige-Lapidot-Shamir trapdoor paradigm [FLS99]. Given, say
a key-less, EOWF f, the basic idea is to have the verifier send
the prover an image y = f(z) of a random element x, which
will serve as the trapdoor. The prover would then give a witness-
indistinguishable proof-of-knowledge attesting that it either knows
a witness w for the proven statement, or it knows a preimage z’ of
y. Intuitively, soundness (and actually proof of knowledge) follow
from the one-wayness of f and the proof of knowledge property of
the WI system. Zero knowledge follows from the extractability of
f. Indeed, the simulator, given the code of the verifier, can run the
extractor of the EOWF, obtain x, and use it in the WI proof.
Following through on this intuition encounters several difficul-
ties. First, a WI proof of knowledge requires three messages, and
thus a first WI prover message must be sent in the first message

of the protocol. Furthermore, the WI statement is only determined
when the verifier sends y in the second protocol message. There-
fore, we must make sure to use a WI proof of knowledge where
the first prover message does not depend on the statement. Another
basic problem concerns the length of the first WI message. Recall
that, in our construction of EOWFs against bounded auxiliary-input
adversaries, the function’s output is longer than the adversary’s ad-
vice. Since a cheating verifier may compute y using the first WI
message as an advice, we must therefore use a WI system where
the length of the first message is independent of the length of the
proven statement. We design a WI argument with the required
properties based on ZAPs [DNO7] and extractable commitments
[PWO09].

An additional potential problem is that a malicious verifier may
output an element g outside of the function’s image, an event which
in general may not be efficiently recognizable, and cause the simu-
lator to fail. This can be solved in a couple of generic ways, below
we outline one such solution, based on 1-hop homomorphic en-
cryption. A different approach to the problem, based on ZAPs is
described in [BCCT13].

From EOWFs to 2-message zero knowledge. In the 2-message
protocol, we replace the 3-message WI proof of knowledge with
a 2-message WI proof (e.g. a ZAP). However, in the above 3-
message protocol, soundness is established by using the proof-of-
knowledge property of the WI, whereas 2-message WI proofs of
knowledge are not known. Instead, we prove soundness using com-
plexity leveraging. The prover adds to its message a statistically-
binding commitment to junk, and proves that either “z € L”, or
“f(x) = y and the commitment is to x”. We require that the com-
mitment is invertible in some superpolynomial time 7", whereas the
one-wayness of f still holds against adversaries that run in time
poly(T). Now, an inverter of f can run the cheating prover with
a verifier message that contains its input image vy, and brute-force
break the commitment to obtain a preimage of y.

Replacing EOWF with GEOWEF. We would like to base our zero-
knowledge protocols on privately-verifiable GEOWFs (that can be
constructed from standard assumptions) instead of on EOWFs. A
natural first attempt is to modify the protocol as follows: the verifier
sends an image y = f(z), as before, and the prover then gives a
WI proof of knowledge attesting that it either knows a witness w
for the proven statement, or that it knows, not a preimage, but a
witness &’ such that R (y, ') = 1. The main problem with this
first attempt is that the relation R” is not publicly-verifiable, and
thus the simulator has no way of proving the statement. Another
possible problem is that a malicious verifier may output an element
outside of the function’s image, an event which in general may not
be efficiently recognizable. In such a case there is no extraction
guarantee, and simulation may fail.

The solution for both problems is to test the relation R”, and the
validity of the verifier’s image, using a two-message secure func-
tion evaluation protocol, based for example on a 1-hop homomor-
phic encryption [GHV 10]. More concretely, the verifier, in addition
to the the function output y, sends an encryption c of the input x.
The simulator then homomorphically evaluates a circuit that effi-
ciently computes R” (y, z’) given x, as well as verifies that indeed
y = f(z). The simulator then obtains an evaluated ciphertext ¢ that
decrypts to 1 (the honest prover will simply simulate an encryption
¢ of 1). Finally, the prover (or simulator) sends back ¢, and gives
a WI proof of knowledge attesting that it either knows a witness w
for the proven statement, or that the ciphertext ¢ was generated as
described. The verifier verifies the WI proof is accepting and that ¢
decrypts to 1.



Limitations on two and three message ZK and related work.
three-message zero-knowledge protocols with black-box simula-
tion exist only for trivial languages [GK96]. The impossibility ex-
tends to the case of adversaries with bounded advice of size nﬂ(l),
where n is the security parameter (for more details, see the full ver-
sion of this paper). Previous three-message zero-knowledge pro-
tocols were based either on the knowledge of exponent assumption
[HT98, BP04a], on extractable one-way functions[BCC™13], or on
other extractability assumptions [CDO8]. In all, the simulator uses
a non-black extractor that is only assumed to exist, but not explic-
itly constructed.

Two-message zero-knowledge arguments against adversaries with
unbounded polynomial advice exist only for trivial languages (re-
gardless of how simulation is done) [GO94]. In fact, impossibil-
ity extends even to adversaries with bounded advice, provided that
the advice string is longer than the verifier’s message. Barak, Lin-
dell, and Vadhan [BLV06] construct a two-message argument that
is zero-knowledge as long as the verifier’s advice is shorter than the
verifier message by super-logarithmic additive factor. Indeed, our
two-message protocol has the same skeleton. However, security of
the Barak et al. protocol is only shown assuming existence of P-
delegation schemes (or universal arguments for non-deterministic
languages) that are publicly verifiable, which as discussed earlier is
not considered to be a standard assumption.

1.5 Open Questions

This work leaves open several questions regarding the existence
of extractable function. We next, highlight some of these questions
that we find mostly intriguing:

1. There is a gap between the positive and negative results in
terms of the type and length of auxiliary input. Specifically,
we do not know if there exist EOWFs with respect to indi-
vidual auxiliary-input of unbounded polynomial length and
no common auxiliary-input (or common auxiliary-input of
bounded polynomial length).

2. Another question regards the existence of extractable func-
tion (even with respect to completely uniform adversaries)
that satisfy stronger one-wayness properties. Particularly in-
teresting is the possibility of extractable functions where the
adversary’s output computationally binds it to a specific in-

put. For example, extractable collision-resistant hash-functions

and extractable injective one-way functions.

3. Finally, we ask whether there exist EOWF’s with respect to
common auxiliary input that is taken from specific “benign”
distribution, such as the uniform distribution.

Organization

In Section 2, we give the relevant definitions for EOWF and GEOWF.
In Section 3, we present the limitation on unbounded auxiliary-
input EOWFs based on indistinguishability obfuscation. In Sec-

tion 4, we present the constructions of bounded-auxiliary-input EOWFs

and GEOWFs. The constructions of zero-knowledge protocols from
GEOWFs and a discussion of relevant black-box lower for EOWFs
and ZK are given in the full version of this paper.

2. EXTRACTABLE ONE-WAY FUNCTIONS

In this section, we define auxiliary-input extractable one-way
functions (EOWFs), bounded-auxiliary-input EOWFs, and gener-
alized extractable one-way functions (GEOWFs).

DEFINITION 1
be polynomially bounded length functions. An efficiently computable
Sfamily of functions

F={fe:{0,11 — (0,13 ) e€ {01} nen}
associated with an efficient (probabilistic) key sampler K, is an
auxiliary-input EOWF if it is:
1. One-way: For any PPT A, polynomial b, large enough se-
curity parameter n € N, and z € {0, 1}b<">.'
z’' + Ale, fe(x); 2)

P
e<—lcfr(1") [ fe(z') = fe(x)
z+{0,1}¢(™)

] <o

2. Extractable: For any PPT adversary A, there exists a PPT
extractor £ such that, for any polynomial b, large enough

security parameter n € N, and z € {0,1}"™);
'+ E(e;2)

y + Ale; 2)
fe(z') £y :| < negl(n) .

EHCP;(W) { Az : fe(z) =y

Bounded auxiliary input. We now define bounded-auxiliary-input
EOWFs. Unlike the definition above, where extraction is guaran-
teed with respect to auxiliary input of any polynomial size b, here b
is fixed in advance and the function is designed accordingly. That
is, extraction is only guaranteed against adversaries whose advice
is bounded by b, whereas their running time may still be an arbi-
trary polynomial; this, in particular, captures the class of uniform
polytime adversaries.

For b-bounded auxiliary input, we also define key-less families.
While for unbounded auxiliary input, extraction is impossible for
key-less families (the adversary may get as auxiliary input a ran-
dom image, thus forcing the extractor to break one-wayness), for b-
bounded auxiliary input, it may be possible, since the output length
¢’ can be larger than the bound b on the auxiliary input. Our con-
structions will yield such key-less functions.

DEFINITION 2 (b-BOUNDED-AUXILIARY-INPUT EOWFS). Let
b, £, ', m be polynomially bounded length functions (where £, ', m
may depend on b). An efficiently computable family of functions

F={fe:{0,1*™ 5 {0,13"™ | e € {0,1}™M,n e N} |,
associated with an efficient (probabilistic) key sampler K, is a
b-bounded auxiliary-input EOWF if it is:
1. One-way: As in Definition 1.
2. Extractable against b-bounded adversaries: For any PPT
adversary A, there exists a PPT extractor £ such that, for
any large enough security parametern € N, and z € {0, 1}b<"):

y < Ale; 2) '+ E(e;2)
Jz: fe(z) =y fe(@') #y

We say that the function is key-less if in all the above definitions the
key is always set to be the security parameter; namely, e = 1". In
this case, the extraction guarantee always holds (rather than only
for a random key).

P < 1 .
e<—IC;(1") < megl(n)

REMARK 1 (BOUNDED RANDOMNESS). Throughout, we treat
any randomness used by the adversary as part of its advice z; in
particular, in the case of bounded advice, we assume that the ran-
domness is bounded accordingly. For many applications, this is
sufficient as we can transform any adversary that uses arbitrary
polynomial randomness to one that uses bounded randomness, by
having it stretch its randomness with a PRG. This approach is ap-
plicable, for example, for ZK against bounded auxiliary-input ver-
ifiers, as well as for any application where testing if the adversary
breaks the scheme can be done efficiently.

(AUXILIARY-INPUT EOWFS [CDO08]). Letl, ¢, m



REMARK 2 (OTHER FORMS OF AUXILIARY-INPUT).

1. Individual vs. common auxiliary-input: In the above for-
mulation of extractability, the adversary A (producing an
image) and the extractor € are modeled as uniform PPT ma-
chines that obtain the same common auxiliary-input z. This
formulation is aligned with the treatment of auxiliary-input
in other settings such as zero-knowledge or obfuscation and,
as explained in the intro, is instrumental when arguing about
extractable functions in the context of a larger system. As
also mentioned in the intro, in certain contexts it may be suf-
ficient to consider individual auxiliary-input, where we only
require that for any A with auxiliary-input z 4, there exists
an extractor € with auxiliary-input zg. The extractor’s zg
may arbitrarily and inefficiently depend on z 4, and could be
of an arbitrary polynomial size. This weaker notion may be
useful in cases where the adversary’s auxiliary inputs do not
depend on computations that may have taken place in the sys-
tem before the extractable function is used. Examples include
CCA and plaintext-aware encryption with non-uniform secu-
rity reductions [Dam92, BP04b]. (We may also consider a
definition that allows both individual and common auxiliary-
input.)

2. Common but “benign” auxiliary-input: In the above for-
mulation, it is required that extraction works for a worst-
case choice of the common auxiliary-input z. In certain con-
texts, however, it is sufficient to consider a definition where
the common auxiliary input z is drawn from a specific distri-
bution that is conjectured to be ‘benign’, in the sense that
it is unlikely to encode a malicious obfuscation. For in-
stance, the distribution can be uniform or an encryption of
a random string. Examples where this is sufficient includes
essentially all the works on succinct non-interactive argu-
ments (SNARGs), succinct NIZKs, and targeted malleability,
that rely on extractable primitives [DCL0OS, Mie08, GrolO0,
GLRI11, BSWI2, BCCTI12, BCi12, DFHI2, Lipi2, BCCT1I3,
BCI'13, GGPRI3, Lipi3].

2.1 Generalized Extractable
One-Way Functions

The essence of EOWFs, and what makes them useful, is the
asymmetry between an inverter and a non-black-box extractor: a
black-box inverter that only gets a random image y = f.(x) can-
not find a corresponding preimage x’, whereas a non-black-box ex-
tractor, which is given a code that produces such an image, can
find a preimage =’. Generalized EOWFs (GEOWFs) allows to ex-
press this asymmetry in a more flexible way. Concretely, a function
family F is now associated with a “hard” relation R (fe(z),z’)
on image-witness pairs (fe(x),z’) € {0, 1}5/ x {0,1}*. Given
y = fe(x) for arandom , it is infeasible to find a witness =, such
that R (y,z') = 1. In contrast, a non-black-box extractor that is
given a code that produces such an image can find such a witness
2’

We consider two variants of GEOWFs: The first is publicly-

verifiable GEOWFs, where for (y = f.(z'), z), the relation R (y, z),

can be efficiently tested given y and x only (and the key e if the
function is keyed). The second is privately-verifiable GEOWFs,
where the relation R (y, ), might not be efficiently testable given
only (y = fe(z'), x), but is possible to efficiently test the relation
given z’ in addition.

We note that standard EOWFs, as given in Definition 1, fall un-
der the category of publicly-verifiable GEOWFs, where the relation
RZ (y, x) simply tests whether y = f.(x).

DEFINITION 3 (GEOWFS). An efficiently computable family
of functions

F= {fe - {0,134 5 {0,1}¢' ™ ) ee {01} n e N} ,

associated with an efficient (probabilistic) key sampler K, is a
GEOWEF, with respect to a relation RL (y, x) on triples (e, y, ) €

{07 1}m(n)+[/(n)+é(n), ifl't is:

1. R -Hard: For any PPT A, polynomial b, large enough se-
curity parameter n € N, and z € {0, 1}”("):

z' + Ale, fe(x); 2)

RE (folz),a’) = 1 | =meel) .

Pr
e Kr(1™)
2 {0,1}£(")

2. R” -Extractable: For any PPT adversary A, there exists
a PPT extractor € such that, for any polynomial b, large

enough security parameter n € N, and z € {0, 1}17(“)..

z' < E(e;2)
RE (fe(z), ') # 1

Y Ale; 2)

Jz: fe(z) =y A

Pr
e ICr(17)
We further say that the function is

e Publicly-verifiable if R (f.(z), ') can always be efficiently
computed by a tester T (e, fo(x), ).

e Privately-verifiable if R (f.(z), ') can be efficiently com-
puted by a tester a tester T (e, z, z").

Bounded auxiliary input GEOWFs (b-bounded auxiliary-input GEOWFs)

are defined analogously to b-bounded auxiliary-input-EOWFs. That
is, R” -hardness is defined exactly as in Definition 3, whereas R” -
hardness is only against adversaries with auxiliary input of an apri-
ori fixed polynomial size b(n).

3. FROM IO TO IMPOSSIBILITY OF

UNBOUNDED-AUXILIARY-INPUT EOWFS

We show that if there exists indistinguishability obfuscation (10),
there do not exist (generalized) auxiliary-input extractable one-way
functions.

THEOREM 4. Assuming indistinguishability obfuscation for all
circuits, neither EOWFs nor GEOWF's exist, with respect to com-
mon auxiliary-input of unbounded polynomial length.

Due to lack of space, the relevant definition and the proof of Theo-
rem 4 are given in the full version of this paper.

REMARK 3 (OTHER EXTRACTABLE PRIMITIVES). GEOWFs
are a minimal extractable cryptographic primitive, in the sense that
other extractable primitives such as extractable collision-resistance
hash functions (ECRHs), or succinct non-interactive arguments of
knowledge (SNARKs) imply them. (For example, in [BCCTI12], it
is shown that SNARKs imply proximity ECRHs, which in turn im-
ply GEOWFs.) These implications are invariant with respect to
auxiliary-input, and thus our limitation on common auxiliary input
also holds with respect to these extractable primitives.

< negl(n) .



4. BOUNDED-AUXILIARY-INPUT
EXTRACTABLE ONE-WAY FUNCTIONS

In this section, we construct bounded-auxiliary-input extractable

one-way functions (EOWFs) and bounded auxiliary-input-generalized

EOWFs (GEOWFs). Before presenting the construction, we de-
fine non-interactive universal arguments for deterministic compu-
tations, which is the main tool we rely on, and discuss an instan-
tiation based on the delegation scheme of Kalai, Raz, and Roth-
blum [?].

4.1 Non-Interactive Universal Arguments for
Deterministic Computations & Delegation

In what follows, we denote by £y the universal language consisting
of all tuples (M, z,t) such that M accepts  within ¢ steps. We
denote by Ly (T') all pairs (M, z) such that (M, z,T) € Ly.

Let T(n) € (2@U°8™) 2Pov(™) pe 4 computable superpolyno-
mial function. An NIUA system for Dtime(7") consists of three
algorithms (G, P, V) that work as follows. The (probabilistic) gen-
erator G, given a security parameter 1", outputs a reference string
o and a corresponding verification state T; in particular, G is in-
dependent of any statement to be proven later. The honest prover
P (M, z; o) produces a certificate 7 for the fact that (M, z) €
Ly(T(n)). The verifier V (M, z; m, 7) verifies the validity of .
Formally, an NIUA system is defined as follows.

DEFINITION 4  (NIUA). Atriple (G, P, V) is a non-interactive
universal argument system for for Dtime(T) if it satisfies:

1. Perfect Completeness: For any n € N and (M,z) €
Ly(T'(n)):

(0,7) < G(A") | _

Pr|{VM,z;7,7)=1 e P(Masa) | =

1.

2. Adaptive soundness for a bounded number of statements:
There is a polynomial b, such that for any polysize prover P*,

large enoughn € N, and set of at most 2b(m) false statements
S {0, 1}*°Y N\ Ly(T(n)):

(0,7) = G(1™)
(M, z,m) < P*(0) | <negl(n) .

Pr | VM, z;m,7)=1
M,z) e S

3. Fast verification and relative prover efficiency: There ex-
ists a polynomial p such that for every n € N, t < T'(n),
and (M, ) € Ly (t):

o the generator G runs in time p(n) ;

e the verifier V runs in time p(n + |M| + |z

):
o the prover P runs in time p(n + |[M| + |z| + ¢).

The system is said to be publicly-verifiable if soundness is main-
tained when the malicious prover is also given the verification state
7. In this case, we will assume WLOG that the verification state T
appears in the clear in the reference string o.

THEOREM 5 (FOLLOWING FROM [?]). Assuming the Learn-
ing with Errors Problem is sub-exponentially hard, for any b(n) =
poly(n), and T(n) € (2°0°8™) 2P (™)) there exists a (privately-
verifiable) NIUA with adaptive soundness for 2°() statements.

4.2 Constructions

We now present our constructions of bounded-auxiliary-input
EOWFs and GEOWFs. We start with the construction of GEOWFs,
based on any NIUA. We then give a construction of the stan-
dard (rather than generalized) EOWFs based on publicly-verifiable
NIUAs with an additional key validation property (satisfied by ex-
isting candidates).

4.2.1 The generalized extractable one-way function

Let b(n) be a polynomial. Let (G,P,V) be an NIUA system
for Dtime(7'(n)) for some function T'(n) € (2¢(°&™) gpoly(n))
with adaptive soundness for 2°(") statements. We assume that the
system handles statements of the form (M,v) € {0,1}*( x
{0,1}°(™+" asserting that “M (1™) outputs v in T'(n) steps”. As-
sume that, G(1™;7) uses randomness of size n to output a refer-
ence string of polynomial size m(n), and a verification state 7
(if the system is publicly-verifiable, then 7 appears in o). As-
sume that P outputs certificates 7 of size p(n). Let PRG be a
pseudo random generator stretching n bits to b(n) + n bits. We
construct a key-less family of functions 7 = {fn}, oy, consist-
ing of one function f,, : {0,1}*™ — {0, l}l/(m, for each se-
curity parameter n, where £(n) = max(2n,b(n) + p(n)) and
£ (n) = m(n) + b(n) +n.

The function is given in Figure 1, and is followed by the corre-
sponding relation R .

Inputs: (s, r, pad) of respective lengths (n,n, £(n) — 2n).
1. Compute v = PRG(s).

2. Sample NIUA reference string and verification state
(0,7) < G(A" 7).

3. Output (o, v).

Figure 1: The function fi,.

We now define the corresponding relation R” = {’Rf nen in
Figure 2, which will be publicly-verifiable (respectively, privately-
verifiable) if the NIUA is publicly (respectively, privately verifi-
able). For simplicity, we assume that the NIUA is such that for
every valid reference string o produced by G, there is a single pos-
sible verification state 7 (this can always be achieved by adding a

commitment to 7 inside o).

CLAIM 1. R” is publicly-verifiable (respectively privately-verifiable),

if (G, P, V) is publicly-verifiable (respectively privately-verifiable).

PROOF. First, by definition, when (G, P, V) is publicly-verifiable,
7 can be obtained from o, NIUA verification can be done effi-
ciently, and thus the relation R can be efficiently tested.

Next, assume that (G, P, V) is privately-verifiable. Recall that
showing that R, is privately-verifiable, means that given any preim-
age « such that y = f,,(z), we can efficiently test R, (y,z’). In-
deed, given such a preimage x = (s,r, pad), we can obtain the
generator randomness r, and run G(1™;r) to obtain the (unique)
verification state 7 corresponding to o, and efficiently test R . [

REMARK 4 (ONE-WAYNESS VS. R” -HARDNESS OF F). The
relation R” defined above is such that (f.(x), x) may not satisfy
the relation. In particular, this means that R -hardness may not



y = fu(x) = (0,v) of respective lengths (m(n), b(n) + n),
x' = (M,m,pad) of respective lengths (b(n),p(n),€(n) —
b(n) — p(n)).

1. Compute the (unique) verification state 7 corresponding
to the reference string o:

2. Run V(M, v, 7, 7) to verify the statement “M (1™) out-
puts v in T'(n) steps”.

3. Return 1 iff verification passes.

Figure 2: The relation R}, (f.(2), ).

imply one-wayness of F. While this is not needed for our pur-
poses, the relation R” can be augmented to also include all pairs
(fn(z),2), and R -hardness will still be preserved; that is, the
Sfunction we define is one-way in the usual sense.

We now turn to show that F is a GEOWF with respect to R”.

THEOREM 6. The function family F = { fn}, cn. given in Fig-
ure 1 is a GEOWF, with respect to R”, against (b(n) — w(1))-
bounded auxiliary-input.

High-level idea behind the proof. To see that F is R” -hard, note
that to break R” -hardness, an adversary given a random image
(o,v), where v = PRG(s) is of length b(n) + n, has to come up
with a “small” machine M, whose description length is at most
b(n), and a proof that M outputs v (within a T'(n) steps). How-
ever, in an indistinguishable world where v is a truly random string,
v would almost surely have high Kolomogorov complexity, and a
short machine M that outputs v would not exist. Thus, in this case,
the breaker has to produce an accepting proof for a false statement,
and violate the soundness of the NIUA.

As for extraction, given a poly-time machine M, with short ad-
vice z that outputs (o, v), where o is a valid reference string for the
NIUA system, the extractor simply computes a proof 7 for the fact
that M. outputs v, and outputs the witness (M, 7; pad). By the
completeness of the NIUA system, the proof 7 is indeed accepting,
and the witness satisfies R”. Furthermore, by the relative prover
efficiency of the NIUA, the extractor runs in time that is polynomial
in the running time of the adversary M.

The full proof of Theorem 6 is given in the full version of this

paper.

4.2.2 The standard extractable one-way function

We construct a standard extractable one-way function based on
publicly-verifiable NIUAs that have an additional property that says
that, in addition to perfect completeness for an honestly chosen ref-
erence string o (which in the publicly-verifiable case is also the
verification state), it is also possible to check whether any given o
is valid, or more generally admits perfect completeness. We note
that exiting candidates for publicly-verifiable NIUAs indeed have
this property.>

3Indeed, in Micali’s CS proofs, perfect completeness holds with
respect to all possible keys for a hash function. In the publicly-
veriable instantiations of the SNARKSs from [BCCT13] it is possi-
ble to verify the validity of ¢ using a bilinear map.

DEFINITION 5 (NIUA WITH KEY VALIDATION). A publicly-
verifiable NIUA system is said to have key validation if there exists
an efficient algorithm Valid, such that for any o € {0, 1}’”("),
if Valid(o) = 1, then the system has perfect completeness with
respect to o. That is, proofs for true statements, generated and
verified using o, are always accepted.

We now turn to describe the construction, which at a very high-level
attempts to embed the structure of the previous GEOWF function
and relation into a standard EOWF.

Let b(n) be a polynomial. Let (G,P,V) be an NIUA system
with the same parameters as in the above GEOWF construction,
and with the additional key-validation property. Let PRG be a
pseudo random generator stretching n bits to b(n) + n bits.

We construct a key-less family of functions F = { fn},,cx»

sisting of one function f, : {0,1}*™ — {0, 1}¥™) | for each
security parameter n, where £(n) = 4n + 2b(n) + m(n) + p(n)
and ¢'(n) = m(n) + b(n) + n. The function is given in Figure 3.

con-

Inputs: (¢,(s,r), (0, M,v,m)) of respective lengths
(n, (n,n), (m(n),b(n),b(n) +n,p(n)))
o Ifi ¢ {07, 1"}:
1. Compute v* = PRG(s).
2. Sample a reference string o™ < G(1"; 7).
3. Output (v*, ™).
o Ifi =0"
1. Perform the following tests:

— Run Valid(o) to check the validity of o,

— Run V(M,v,m,0) to verify the statement
“M(1™) outputs v in T'(n) steps”,

If both accept, output (v, o).
2. Otherwise, output L.

e If i = 1", output L.

Figure 3: The function f,.

We now turn to show that F is an EOWF.

THEOREM 7. The function family F = { fn}, cx given in Fig-
ure 3 is an EOWF, against (b(n) — w(1))-bounded auxiliary-input.

High-level idea behind the proof. To see that F is one-way, note
that, except with negligible probability, a random image comes
from the “normal branch of the function”, where ¢ ¢ {0" 1"}
and includes an honestly sampled o and a pseudorandom string
v = PRG(s). To invert it, an adversary must either invert PRG(s),
allowing it to produce a “normal branch” preimage, or obtain a
short machine M and an accepting proof 7, that M outputs v, al-
lowing it to produce a “trapdoor branch” preimage. In the first case,
the inverter violates the one-wayness of PRG. In the second case,
the inverter can be used to break the soundness of the NIUA as in
the proof of Theorem 6 (leveraging the fact that a truly random v
almost surely cannot be computed by a short machine).



As for extraction, given a poly-time machine M . with short ad-
vice z that outputs (o, v) # L, by the definition of f,, o is a valid
reference string for the NIUA system (indeed, L is an image that in-
dicates an improper reference string o, or a non-accepting proof 7).
In this case, the extractor simply computes a proof 7 for the fact that

M. outputs v, and outputs the preimage (0™, (0™,0™), (o, M, v, )).

By the completeness of the NIUA system, for a valid o, the proof 7
is indeed accepting. By the relative prover efficiency of the NIUA,
the extractor runs in time that is polynomial in the running time of
the adversary M. The only other case to consider is where M,
outputs L, in which case producing a preimage is easily done by
setting ¢ = 1".

The full proof of Theorem 7 is given in the full version of this
paper.
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