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Abstract. We design cryptographic protocols that recognize best case (optimistic)
situations and exploit them. As a case study, we present a new concurrent zero-
knowledge protocol that is expected to require only a small constant number of
rounds in practice. To prove that our protocol is secure, we identify a weak prop-
erty of concurrent schedules—called footer-freeness—that suffices for efficient
simulation.
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1 Introduction

Cryptographic protocols anticipate worst-case behavior and therefore often contain
complicated provisions that are meant solely to handle them. Such provisions can be
expensive and counter-intuitive.

To circumvent these side-effects but still construct protocols that are secure against
worst-case behavior, this paper proposes to use an optimistic technique for building
protocols that is inspired by work on Byzantine agreement. The aim is to design proto-
cols that can recognize the best cases and optimize for them, even in the midst of the
protocol execution.

Optimism has been employed by researchers in distributed computing (e.g. the
(Fast) Paxos algorithm [Lam05]) and fair exchange [ASW98]; the novelty of this work
is to exploit optimism for the problem of concurrent zero-knowledge. Optimistic pro-
tocols make no attempt to improve worse-case performance. In fact doing so would
require overcoming a lower bound argument in the case of zero-knowledge. Nonethe-
less, the optimistic cases that we exploit are common and meaningful to discuss.

1.1 Concurrent Zero-Knowledge

When many instances of a stand-alone zero-knowledge protocol are executed at the
same time, the combination of all runs may leak information about the theorem. The
standard methodology for arguing that a protocol transcript “does not leak informa-
tion” is to exhibit a simulator algorithm that is able to produce transcripts that are
indistinguishable from actual transcripts of protocol executions. Dwork, Naor and Sa-
hai [DNS98] observed that in a concurrent zero-knowledge setting, a malicious verifier
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who controls the schedule of protocol messages can induce a schedule for which a
“naive” simulation algorithm will require exponential time (and thus the execution may
leak information). An example of such a scheduling of messages is given in 1.1. In the
bottom (red) schedule, the verifier has “nested” many executions of the zero-knowledge
protocol. This type of scheduling is a concurrency attack on the zero-knowledge prop-
erty of the original protocol and it captures the fundamental problem with designing
efficient concurrently secure zero-knowledge protocols.

Time
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Nested Scheduling

S1
S2

S3
S4

S1
S2
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S4

Fig. 1. Illustration of an ”average-case” schedule, and an adversarial one.

To address the concurrency attack, Dwork, Naor and Sahai [DNS98] proposed a
timing model assumption and a protocol that limits the amount of nesting that can
occur in an adversarial scheduling. Their protocol was an argument system; Goldre-
ich [Gol02] later showed that proof systems can also be constructed in such a model.
Pass, Tseng, and Venkitasubramaniam [PTV10] present an eye-for-an-eye solution in
the timing model that reduces the overall delay of the protocol. Other protocols that
handle concurrency attacks have been obtained by introducing different setup assump-
tions [DS98,Dam99,CGGM00] such as a common reference string or a PKI.

Richardson and Kilian [RK99] constructed the first concurrent zero-knowledge ar-
gument system in the standard model without extra setup assumptions. Kilian and Pe-
trank [KP01] introduced a simulation technique which led to simpler and cleaner analy-
sis and fewer rounds. Finally, the work of Prabhakaran, Rosen and Sahai [PRS02] (PRS)
further simplified and improved the analysis of the Kilian and Petrank protocol to ob-
tain a protocol with ω(log n) rounds. This round complexity is close to optimal in the
standard model because without any set-up assumptions, Canetti, Kilian, Petrank and
Rosen [CKPR01,CKPR02] show that concurrent zero-knowledge argument systems for
non-trivial languages using a “black-box” simulator require at leastΩ(log n/ log log n)
number of communication rounds. In order to show this lower bound, they rely on a
framework proposed by Kilian, Petrank and Rackoff [KPR98], with further improve-
ments from Rosen [Ros00], and present a specific malicious verifier and a particularly
difficult schedule of messages. Recently, Pandey et al. [PPS+08] have proposed new
precise concurrent zero-knowledge proofs with similar round complexity.

It has been a long-standing open problem to build communication-efficient con-
current zero-knowledge protocols. To circumvent the lower bound on the round com-
plexity from [CKPR01,CKPR02], prior work (1) introduces additional trust assump-
tions [DNS98,DS98,Dam99,CGGM00], (2) relaxes the definition of security to allow
quasi-polynomial time simulation [Pas03,PS04,PV08], or (3) employs a more com-
plicated and powerful non-black-box simulation technique [Bar01] and restricted the
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number of concurrent sessions. The latter technique also relies on complex tools and
techniques that require NP-reductions.

Overview of slots Before detailing our approach, let us review the idea employed by
the protocols from [RK99,KP01,PRS02,PTV10] to defend against concurrent attacks.
In the first phase of the protocol, the verifier creates an irrelevant secret (such as a com-
mitment to a string) and then (repeatedly) proves in zero-knowledge to the prover that
it knows the secret. Each block of protocol messages during which the verifier proves
knowledge of this secret is called a “slot.” In the second phase, the Prover proves that
it either knows the witness to the original theorem or that it knows the verifier’s se-
cret using a witness indistinguishable protocol. Prior work [RK99,KP01,PRS02,Ros06]
proves that if the first phase has enough slots, then a simulation strategy can be devised
such that for any schedule of messages, the simulator can successfully extract a witness
from the verifier’s proof and then use that witness in the second phase.

Optimistic Defense We propose an optimistic defense against concurrency attacks in
which we relax the requirements from prior work and specifically [CKPR01] that (1)
each protocol session involves an independent prover who does not know anything
about the other protocol instances and (2) each protocol execution has exactly the same
(fixed) number of rounds. Doing so allows us to build protocols that optimistically avoid
the worst-case schedules used in the lower bounds.

When one server handles many concurrent requests, the server knows the exact
schedule of messages. The work of Persiano and Visconti [PV05] also exploits this
relaxation by using a Prover who counts the total number of bytes sent in all sessions3.

We believe this to be a reasonable and practical relaxation. In many applications of
zero-knowledge proofs, for example, the prover will be the same party (some server),
and it will have the opportunity to share state between protocol sessions. In particular,
servers on the internet routinely keep track of the various protocol session statistics such
as the total number of protocol executions that run at a given time. Operating systems
which make quality of service guarantees also inspect different protocol instances in
order to throttle connections. While the original motivation of the concurrent session
model in which the Prover instances run independently of one another was to sim-
plify implementation of systems, there is no fundamental implementation reason that
prevents sharing the global scheduling information among the Prover algorithms in dif-
ferent protocol sessions. (Of course, requiring the Verifiers to coordinate their sessions
would be unrealistic, since the Verifiers may be separate parties.)

In our model, each session of the protocol may require a different number of com-
munication rounds. This relaxation allows us to instruct the prover to handle schedules
which are easier to simulate differently than schedules which are more difficult. In
contrast, in typical cryptographic protocols, each execution of the protocol has a fixed
number of messages and each successful invocation usually requires exactly the same
number.

Our protocol can “short circuit” the normal protocol when it is clear that such a
shortcut preserves the security properties. To the best of our knowledge, this idea has
not been applied in the context of a security guarantee such as zero-knowledge.

3 In contrast to this work, their solution uses non-blackbox simulation techniques.
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1.2 Our Protocol

The idea behind our fast track protocol is to discourage the verifier V ∗ from nesting
sessions within the slots of other sessions by penalizing a verifier whose slots have
nested sessions. The penalty will be to gradually add more slots to the protocol until
either enough slots with no (or few) nestings occur, or a pre-specified bound on the
number of rounds is reached.

The basis for our protocol is the cZK protocol by Prabhakharan, Rosen and Sa-
hai [PRS02] which uses statistically hiding commitments [NY89,DPP93] and Blum’s
3-message protocol for Hamiltonicity [Blu86]. The only difference between our proto-
col and the PRS protocol is that it contains a special provision for exiting the “pream-
ble” stage. Early exits are “approved” by the prover, provided that there is a slot in the
current session that does not have any other session footers within it. Assuming that
verifiers answer quickly, it is expected that the number of nested sessions within slots
is generally small, optimistically resulting in an empty slot and thus in straightforward
simulation.

Verifiers have incentive to answer fast since the longer they delay their answer, the
more likely they are to have nested sessions (from some other verifier) within the slot
that they are currently executing. Once the slot has a nested session within it, early exit
is postponed to future rounds, and another slot is added to the protocol’s execution.
This process continues until k = ω(log n) slots have been performed, in which case the
Hamiltonicity proof takes place and the protocol terminates.

At the expense of a more involved analysis, one should be able to replace the PRS
protocol with any other instantiation of a cZK protocol that follows the RK “multi
slot” paradigm, and obtain analogous results. One attractive instantiation would be the
DDH-based cZK protocols of Micciancio and Petrank [MP03]. These protocols admit
fairly efficient implementations, and are thus a good match for our optimistic approach,
whose primary objective is increased efficiency.

But worst-case schedules still require many rounds! Note that worse-case sched-
ules still require the same number of rounds as PRS. Such an argument applies to any
optimistic protocol, such as the Fast Paxos or Fair exchange protocols as well. The
worst-case schedule, however, may be rare and avoidable by incentivized verifiers.

Comparison with Other Proposals In Appendix A, we compare our approach to other
simple proposals and to the timing model proposed by [DNS98].

2 Optimistic Rational Concurrency

Let 〈P, V 〉 be an interactive proof (resp. argument) for a language L, and consider a sin-
gle concurrent adversary (verifier) V ∗ that, given input x∈L, interacts an unbounded
number of times with P (each with common input x) without any restrictions over the
scheduling of its messages.

Formally, use the standard model for concurrency in the timing model put forth
by Dwork, Naor, and Sahai [DNS98]. The adversary V ∗ takes as input the prover’s
partial conversation transcript that includes the times on the provers local clock when
each message was sent or received by the prover. The adversary’s output is either a
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tuple (recv, V, α, t), indicating that P receives message α from V at local time t or
(send, V, t), indicating that P must send the next message to V at time t on P ’s local
clock. In both cases, the time t that adversary chooses must be greater than all the times
given in the input transcript (i.e., the adversary cannot rewind P ), the session with V
must be well-formed, and α must be in the protocol’s “message space” (i.e. standard
well-formedness conditions apply). If these conditions are not met, the transcript is
discarded.

The transcript of a concurrent interaction consists of the common input x, followed
by the sequence of prover and verifier messages exchanged during the interaction. We
denote by viewP

V ∗(x) a random variable describing the content of the random tape of
V ∗ and the conversation transcript between P and V ∗ as described above.

Definition 1 (Concurrent Zero-Knowledge). Let 〈P, V 〉 be an interactive proof sys-
tem for a language L. We say that 〈P, V 〉 is concurrent zero-knowledge, if for ev-
ery probabilistic strict polynomial-time concurrent adversary V ∗ there exists a prob-
abilistic polynomial-time algorithm SV ∗ such that the ensembles {viewP

V ∗(x)}x∈L and
{SV ∗(x)}x∈L are computationally indistinguishable.

Discussion There may be other verifiers that are also interacting with P at the same
time as V ∗. In prior work, these sessions are ignored because either the monolithic
adversary V ∗ can incorporate these sessions if they can be used to cheat, or because
these extra sessions are completely independent of V ∗’s view.

In our case, however, these extra sessions by honest verifiers are not completely
independent of V ∗’s view.4 In the protocol we suggest, for example, a verifier will learn
when one of its slot is not footer-free, and therefore it will learn the presence of another
session. This is not necessarily the case with other concurrent ZK protocols such as
PRS because the number of rounds in those protocols are not related to the schedule of
messages. However, the aim for a zero-knowledge protocol in a networked setting is to
ensure that no information about the witness w for instance x is leaked; we feel that it is
reasonable for a protocol to leak network timing information because such information
is typically leaked by the underlying network (or by timing or side channels).

To model this, we give V ∗ full control over the timing of all network messages
including the Prover’s messages and the timing of the messages from the honest verifier
sessions that are not controlled by V ∗. Although this is syntactically the same formal
model with a single V ∗ as in prior work, there is a subtle difference. Our protocol and its
simulator essentially guarantees that “a verifier V ′ who controls a subset of the sessions
learns no more through interaction with P than a malicious verifier V ∗ who controls all
network traffic, and such a verifier learns no more than the polynomial time simulator
who does not have the witness.”

Notation We use the symbols (V0), (P1), (V1), . . . , (Pj), (Vj) to denote the mes-
sages in the preamble; these messages are completely independent of the common input
and they serve to enable a successful simulation in the concurrent setting.

Every round (slot) in the preamble (i.e., every (Pj), (Vj) pair) is viewed as a
“rewinding opportunity.” Successfully rewinding even one slot in the preamble is suf-

4 We thank the anonymous reviewer for pointing out this subtle distinction.
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P V(V0) ⇐=

(P1) =⇒
(V1) ⇐=
(P2) =⇒
(V2) ⇐=...
(Pk) =⇒
(Vk) ⇐=

(p1) =⇒
(v1) ⇐=
(p2) =⇒

Fig. 2. A k-round preamble.

ficient in order to cheat arbitrarily in the actual proof (messages (p1), (v1), (v2)) and
thus complete the simulation.

One problem faced by a cZK simulator is that rewinding a specific session may
result in loss of work done for other sessions, and therefore require the simulator to do
the same amount of work again. This will happen whenever the rewound slot contains
other sessions “nested” within it.

For example, if a slot of session B contains the (V0) message of session A within
it, rewinding this slot will cause all simulation work done for session A to be lost. This
is because the simulation of a session A hinges on the simulator “extracting” specific
values that have been committed to by the verifier in message (V0) of this session.
Rewinding past the (V0) message of A could alter the history of interaction up to this
message and may result in a modification of its contents (rendering the extracted values
irrelevant).

The simulator must invest work in session A whenever session A’s preamble com-
pletes before the end of the slot of sessionB. In such a case, reaching the end of session
A’s preamble without having extracted the value committed to in message (V0) of ses-
sion A may prevent the simulator to proceed beyond the end of this preamble (since
the malicious verifier may refuse to continue if is not convinced in the validity of the
statement being proved in session A). Failure to proceed beyond the end of the session
A preamble translates directly to failure to rewind the session B slot within which this
preamble is nested.

Definition 2 (Nested Footer). Slot j of session B is said to have a nested footer of
session A within it if session A’s (Vk) message occurs between messages (Pj), (Vj)
of session B. A slot is said to be footer free if it has no nested footer.

Avoiding nested footers enables the completion of the slot between messages (Pj)
and (Vj) of session B without having to first invest work in simulating session A (im-
plying that there is no risk to lose and thus redo this work as a result of rewinding). This
observation will be crucial to the analysis of the footer-free version of our protocol.

Two simulation strategies. Currently, there are two known approaches for concurrent
simulation. The first simulation strategy adaptively looks for slots that do not have
many sessions with nested headers within them, and this is where it focuses its attempts
to rewind the interaction with the verifier [RK99]. The second simulation strategy is
different in that it performs a sequence of rewinds obliviously of the actual scheduling
of the messages [KP01,PRS02].
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The main advantage of the second approach over the first one is that it is known
to guarantee correct “worst case” simulation using fewer slots (Õ(log n) vs. O(nε)
for every ε > 0). However, being oblivious to the actual schedule, it does not seem
suitable for taking advantage of lack of nested headers and/or footers within a slot.
As we demonstrate in this paper, by adaptively identifying good places for multiple
rewindings, the second approach can be tailored to work in our optimistic setting.

To the best of our knowledge, the idea of taking advantage of the lack of nested
footers for the sake of improved concurrent simulation is new. As we argue in the paper,
lack of nested footers within one slot is a fairly weak constraint on the schedule, and
may be enforced using a variety of realistic mechanisms.

The protocol. Our protocol will have the prover monitor the scheduling of messages,
and identify footer-free slots on the fly; once such a slot is identified, there is no need
to keep adding slots to the execution of that specific session, so the protocol moves on
to the execution of the actual constant-round ZK protocol.

Common Input: x ∈ {0, 1}n, security param n, max. # rounds param k = ω(logn).
Prover’s Input: a witness w such that RL(x,w) = 1
Stage 1:

P → V (P0): Send first message of perfectly hiding commitment Com.
V → P (V0): Using the commitment Com, commit to random σ, {σ0

i,j}ki,j=1,
{σ1

i,j}ki,j=1 such that σ0
ij ⊕ σ1

ij = σ for all i, j.
Slot j:
P → V (Pj): Send a random challenge ri = r1,j , . . . , rk,j

V → P (Vj): Upon receiving a message ri, decommit to σr1,j

1,j , . . . , σ
rk,j

k,j

P → V : If any of the decommitments fails verification, abort.
If slot j is footer free or j = k move to stage 2.
If slot j is not footer free and j ≤ k move to slot j + 1.

Stage 2: P and V engage in Blum’s 3-round Hamiltonicity protocol using challenge σ:
1. P → V (p1): Use witness to produce first message of Ham protocol
2. V → P (v1): Decommit to σ and to {σ1−ri,j

ij }ki,j=1.
3. P → V (p2): If decommitments are valid and σ0

i,j ⊕σ1
i,j = σ for all i, j, answer

σ with third message of Ham protocol. Otherwise abort.

Fig. 3. Fast-track concurrency.

Completeness and soundness of Protocol 3 are inherited from the PRS protocol, and
in particular follow from Proposition 4.3.2 in [Ros06]. We now turn to demonstrating
the cZK property.

2.1 The Simulator

We exhibit the cZK property using a black-box simulator S. Let V ∗ be a concurrent
adversary verifier. S will rewind the interaction with V ∗ and examine its input/output
behavior. The rewinding strategy of the simulator is specified by a SOLVE procedure
whose goal is to supply the simulator with V ∗’s “challenges” before reaching stage
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2 in the protocol. This is done by rewinding the interaction with V ∗ while trying to
achieve two “different” answers to some (Pj) message. We refrain from specifying the
way stage 2 messages are handled and focus only on stage 1 messages. For standard
details on how to handle stage 2 messages see [Ros06].

The timing of the rewinds performed by the SOLVE procedure depends on the num-
ber of stage 1 verifier messages received so far and on the size of the schedule. However,
whenever it encounters a situation in which a slot of a given session is footer-free, the
SOLVE procedure (adaptively) assumes that this is its only chance to solve that session
and performs (an expected polynomial number of) extra rewinds in order to make sure
that the slot is successfully rewound. The number of extra rewinds is not determined in
advance, and is induced by the analysis of a constant round ZK protocol for NP by
Rosen [Ros04].

At a high level, the SOLVE procedure splits the first stage messages it is about to
explore into two halves and invokes itself recursively twice for each half (completing
the two runs of the first half before proceeding to the two runs of the second half). At the
top level of the recursion, the messages that are about to be explored consist of the entire
schedule, whereas at the bottom level the procedure explores only a single message
(and as we said may do so multiple times, depending on whether the recursive call
corresponds to a message-free slot). The solve procedure always outputs the sequence
of “first explored” messages.

The input to the SOLVE procedure consists of a triplet (`,hist, T ). The parameter
` corresponds to the total number of verifier messages, the string hist consists of the
messages in the “first visited” history of interaction, and T is a table containing the
contents of all the messages explored so far. The messages stored in T are used in order
to determine σ according to answers (Vj) to different (Pj). They are kept relevant by
constantly keeping track of the sessions that are rewound past their initial commitment.
That is, whenever the SOLVE procedure rewinds past the (V0) message of a session, all
messages belonging to this session are deleted from T .

The analysis takes advantage of the fact that no rewound slot contains a footer,
building on the assumption that footer-freeness is an event of non-negligible proba-
bility (as otherwise it is assumed not to have occurred to begin with). By repeatedly
rewinding, the simulator is likely to run into a footer-free situation again, which means
that it will not get stuck on that rewinding. This will enable it to successfully complete
the rewinding attempt, and to solve the corresponding session (thus avoiding getting
stuck on sessions that have strictly less than k slots).

2.2 Analysis of the Simulator

To show that the simulator S succeeds we will need to argue that: (1) S runs in poly-
nomial time, (2) conditioned on the success of the SOLVE procedure, the output of S
is indistinguishable from a concurrent interaction between P and V ∗, and (3) for every
session i ∈ {1, . . . ,m}, whenever session i reaches the second stage in the protocol,
the simulator will have obtained the value of σ in this session if required (i.e. did not get
stuck) with overwhelming probability. Once (3) is established, we may apply a union
bound over the i’s and conclude that SOLVE fails with only negligible probability. We
focus on (1) and (3).
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Procedure SOLVE(`, hist, T ):
Bottom level (` = 1):

1. For each s ∈ {1, . . . ,m}, if the initial commitment, (V0), of session s does not appear in
hist, delete all session s messages from T .

2. Run β ← V ∗(hist,p). If β is of the form (recv, V, α, t), the continue to the next step.
Else if it is (send, V, t), then uniformly choose a first stage prover message p, append it to
the transcript at time t, and repeat this step. If t or α are invalid, then halt the simulation
and output the current transcript.

3. Let
– (p1, v1, . . . , pt, vt) = (hist, p, v)
– i be the session number to which v corresponds,

4. If there exists a pair of indices (a, b) such that a ∈ [t] and b = t for which:
– vb 6= ABORT,
– both vb and pa belong to session i.
– the slot between messages pa and vb is footer-free.

then pick one such (a, b) and rewind interaction to message pa until
– vb 6= ABORT,
– both vb and pa belong to session i.
– the slot between messages pa and vb is footer-free.

5. Store the messages gathered in the rewindings along with p, v in T
6. output T , (p, v).

Recursive step (` > 1):

1. Set T1, (p1, v1, . . . , p`/2, v`/2)←SOLVE(`/2, hist, T ).
2. Set T2, (p̃1, ṽ1, . . . , p̃`/2, ṽ`/2)← SOLVE(`/2, hist, T1).
3. Set T3, (p`/2+1, v`/2+1, . . . , p`, v`)←SOLVE(`/2, (hist, p1, v1, . . . , p`/2, v`/2), T2).
4. Set T4, (p̃`/2+1, ṽ`/2+1, . . . , p̃`, ṽ`)←SOLVE(`/2, (hist, p1, v1, . . . , p`/2, v`/2), T3).
5. Output T4, (p1, v1, . . . , p`, v`).

Fig. 4. The SOLVE procedure.

Lemma 1. For every m=poly(n), Sm runs in (expected) polynomial-time in n.

Proof. We analyze the work invested at any given invocation of level ` = 1. For any
G ∈ HC, for any choice of hist,p, and of a, b ∈ {1, . . . , t} where a ≤ b, let ζa,b =
ζa,b(G,hist,p, v) denote the probability that: (1) the verifier V ∗ does not send ABORT
in message vb, (2) both vb and pa belong to session i, (3) the slot between pa and vb is
footer-free, (4) none of the vj’s correspond to message (V0) of session i, and (5) none
of the pj’s correspond to message (p1) of session i. Let ζ ′a,b denote the probability that
(1), (2) and (3) occur. The probabilities ζa,b and ζ ′a,b are taken over the random choices
of the invocations of the SOLVE procedure. It can be seen that ζ ′a,b ≥ ζa,b.

Using this notation, a pair (a, b) satisfying conditions (1)-(5) occurs with probabil-
ity ζa,b and the SOLVE procedure is expected to repeat the loop in step 4 for at most
1/ζ ′a,b times (since the condition in Step 4 is satisfied in each one of the rewinds with
probability ζ ′a,b, independently of other rewinds). For i ∈ {1, 2, 3, 4, 5, 6}, let pi(·) be
a polynomial bound on the work required in order to perform Step i in level ` = 1 of
the recursion (where in step 4, p4(·) = p4,a,b(·) counts the number of steps required to
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perform one rewinding). By linearity of expectation, and because the total number t of
pairs of messages (and hence pairs (a, b) ∈ R) in the history of level ` = 1 is at most
m · (k+1) (recall that k is the maximal number of rounds in the protocol), the expected
time required to execute level ` = 1 of the recursion is upper bounded by:

p1(n) + p2(n) + p3(n) +
∑

(a,b):a≤b

ζa,b ·
1
ζ ′a,b
· p4(n) + p5(n) + p6(n)

≤ p1(n) + p2(n) + p3(n) +m · (k + 1) · p4(n) + p5(n) + p6(n)
= poly(n)

Since each invocation of the SOLVE procedure with parameter ` > 1 involves four
recursive invocations of the SOLVE procedure with parameter `/2, we have that the
expected work W (`), that is invested by the SOLVE procedure in order to handle ` (first
stage) verifier messages satisfies:

W (`) ≤
{

poly(n) If ` = 1
4 ·W (`/2) If ` > 1

(1)

Since the total number of first stage verifier messages in the m sessions of the con-
current schedule equals m · (k + 1), the total expected running time of the simulation
process (which consists of a single invocation of the SOLVE procedure with parameter
m · (k+1)) equals W (m · (k+1)). By linearity of expectation we get that the expected
value of W (m · (k + 1)) is upper bounded by:

4log2(m·(k+1))−log2 c · poly(n) =
(
m · (k + 1)

c

)2

· poly(n) = poly(n)

We now turn to show that for every G ∈ HC, the simulator’s output distribution
is computationally indistinguishable from V ∗’s view of interactions with the honest
prover P . Specifically,

Lemma 2. The ensemble {SV ∗m (G)}G∈HC is computationally indistinguishable from
the ensemble {viewP

V ∗(G)}G∈HC .

Indistinguishability of the simulator’s output from V ∗’s view (ofm = poly(n) con-
current interactions with P ) is shown assuming that the simulator does not get “stuck”
during its execution. Since the simulator S will get “stuck” only with negligible proba-
bility (see Lemma 3 below), indistinguishability will immediately follow.

The proof actually considers a “hybrid” simulator that on input G = (V,E) ∈ HC
obtains a directed Hamiltonian Cycle C ⊂ E in G (as auxiliary input) and uses it
in order to produce real prover messages whenever it reaches the second stage of the
protocol. Specifically, whenever it reaches the second stage of session s ∈ {1, . . . ,m},
the hybrid simulator inspects the T table and checks whether it has managed to solve
session s (thus being able to convince V ∗ in the section stage of session s). If it has not
managed to solve session s, the hybrid simulator outputs ⊥ and halts. Otherwise, the
hybrid simulator follows the prescribed prover strategy and generates prover messages
for the second stage of the session (by using the cycle C it possesses). The key for
proving the above lies in the following two properties:
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– First stage messages output by S are (almost) identically distributed to first stage
messages sent by P . This property is proved based on the definition of the simula-
tor’s actions.

– Second stage messages output by S are computationally indistinguishable from
second stage messages sent by P . This property is proved based on the special
zero-knowledge property of Blum’s Hamiltonicity protocol.

We now turn to argue that the hybrid simulator does not get stuck.

Lemma 3. Let α : N → N be any super-constant function, let k(n) = α(n) · log n,
and consider any instantiation of Protocol 3 with parameter k = k(n). Then for any
i ∈ {1, . . . ,m} the probability of the hybrid simulator getting “stuck” on session i
during the simulation is negligible.

Proof. The SOLVE procedure is said to get stuck on session i if it reaches the second
stage of session i and the following events occur: (1) the history of the interaction so
far does not contain an ABORT message in session i, and (2) the table T does not
contain two verifier messages (Vj) and (Vj)′ that are replies to two different prover
messages (Pj) and (Pj)′. Note that if the history of the interaction does contain an
ABORT message in session i then it is not necessary to obtain σ.

Consider any event in which the SOLVE procedure reaches the second stage of ses-
sion i, and let hist denote the history of the interaction with which the second stage is
reached. By definition of the solve procedure hist contains the messages first visited by
the SOLVE procedure.

As before, we divide the analysis into two cases. In the first case, the number of slots
in session i as they appear in hist is precisely k. The key for analyzing this case lies the
fact that the SOLVE procedure as defined in this paper behaves identically to the SOLVE
procedure described in [PRS02], except that in the bottom levels of the recursion the
former may potentially perform more rewindings than the latter (but never less). This
means that whenever the PRS variant of the SOLVE procedure manages to obtain the
relevant value of σ then so does our variant. By the [PRS02] analysis, we know that
as long as the number, k, of slots is super logarithmic, the PRS variant of the SOLVE
procedure fails to obtain σ with negligible probability. Thus, the probability of getting
stuck on session i in our case is negligible as well.

In the second case, the number of slots in session i as they appear in hist is strictly
less than k. By definition of our protocol, this can happen only if there exists a slot in
the history of the interaction that is footer-free.

Claim: Suppose that the number of slots in session i is strictly less than k. Then, the
schedule of messages as it appears in hist contains a slot in the history of the interaction
that is footer free.

Consider now any invocation of a bottom level of the recursion in which a footer
free slot j of session i appears amongst messages (p1, v1, . . . ,pt, vt) = (hist,p, v).
Let pa = (Pj), vb = (Vj) be those messages. By definition of the SOLVE procedure,
the first messages generated in the visit will appear in hist. Let p = (Pj), v = (Vj)
be those messages. The simulator will get stuck if and only if: (1) hist does not contain
an ABORT message in session i (and in particular if vb 6= ABORT), and (2) the table T
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does not contain two verifier messages vb = (Vj) and vb′ = (Vj)′ that are replies to
two different prover messages pa = (Pj) and pa′ = (Pj)′. Since pa and vb belong
to the same session, then if condition (1) is satisfied we have that the following three
rewinding conditions hold:

– vb 6= ABORT,
– both vb and pa belong to session i, and
– the slot between messages pa and vb is footer-free,

This in particular means that the SOLVE procedure will rewind the interaction in Step 4,
sending random p’s until it finds another pair p′a = (Pj)′, v′ = (Vj)′ in session i so
that pa 6= p′a.

We next show that the probability of getting stuck (over random choices of p′a =
r ∈ {0, 1}k in the visit to the bottom level of the recursion) is precisely 1/2k. Since k is
super-logarithmic it will immediately follow that the probability that the simulator gets
stuck is negligible.

The key observation for the analysis is that, in the event that the slot between mes-
sages pa and vb is footer free, it will ultimately be possible to successfully perform the
rewinding and reach some v′ = (Vj)′ message, without having to “re-solve” a differ-
ent session that is nested within the jth slot of session i. In other words, conditioned on
the event of slot j being “footer-free” again (and (Vj)′ not being equal to ABORT), the
rewinding will go through smoothly (since the simulation cannot get stuck on another
session during that specific rewinding attempt).

For any G ∈ HC, and for any choice of hist, let ζi,a,b = ζi,a,b(G,hist) denote
the probability that: (1) message vb corresponds to a (Vj) message that is not equal
to ABORT, (2) both vb and pa belong to session i, and (3) the slot between messages
pa and vb is footer-free. The probability ζi,a,b is taken over the random choices of pa.
Using this notation, the SOLVE procedure proceeds to Step 4 with probability ζi,a,b
(note that the condition in Step 4 is satisfied in each one of the rewinds with probability
ζi,a,b, independently of other rewinds). We would like to bound the probability that S
gets stuck (we denote the event of the simulation getting stuck by having S output ⊥).

Let SA denote the simulator’s execution with black box access to a machine A, let
Ṽ ∗ = Ṽ ∗(p1, v1, . . . ,pa−1, va−1) denote the “residual” strategy of V ∗ when messages
〈p1, v1, . . . ,pa〉 are fixed (i.e., Ṽ ∗(G, r) def= V ∗(G, r; p1, v1, . . . ,pa−1, va−1)), let the
phrase “S rewinds in Step (4)” represent the event in which the three rewinding con-
ditions from above hold, and let ζi,a,b be as above (in other words, the probability with
which the “S rewinds in Step (4)” event holds). We then have:

Pr
r

[
S

eV ∗(G,C) = ⊥
]

= Pr
r

[
S

eV ∗(G,C) = ⊥ | S rewinds in Step (4)
]
· Pr
r

[
S rewinds in Step (4)

]
(2)

= Pr
r

[
S

eV ∗(G,C) = ⊥ | S rewinds in Step (4)
]
· ζi,a,b

= Pr
r

[
p = pt

]
· ζi,a,b (3)

Now, since pa and p′a are uniformly and independently chosen in {0, 1}k, and since the
number of r ∈ {0, 1}k for which Ṽ ∗(G, r) is not equal to ABORT is precisely 2k · ζi,a,b,
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then it holds that Pr[pa = p′a] = 1/(2k · ζi,a,b). Using Eq. 3 we infer that:

Pr
r

[
S

eV ∗(G,C) = ⊥
]

=
1

2k · ζi,a,b
· ζi,a,b =

1
2k

as required.

Empirical Study Here we provide some cursory evidence that the type of adversarial
nesting which causes problems with concurrent simulation do not generally occur when
verifiers are independently sending their protocol messages without delaying.

We performed a cursory empirical study of the webserver traffic at our University
webserver. We analyzed roughly 122681 TCP sessions (syn-to-fin flows) served by our
department webserver over a period of 16 hours; each session consisted of a SYN from
a to our webserver, a SYN from the webserver to a, a FIN from a to the webserver, and
a final FIN from the webserver to a such that the entire flow corresponded to a request
and an error message response served by the webserver. We considered error messages
because they are not input/output bound and therefore require roughly the same server
processing time. The (4-flow) message pattern corresponds to a 1-slot preamble for our
ZK protocol. From this experiment, we counted 26579 nested sessions. In other words,
roughly 79% of the sessions were message-free, and would therefore only require 1
slot in our simplest optimistic protocol. (Of the remaining 21%, we cannot determine
whether they would have required a second slot given the data set.) Moreover, this
small data set reflected a high level of concurrency: there were 57161 instances when
one session overlapped another session.
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possibility of our protocols leaking information about the presence of other concurrent
sessions (as discussed in the beginning of Section 2).
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A Comparison with Other Approaches

Consider an alternative Prover strategy that we denote reset-on-nesting:

For some fixed constant C, send a “reset” message to any protocol sessions
that have more than C nested sessions that begin and end within a slot. When
a slot is reset, the verifier starts the protocol from the beginning.

The security proof for schedules with an upper-bounded number of nestings is straight-
forward. Moreover, only one slot is needed in this “reset-on-nesting” strategy for the
security proof. Unfortunately, the reset-on-nesting idea has two major problems. First
is an issue of completeness: it is possible for an honest Prover, and an honest but very
slow Verifier to repeatedly fail in successfully completing a protocol.

Definition 3 (Completeness). A concurrent protocol Π = (P1, . . . , Pn) is complete,
when for any schedule of concurrently executing sessions, and for every execution be-
tween honest parties P1, . . . , Pn, every Pi eventually HALTs and outputs (1, z) (to in-
dicate success).

A second more troubling problem is one of intentional starvation: a malicious
Prover may indefinitely postpone a proof by claiming the session has become too
nested. An honest verifier has no way to audit the schedule of messages received by
the Prover, and thus no recourse but to restart the protocol (which may fail again for the
same reason). Even with auditing, the malicious prover may create a fictitious verifier
instance and intentionally schedule this verifier so as to create nested sessions in the the
honest verifier’s slots. Thus, even an “honestly recorded” transcript of all of the Prover’s
messages could be justifiably used to starve the honest verifier.

Accountable Aborting versus fail To be sure, a malicious prover may ABORT a pro-
tocol for many reasons; but this event is fundamentally different than the postponement
attack discussed above: An ABORT is an admission of guilt by the malicious prover; a
postponement attack is an accusation by the Prover of malice on the part of the Verifier!

Borrowing terminology from the distributed algorithms community, we state the
concept of starvation-free protocols below. As mentioned, the solution in this paper is a
starvation-free protocol, while the reset-on-nesting protocol is not.

Definition 4 (Starvation-Free Protocol). A starvation-free concurrent protocol Π =
(P1, . . . , Pn) is one that guarantees that for any adversary P ∗i , and for any schedule of
messages of concurrently executing sessions, every honest party Pj , j 6= i interacting
with P ∗i eventually HALTs with output (1, z) or ABORTs with output (0, z).

(Note, that the z is arbitrary protocol-specific output, i.e., it could be f(x, y) in the
case of two-party secure function evaluation.)

A reset-on-nesting protocol cannot be both complete and starvation-free. Either the
protocol requires the Verifier to tolerate an infinite number of resets (in order to satisfy
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completeness)—in which case it is not starvation free—or it requires the Verifier to
upper-bound the number of messages it tolerates before ABORT and output 0 (in order
to satisfy starvation free-ness)—in which case it is not complete.

For this reason, we prefer our optimistic model to the reset-on-nesting protocol.

A.1 Comparison with the Timing Model

The timing model adds a notion of time on the standard communication model by (a)
giving each party a local clock, (b) having all parties share a global bound ρ ≥ 1 on
the relative rates of the different clocks (i.e., clock drift), and (c) having all parties
share a global bound ∆ on the message-delivery time (which includes the time for
local computation to receive and prepare messages). Protocols in the timing model can
TIMEOUT messages that have not arrived in time ∆, and DELAY outgoing messages by
a delay period that is also at least as big as ∆.

Prior work [DNS98,Gol02,PTV10] in this model employ the TIMEOUT and DE-
LAY operations. Protocols in this model have two disadvantages: first, every protocol
execution is forced to run for worst-case time c · ∆ even if the parties involved can
communicate quickly. Transmission delays to some parts of the internet can be mea-
sured in fractions of a day, and so for completeness, ∆ would have to be reasonably
large. Whereas our protocol allows fast participants to complete interactions “as fast as
the network allows,” the timing protocols of [DNS98,Gol02] require all sessions to run
in time related to worst-case network delays. Conceptually, our protocol handles more
diverse schedules, whereas the timing model protocols use timing to ensure “roughly
parallel” composition.

The work of [PTV10] reduces the required delay so some small constant c < 1.
This protocol is major practical improvement to the timing model; however, it too must
delay the verifier by some multiplicative penalty of the time it takes for the verifier to
respond, and it requires 3 slots. For example, every session must run at least twice as
slow (their penalty function is a parameter and can be ω(1) in some cases also) “as
the network allows” and each verifier must still complete multiple slots (whereas in
optimistic cases, only 1 slot is required).
New problems of Accountability Unfortunately, any setting of ∆ introduces the sec-
ond more subtle problem with TIMEOUT: much like intentional starvation discussed
above, a malicious Prover can send a TIMEOUT to a Verifier to avoid having to abort a
session that it cannot complete. The verifier has no way to “contest” this timeout. As
we will argue, such a use of TIMEOUTs introduces a new way for a malicious prover to
cheat that is not possible in the standard model.

The basis for this problem is that clocks in the timing model must be local and unau-
thenticatable to allow the simulator to rewinding the verifier (or prover in the case of a
proof of knowledge). If a local clock can be authenticated, then a malicious verifier V ∗

algorithm could refuse to answer any message that is too old according to its clock and
this would eliminate the possibility of rewinding. As a result, local clock timestamps
that appear in transcripts or communication tapes can be forged by any party; it is not
possible for a third party to verify such a timestamp.

This leads to the problem that transcripts that arise from the following two cases are
indistinguishable which removes any accountability for aborting:
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1. A malicious Prover algorithm receives a message from an honest Verifier, waits for
time ∆+ ε, and then sends TIMEOUT.

2. A malicious Verifier algorithm delays sending a message for time ∆+ ε, and then
sends its message. The honest Prover, consequently sends a TIMEOUT messsage.

Let us compare this situation to the standard model in which—say—messages can
be authenticated. (Notice that messages can be authenticated and still allow rewinding.)
Of course, a malicious prover can always abort a protocol by either sending an incor-
rect message or refusing to send any message. Both cases, however, are fundamentally
different then the ability for a malicious prover to send a TIMEOUT.

When the Prover sends a bogus message, the verifier has proof (via the authenticated
message) that the Prover cannot supply a proof of the statement, and the prover is
therefore accountable for the abort. In fact, the second case is the same. As described
by Canetti [Can06], “not sending a message” in the standard model is handled by an
explicit halt which is proof that the Prover has failed.

Protocol participants are modeled as strict polynomial-time interactive Turing
machines; one machine sends a message to another by writing on the recip-
ient’s “communication tape.” Message delivery is not guaranteed. However,
when one machine executes a HALT operation, the other party in a protocol
execution is informed of the HALT via this communication tape. This modeling
guarantees that one party is not inadvertently left waiting for a message that
will never arrive.5 It is important to note that the standard model does not have
any notion of “time” except for steps of computation.

Thus, the standard model makes it possible to determine which of the two parties
cheated in an interaction. In contrast, the timing model with TIMEOUTS allows a ma-
licious Prover to be unaccountable for its cheating. While we acknowledge that such a
difference may be purely theoretical, it is nonetheless conceptually troubling.

Comparison with Responsive Round Complexity Cohen, Kilian and Petrank pro-
pose the notion of responsive round complexity [CKP01]. A protocol is said to have
responsive round complexity m with party A if it can guarantee that if A responds to
every message of the protocol in at most time t, then the overall communication de-
lay of the protocol execution is m · t. The idea behind the protocol in that paper is the
following:

Every verifier is assigned a time bin T . If a verifier V delays a message by time
t < T , then the prover delays the response to V by time 2T . If a verifier delays
a message by time t > T , then the verifier is moved into time bin 2T , and the
verifier must restart the protocol from the beginning.

5 In particular, this mechanism is how a malicious party that does not send a message is
modeled—since the party must be strict polynomial-time, if it refuses to send a message, we
assume it runs a computation, eventually HALTS and then the recipient learns that the other
party has aborted.
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Slow verifiers are penalized. In particular, this Prover strategy clumps verifiers into
“time buckets” such that all verifiers in the same bucket act in a roughly parallel manner.
The analysis then used in the timing model work can be applied.

Overall, the goal of this notion is to assure that a party that always responds quickly
has a stronger guarantee on the communication time of the overall protocol. Similarly,
our work also attempts to improve the communication time for Verifiers that respond
quickly. However, the protocols in [CKP01] still have at least ω(log n) slots in the
best case when the verifiers respond quickly. (In other words, their protocol guarantees
response round complexity of O(log n) whereas our protocol can use only 1 slot when
the Verifier responds quickly.)

Buffering Sessions Another idea is for the Prover to buffer sessions so that each one
starts only after the previous session finishes. Buffering sessions, i.e. serializing them,
eliminates the benefits of having multiple sessions run safely at the same time.

Denial of Service A malicious verifier can “force” the protocol to require just as many
rounds as the current best fixed-round cZK protocol. This is not a denial-of-service
attack because the malicious verifier can only force the same round complexity that
the best current protocols achieve—thus, the optimistic approach is never worse than
PRS. Moreover, in every additional round forced by a bad schedule, V ∗ is required to
communicate and compute more than the Prover.

Handling Server Farms Our optimistic approach requires the Prover to know the
global schedule of Verifier messages. Very large systems, however, are usually built
on clusters of servers instead of a single machine. Our optimistic approach can be made
to work on clusters using a consensus protocol to share schedules among the servers.
Since all servers belong to the same entity and are connected through internal fast links,
the consensus protocol would work “in the best case” (as opposed to the Byzantine case)
for most sessions. In other words, our protocol is viable even after counting the over-
head to make all prover machines agree on a schedule of verifier requests. To be sure,
many very large systems in existence today require even more complicated consensus
on the order of requests that they serve. For example, consider distributed database sys-
tems (sometimes distributed over tens of thousands of machines), social network sites,
and some distributed file systems that are implemented across thousands of machines.


