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In The Last Episode . . . 
• FFS uses fsck to ensure that the file system is usable after a crash 

• fsck makes a series of passes through the file system to ensure that 
metadata is consistent 

• fsck may result in lost data, but metadata will always be consistent 
• fsck works, but has several unattractive features 

• fsck requires detailed knowledge of file system, making fsck difficult to 
write and maintain 

• fsck is extremely slow, because it requires multiple traversals through 
the entire file system 

• Ideally, recovery time would be proportional to the number of 
recent writes that may or may not have made it to disk 



File System Transactions 
• A transaction is a sequence of operations that should be treated as a 

logical whole 
• In the database world, transactions are described using A.C.I.D. 

• Atomic: Either all of the operations in the transaction succeed, or none of them do 
• Consistent: Each transaction moves the system from one consistent state to 

another consistent state 
• Isolation: Each transaction behaves as if it’s the only one that is executing in the 

system 
• Durability: Once the system commits a transaction, that transaction must persist in 

the system, even if the system crashes or loses power 
• Transactions provide an elegant abstraction for file systems to reason 

about consistency 
• Treat each file system operation (e.g., the creation of a new file) as a transaction 
• During failure recovery, ensure that: 

• Committed transactions are reflected in on-disk data structures 
• Uncommitted transactions (i.e., transactions that were unfinished at the time of 

the crash) are not visible in the post-crash disk state 



Journaling In Action: ext3 
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• ext3 is a widely-used journaling file 
system on Linux 

• Preserves the same on-disk data structures 
as ext2, but adds journaling support 

• The superblock contains file-system-
wide info like the block size, the total 
number of blocks, etc. 

• The block descriptor describes where 
the block groups start 

• A block group is like an FFS cylinder 
group: a set of contiguous sectors on 
disk which are assumed to be fast to 
access in quick succession 
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ext3: Redo Write-ahead Logging 
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Pre-crash 
For each high-level file 
operation (e.g., write(), 
unlink()) that modifies the 
file system . . . 
• Write the blocks that 

would be updated into 
the journal 

• Once all blocks are in the 
journal, transaction is 
committed; now ext3 can 
issue the “in-place” writes 
to the actual data blocks 
and metadata blocks 

The journal is a circular buffer; 
asynchronously deallocate 
journal entries whose in-place 
updates are done 

Post-crash 
Iterate through the 
journal, reading the 
data blocks in each 
committed transaction, 
then writing them to the 
corresponding in-place 
region on disk 
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• If the system crashes 
during recovery, just 
restart the journal 
replay (this is safe 
because replaying 
entries is idempotent) 

• Can deallocate journal 
entries once they’ve 
been replayed 



ext3: Logging of Physical Blocks 
• ext3 journals physical blocks 

• Even if only part of a physical block is updated, ext3 
records the entire enclosing block in the journal 

• Ex: To journal an update to an inode (e.g., to update a 
data block pointer and file size), ext3 writes the inode’s 
entire enclosing block to the journal (ext3 can use a 
block size of 1024, 2048, 4096, or 8192 bytes, but inodes 
are only 256 bytes large) 

• Ex: Even if only part of a data block is updated, ext3 logs 
the entire block 

• Ex: Appending to a file requires three in-place writes 
(1) inode must be updated with a new file size and a new 

data block pointer 
(2) the data block bitmap must be updated to reflect a 

new block allocation 
(3) the data block itself must be written 
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• How should ext3 issue the writes to the 
journal? 

• One possible strategy is to: 
  (1) Issue the journal writes serially, waiting   
      for write i to complete before issuing 
      write i+1 
  (2) After the last journal write finishes,  
      issue the checkpoint (i.e., issue the 
      in-place writes) at some future moment 
• If a crash happens in the midst of (1), 

we’re fine 
• During crash recovery, we’ll see a 

valid TxStart, but no valid TxEnd for 
the associated tid 

• If the data block made it to the 
journal, we’ll have to discard it, but 
the file system will be consistent  

ext3: Logging of Physical Blocks 
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. . . and these writes 
never make it to the 
journal 

Crash happens . . . 



• The prior strategy works, but 
it’s slow, since the writes are 
serially issued 

• A faster strategy is to: 
    (1) issue all of the journal writes at  
        once 
    (2) when they all complete, issue  
        the checkpoint at some future 
        moment 
• Problem: the disk can reorder 

writes, which may cause havoc 
if a crash happens during (1) 

• Remember that only sector-sized 
writes are atomic! 

• For example, suppose that all 
writes except the middle one 
complete . . . 

ext3: Logging of Physical Blocks 
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ext3 would find a 
matching TxStart 
and TxEnd, so the 
transaction will 
seem valid . . .  
 . . . so ext3 would 
update the data 
bitmap with whatever 
insanity was in the 
journal! 



• The actual ext3 strategy is to: 
  (1) Issue TxStart and everything up to (but not including) TxEnd 
  (2) Once those writes have all completed, issue TxEnd 
  (3) Once the TxEnd is persistent, the checkpoint can be issued at 
       some future moment 
• This protocol ensures that a valid-looking transaction is really 

composed of valid journal entries 
• Note that a TxEnd record is essentially just a tid, so it fits inside a single sector 

and will be written atomically 
• Remember that the journal is finite-sized! 

• ext3 treats the journal like a circular buffer 
• In the background, ext3 deallocates journal transactions that have 

been checkpointed 
• The journal has its own superblock which records the start and end of the 

valid region 
• After a checkpoint occurs, ext3 asynchronously updates the superblock to 

indicate the new start of the log  

ext3: Logging of Physical Blocks 



ext3: Controlling 
What Gets Journaled 
• In the previous slides, 

we’ve assumed that ext3 
journals both data and 
metadata 

• This policy provides the 
strongest consistency, 
but requires double-
writes for all new data 

• However, many people 
are willing to accept 
data loss/corruption 
after a crash, as long as 
*metadata* is consistent 

• So, ext3 defines three 
different journaling 
modes: data, ordered (the 
default), and writeback 



ext3: Controlling 
What Gets Journaled 
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• Up to this point, we’ve 
looked at data mode 

• Both data and metadata 
are journaled 

• Post-crash, metadata is 
consistent, and files 
never contain junk 
(although writes may be 
lost) 

• Data mode incurs a 
double-write penalty for 
all data *and* metadata 
 



ext3: Controlling 
What Gets Journaled 
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• Ordered mode does not 
journal data, but writes it 
in-place before issuing 
journal updates for 
metadata 

• Avoids double-write 
penalty for data, while 
ensuring that writes to 
preexisting regions of a 
file are always preserved 
post-crash if those writes 
make it to the disk 

• Still possible for appends 
to be lost post-crash 

• Forcing the journal 
update to wait for the 
data write can hurt 
performance 



ext3: Controlling 
What Gets Journaled 
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• In unordered mode, the 
in-place data writes can 
be issued at any time 
w.r.t. journal updates and 
checkpoints for metadata 

• Allows the disk freedom 
to reorder those writes 
w.r.t. journal updates, 
improving performance 

• However, post-crash, files 
may contain junk data if 
the in-place data updates 
never hit the disk 
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ext3: Batching Journal Updates 
• Suppose that, in quick succession, a process creates three new 

files in the same directory (and thus the same block group) 
• ext3 will need to update the same directory, inode bitmap, and data 

block bitmap multiple times 
• To do so, ext3 could generate three separate transactions for each 

file create 
• However, this would force ext3 to repeatedly journal and in-place 

update the same set of physical blocks 
• To minimize disk traffic, ext3 creates “global” transactions 

• ext3 defines a waiting period for collecting updates 
• During that period, ext3 uses an in-memory structure to record 

which blocks are dirty (i.e., have been updated during the period) 
• Once the period is over, ext3 issues a single transaction for all of the 

dirty blocks 
 



Summary of ext3 
• ext3 is a journaling file system that does physical redo logging 
• To make a file system update in ordered mode, ext3 does the following: 

(1) Issue an in-place write for the data 
(2) Once those writes complete, update the journal with TxBegin and journal entries for 
the metadata 
(3) Once those writes complete, issue a TxEnd 
(4) Once that write completes, asynchronously checkpoint the metadata (i.e., write the 
in-place metadata) 
(5) Once that write completes, asynchronously update the journal superblock to 
deallocate the associated transaction 

• Data mode and unordered mode provide different                            
consistency and performance 



Journaling: Undo Logging vs. Redo Logging 
• In redo logging, we make operation X persistent by: 

• Starting a transaction: update the journal with TxBegin and the new data that is 
associated with X 

• Once those writes complete, commit the transaction: update the journal with TxEnd 
• Once the transaction is committed, asynchronously perform the in-place updates 

• During post-crash recovery, only replay committed transactions 
 

• In undo logging, we make operation X persistent by: 
• Starting a transaction: update the journal with TxBegin and instructions for how to 

undo X’s in-place updates (e.g., instructions might include the original on-disk values) 
• Once those writes complete, asynchronously perform the in-place updates that are 

associated with X 
• Once those writes complete, commit the transaction: update the journal with TxEnd 

• During post-crash recovery, undo uncommitted transactions by rolling 
*backwards* through the log, applying undo instructions to in-place disk 
locations 



• Redo logging 
• Advantage: A transaction can commit without the in-place updates being complete 

(only the journal updates need to be complete) 
• In-place updates might be to random places on the disk, whereas journal writes are sequential 

• Disadvantage: A transaction’s dirty blocks must be buffered in-memory until the 
transaction commits and all of the associated journal records have been flushed to disk 

• Buffering leads to increased memory pressure 
• Ideally, it would be safe to flush a dirty block after the associated journal record has been written to 

disk (even if the transaction has not committed yet) 

• Undo logging 
• Advantage: A dirty buffer can be written in-place as soon as the corresponding journal 

entries have been written to disk 
• Useful if the file system is experiencing high memory pressure and needs to evict buffers 

• Disadvantage: A transaction cannot commit until all dirty blocks have been flushed to 
their in-place targets 

• Delaying a transaction’s commit might delay other transactions who want to read or write the 
associated data 

• So, the file system has time pressure to issue those writes quickly, even if they would cause 
unfortunate seeking behavior 

Journaling: Undo Logging vs. Redo Logging 



Journaling: Redo+Undo Logging 
• The goal of redo+undo logging is to: 

• Allow dirty buffers to be flushed at any time after their associated journal entries are 
written (as in undo logging) 

• Allow a transaction to commit without its in-place updates being finished (as in redo 
logging) 

• In redo+undo logging, we make a file system operation X persistent by: 
• Starting a transaction: Write TxBegin 
• For each component of the transaction, write a <redoInfo,undoInfo> record to the 

journal 
• Once the record has been written, issue an in-place update for the component at 

any time! 
• Once the journal operations finish, commit the transaction: Write TxEnd to journal 

• Note that some, all, or none of the in-place updates might be finished at this point 
• Post-crash recovery now requires two phases 

• Roll forward through the log, redoing all committed transactions (potentially 
duplicating work if the transactions’ in-place updates succeeded before the crash) 

• Roll backwards through the log, undoing all uncommitted transactions that might have 
issued in-place updates before the crash 



Journaling: NTFS 
• NTFS is the file system on Windows 

• NTFS performs redo+undo logging (but only journals metadata, not data) 
• Supports block sizes from 512 bytes up to 64KB, with a default of 4KB 
• Has more bells and whistles than stock ext3 (e.g., NTFS natively supports 

file compression and encryption) 
• The root directory of an NTFS file system contains special files with 

reserved names that are used to implement key functionality, e.g.,: 
• $MFT: the Master File Table, which contains metadata for all of the files 

and directories in the file system 
• $LogFile: the journal 
• $Bitmap: allocation information for blocks 



NTFS: Files and Directories 
• The MFT contains an entry for each 

file and directory 
• Each entry is 1024 bytes long, and 

roughly corresponds to an inode 
• Each entry lists the attributes for the 

file/directory (e.g., name, link count, 
access timestamps, data characteristics 
like “compressed” or “encrypted”) 

• Note that the file/directory data is just 
another attribute! 

• For small files/directories, all of the 
data is stored inside the MFT record 

• For larger files/directories, the MFT 
record has pointer(s) to the relevant 
on-disk extents 

• Programs can define new, custom 
attributes for their files! 

• At file system initialization time, NTFS 
reserves a contiguous 12.5% region 
of the disk for the MFT 
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NTFS: Operation Logging 
• Unlike ext3 (which uses physical logging), NTFS 

uses operation logging 
• An operation log describes modifications to file 

system data structures 
• Ex: “Set bit 4 in a bitmap” or “write the following 

values into an MFT entry” 
• Operation logging has smaller log entries than 

physical logging (which much store entire physical 
blocks), although replay logic is more complicated 

• In A4, you must implement operation logging 
• Unlike ext3 (which batches multiple file system 

operations into a single transaction), NTFS 
creates a separate transaction for each file 
system operation 

• Each NTFS transaction consists of sub-operations 
• Each sub-operation has: 

• a redo field 
• an undo field 
• a pointer to the previous sub-operation in the 

transaction 
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Transaction for 
a file create Redo: Allocate 

and initialize an 
MFT entry for file 
“foo.txt” 
Undo: Deallocate 
the MFT entry 

Redo: In “foo.txt”’s 
directory, append a 
new directory entry 
which points to 
“foo.txt”’s MFT entry 
Undo: Remove the 
reference to “foo.txt” 
in its enclosing 
directory 

Tx1(End) 



NTFS: Example of Crash Recovery 
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Tx2(end) 
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Crash 

• First, NTFS rolls forward through the log, redoing 
*all* of the sub-operations in order 

• Tx1(a), Tx2(a), Tx2(b), Tx1(b), Tx2(c), and Tx1(c) are all 
redone, in that order 

• Then, NTFS rolls backwards through the log, 
undoing the sub-operations from uncommitted 
transactions 

• Tx1(c), Tx1(b), and Tx1(a) are undone, in that order 
 

Q: Why can’t we eliminate the undo pass, and just 
have a forward pass in which we only redo sub-
operations from committed transactions? 
A: The presence of a log record means that the 
associated in-place writes may have hit the disk! If 
those writes belong to uncommitted transactions, 
they must be undone 
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