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Goals of Virtual Memory
• Allow physical memory to be smaller than virtual 

memory—applications receive illusion of huge 

address spaces!

• At any given time, a process’ virtual address space 

may be fully in RAM, partially in RAM, or not in 

RAM at all

• Automate the chore of moving pages between 

memory and disk

• Provide memory isolation between processes and 

the OS memory (but allow sharing when desired!)

• How do systems implement paging in real life?



Case study: x86 (Hardware-defined page tables)
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Q1: How many pages can a process 

contain?

Q2: How much memory does a 

single page table cover?

Q4: What is the maximum size of a 

machine’s physical memory?

Q3: What is the minimum size of a 

machine’s physical memory?

Case study: x86 (Hardware-defined page tables)



x86 Physical Address Extension (PAE)
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Note that:

• Virtual address space is still 

32-bits wide

• Physical address space is 

now 36-bits wide (i.e., only 

36 bits of the 64-bit paging 

entries are actually used for 

physical addressing)



x86: Segmentation plus Paging
• x86 (32-bits) and x64 (when running in 32-bit mode) support 

both segmentation and paging!

• Strictly speaking, the “linear” address space is what gets paged
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x86: Segmentation plus Paging
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x86: Segmentation plus Paging
• Modern OSes like Windows and Linux configure %cs, %ds, 

and %ss to have a base of 0 and a bounds of 2^32 bytes

• So, segmentation is a no-op
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x86: Segmentation plus Paging

• On 32-bit x86, modern OSes like Windows and Linux 

configure %cs, %ds, and %ss to have a base of 0 and 

a bounds of 2^32 bytes

• However, %fs and %gs used for systems chicanery

• Ex: x86 Linux uses the %fs segment to store per-CPU 

information (remember that segment registers are per-

core!); so, an instruction like inc %gs:(%eax) will 

increment a per-CPU memory location

• When x64 runs in 64-bit mode, the hardware forces

%cs, %ds, and %ss to have a base of 0 and a bounds 

of 2^64 bytes

• %fs and %gs still available for systems chicanery



Q: What Do Page Tables Look Like 

On MIPS R3000?

A: You Get To Decide!



1. Load entry from page table 

directory

2. Load entry from page table

3. Generate the “real” memory 

access

Paging: The Good and the Bad
• Good: A virtual address space can be bigger than 

physical memory

• Bad: Each virtual memory access now requires at least 

two physical memory accesses
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Translation Lookaside Buffers (TLBs)
• Idea: Cache some PTEs in small hardware buffer

• If virtual address has an entry in TLB, don’t need to 

go to physical memory to fetch PTEs!

• If virtual address misses in TLB, we must pay at least 

one physical memory access to fetch PTE
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Translation Lookaside Buffers (TLBs)
• TLBs are effective because programs exhibit 

locality

• Temporal locality: When a process accesses 

virtual address x, it will likely access x again in 

the future   (Ex: a function’s local variable that 

lives on the stack)

• Spatial locality: When the process accesses 

something at memory location x, the process 

will likely access other memory locations close 

to x   (Ex: reading elements from an array on 

the heap)



The Lifecycle of a Memory Reference on x86
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The Lifecycle of a Memory Reference on x86
Virtual address
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Before raising page fault 

exception, HW sets %cr2 to 

faulting address, and pushes 

an error code onto stack
-Ex: User process tried to read a 

nnon-present page

-Ex: User process tried to write 

aa present but read-only page



MIPS R3000: Interacting with the TLB

Virtual frame number Address space ID Unused
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TLBLO register

TLBHI register

A single TLB entry: 

a TLBHI structure + 

a TLBLO structure



MIPS R3000: Interacting with the TLB
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MIPS R3000: Interacting with the TLB
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MIPS R3000: Interacting with the TLB
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The Lifecycle of a Memory Reference on MIPS
Virtual address and %TLBHI::ASID
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TLBs and Context Switches
• If TLB entries are tagged with ASIDs:

• OS updates current ASID (e.g., by setting TLBHI::ASID on MIPS)

• OS doesn’t need to flush TLBs

• Even if OS occasionally has to evict entries, this is better than 

having to evict ALL entries during EVERY context switch (since 

this generally requires size(TLB) page table walks when a new 

task starts to warm TLB)

• Scheduler can reduce invalidations with AS-to-core affinity

• If TLB entries are *not* tagged with ASIDs:

• OS must invalidate all TLB entries during a context switch

• x86: Writing to %cr3 on x86—this updates PDE pointer and 

invalidates all TLB entries

• MIPS: OS can use constant value for all ASIDs, and manually 

invalidate all TLB entries during context switch



TLB Invalidations
• When OS changes a PTE, must also invalidate any matching 

TLB entry!

• x86: “INVLPG virtAddr” invalidates individual TLB entry

• MIPS: Use “TLBP” (the TLB probe instruction) to set 

%INDEX to that of the TLB entry to invalidate; then, use 

“TLBWI” to overwrite it

• On a multicore machine, PTEs from a single address space 

can be mapped into multiple per-core TLBs

• If a core wants to modify a PTE entry, it must send 

cross-core interrupts to other cores

• Once other cores are spin-waiting, first core modifies 

PTE then wakes up other cores

• Other cores invalidate relevant TLB entries and resume 

execution



TLB Design Trade-offs
• Software-managed TLB

• Good: OS has freedom to design page tables, page directories, 

and other arbitrarily interesting structures

• Good: OS has freedom to design TLB eviction policy that might 

be too complex to implement in hardware

• Bad: Performance overhead

• Software is slower than hardware

• OS lacks access to low-level hardware state, so handling TLB 

misses in software may require discarding work that’s already 

in the CPU pipeline
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mov %eax, [%esp]
add %eax, 42
sub %edi, %eax
...
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TLB Design Trade-offs
• Software-managed TLB

• Good: OS has freedom to design page tables, page directories, 

and other arbitrarily interesting structures

• Good: OS has freedom to design TLB eviction policy that might 

be too complex to implement in hardware

• Bad: Performance overhead

• Software is slower than hardware

• OS lacks access to low-level hardware state, so handling TLB misses in 

software may require discarding work that’s already in the CPU pipeline

• Hardware-managed TLB

• Good: TLB miss doesn’t cause exception that must be handled 

by OS

• Hardware can just stall the current instruction . . .

• . . . and let other instructions proceed!

• Bad: Page table/page directory/etc format can’t be changed by 

OS


