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ASSTRACT. Let U1 , U2, . . . , Ud be totally ordered sets and let V be a set of n d-dimensional vectors 
In U~ X Us. . X Ud . A partial ordering is defined on V in a natural way The problem of finding all 
maximal elements of V with respect to the partial ordering ~s considered The computational com- 
plexity of the problem is defined to be the number of required comparisons of two components and 
is denoted by Cd(n). It  is tnwal  that C~(n) = n - 1 and C,~(n) < O(n 2) for d _~ 2 In this paper we 
show: (1) C2(n) = O(n logan) for d = 2, 3 and Cd(n) ~ O(n(log2n) ~-~) for d ~ 4, (2) C,t(n) >_ flog2 n!l 
for d _> 2 
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1. Introduction 

Let  U1, U2_, • • • , Ud be tota l ly  ordered sets and  let  V be a set  of n d-dimensional  vec tors  

in the  Car tes ian  p roduc t  Ui X U2 X • • • X Ud. For  any  vec tor  v in V, le t  x,(v) deno te  t he  
zth componen t  of v. A par t ia l  order ing < is defined on V in a na tura l  way, t h a t  is, for v, 
u E V, v < u if and  only if x,(v) < ,  x , (u )  for all z = 1, . . .  , d, where  _<, is t he  to ta l  

order ing  on U , .  (We shall  of ten  wri te  <_ for < , .  The  con tex t  should make  clear the  
mean ing  of < .) For  v C V, v is defined to be a maximal  element (or,  briefly, a m a x i m u m )  
of V if there  does not  exist u E V such t h a t  u ~ v and u ~ v. We consider  the  p rob lem of 
f inding all maximal  e lements  of V. The  computa t iona l  complexi ty  of the  p rob lem is de- 

fined to be 

Cd(n) = min max Ca(A, V) ,  
A v 
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where cd(A, V) is the number of comparisons used by any algorithm A on any such set V. 
In  other words, Cd(n) is the maximum number of comparisons used by the algorithm 
tha t  solves the problem the fastest in the worst case. We are interested in obtaining the 
upper and lower bounds on Cd(n) for all d. We assume tha t  n, the number of vectors in V, 
is rrmch greater than d, the dimension of V. 

This problem arises in a number of apphcations, typmally in pat tern classification and 
in operations research, and is of interest only when d ~> 1, that  is, when V is a partially 
ordered set. In  fact when d = 1, i.e. V is a to ta l ly  ordered set, we tr ivial ly have Ca(n) = 
n -- 1. I t  is not difficult to realize tha t  any algori thm designed to find the maxima of a 
general part ia l ly  ordered set requires 0 ( n  2) comparisons in the worst case. A natural  ques- 
tion is whether the part icular  structure of the par t ia l  ordering on V can be exploited to 
obtain a faster algorithm. This question is answered affirmatively in th~s paper, where 
we show 1 

Cd(n) < O ( n l o g n )  for d = 2, 3, (1.1) 

Ca(n) < O ( n ( l o g n )  ~-2) for d > 4, and (1.2) 

Cd(n) >_ llog nil  for d >_ 2. z (1.3) 

Since log n! is approximately n log n, the bounds in (1.1) and (1.3) are sharp for d = 2 
and 3, with respect to the order of magnitude. I t  remains an open problem to show whether 
the bounds in (1.2) are sharp for d > 4. 

The results (1.1) for d = 2 and d = 3 were originally obtained by Luccio and Prepa-  
ra ta  [3]. Their technique, however, did not generalize to a larger number of dimensions. 
The general results (1.2) were later obtained by Kung [2] with a different technique, where 
their algorithm for d = 3 is used as one of the impor tant  components. The lower bound 
results (1.3) were also originally given in [2]. Hence the present paper is a combination 
of papers [2] and [3]. 

The paper is organized as follows. In  Section 2 we prove (1.3). In  Sectmn 3 we describe 
a technique which achieves (1.1). In  Section 4 we describe the basic recursive proce- 
dure for obtaining (1.2), which is based on a merge-hke algorithm described in Section 
5. Upper bounds on the number of comparisons for solving this problem are established 
by another recursive procedure, in Section 5. 

2. Lower Bound 

LEMMA 2.1. C~_l(n) ~ C~(n) for d > 2. 
PROOF. Consider a set Vd-1 of n (d -- 1)-dimensional vectors in U1 X " "  X Ud-~ 

Let each vector in Vd_~ be extended by  the same element of U~ and let Vd be the set of 
these d-dimensional vectors. Then i t  is clear tha t  v is a maximum of Vd-1 if and only if the 
vector extended from v is a maximum of V~. Hence for finding the maxima of V~_i it  
suffices to find the maxima of Vd Therefore, Cd-l(n) ~ Cd(n). [] 

LEMMA 2.2. C2(n) ~_ [log n!l. 
PROOF. Let  ( a l ,  bl), (a2, b 2 ) , - . ,  (an,  bn) be n 2-dimensional vectors, where 

a l ,  a2, .- , an are n distinct  elements from a tota l ly  ordered set. Define an ordering on 
b~ , b~ , • • • , b, by the following rule: for any i,3, 

b, < bs if as < a , .  (2.1) 

Hence the ordering for b, ,  b~ is detected by comparing a, to as .  

i In  thin paper, all logarithms are to base 2 and all comparisons are between components of the vectors 
in V 
2 Yao [4] has shown that  C~(n) .~ S(n) + n - 1 where S(n) is the minimal number  of comparisons to 
sort  n keys. Since S(n) is about  n log n, she has shght ly  improved the lower bound in (1 3). Note tha t  
for d = 2, her lower bound is sharp and m achieved by our algorithm in Section 3. 
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Cons ider  a n y  a lgo r i t hm for f inding t he  m a x i m a  of n 2-d imens ional  vectors .  App ly  th i s  
a l g o r i t h m  to  t he  vec tors  ( a l ,  bl),  ( a s ,  b2), • • - , ( a~ ,  b , ) .  W e  shal l  use t he  wel l -known in- 
fo rma t ion - theo re t i c  a r g u m e n t  ( K n u t h  [1]) to  show the  a l g o r i t h m  requires  a t  leas t  ]log n !] 
compar i sons  in the  wors t  case. I t  suffices to  show t h a t  t he  ( b i n a r y )  compar i son  t r ee  asso- 
c ia ted  w i th  t he  a l g o r i t h m  has  a t  leas t  n ! leaves,  i.e. one for e ach  order ing  of a~, a~, • - • , a~ .  

E a c h  leaf  can  be  associa ted  w i th  a d i rec ted  g r a p h  (Hasse  d i a g r a m ) ,  in  which  t he re  
exists an  arc f rom node  a, to  node  a s if and  on ly  if a, < as was t he  resu l t  of a compar i son  
on  t he  p a t h  f rom th e  roo t  to  t he  leaf. For  each  ( a , ,  b,) t h e  a l g o r i t h m  m u s t  d e t e r m i n e  
w h e t h e r  ( a , ,  b,) is a m ax i m a l  e l emen t  or not .  To  d e t e r m i n e  t h a t  ( a , ,  b,) is maximal ,  t he  
resul ts  of all compar i sons  in the  a l g o r i t h m  m u s t  b e  sufficient to  decide t h a t  for a n y  o the r  
vec to r  ( a j ,  b~), e i ther  aj  < a, or bj < b , ,  i.e. a,  < a s , holds.  Since b y  (2.1)  all ( a , ,  b,) 
are  maximal ,  t he  t r a n s i t i v e  closure of t h e  d i rec ted  g r a p h  a t  a leaf t h e n  m u s t  h a v e  a n  arc 
be tween  every pair  of nodes.  H e n c e  th is  t r ans i t i ve  closure de t e rmines  the  order ing  of 
a~, a2,  • - - , a~ .  Therefore ,  each  leaf is associa ted  w i th  a un ique  o rder ing  of a t ,  a2,  • • • , 

a , .  Th i s  implies  t h a t  the re  are a t  leas t  n !  leaves.  © 
Therefore ,  b y  L e m m a s  2.1 and  2.2, we h a v e  shown  the  following: 
THEOREM 2.1. For any d > 2, Cd(n) >_ Cd-l(n) >_ " "  _> C2(n) > [log n!|, so that 

O(n log n) comparzsons are needed for finding the maxima of n d-dzmenswnal vectors in  
the worst case. 

3. Algorithms for d = 2, 3 

I n  th i s  sec t ion  we shall  p resen t  a lgor i thms  which  achieve  C2(n) = O(n  log n)  and  C3(n) = 
O(n  log n ) .  I n  t he  s u b s e q u e n t  sect ions  we shal l  use a modif ica t ion  of t h e  a l g o r i t h m  for 
d = 3 to ach ieve  t he  general  uppe r  b o u n d s  asser ted  in (1 .2) .  Here  a n d  hereaf te r ,  we 
assume  t h a t  for any  two vectors ,  u, v in the  sets  V, R, or S defined below, x , (u )  ~ x , (v)  
for all i. Th i s  s impl i fy ing  a s s u m p t i o n  helps b r ing  ou t  the  cen t ra l  ideas of t he  a lgor i thms ,  
while the  modif ica t ions  requi red  b y  t he  un re s t r i c t ed  case are  s t r a igh t fo rward .  

ALGORITHM 3.1 

This algorithm finds the maxima of a set of d-dlmenmonal vectors V = {v~ , • .. , v,}. Given a d-di- 
mensional vector u, by u* we denote its projection on the coordinates x~, • • • , Xd. We assume that  a 
test for the conditions "u < T" is available, where u is a (d - 1)-dimensional vector, T is a set of 
(d - 1)-dimensional vectors, and "u < T" means that  there is a w E T such that  u < w 

1 Arrange the elements of V as a sequence vl , • , v, such that  

z~(vl) > zdv~) > "" > Zl(V,). 

2. Set z ~- I and To¢- Zf. (To, Ti , --- , are sets of (d - 1)-dimensional vectors.) 
3 Ifv,* < T,-i , se t  T,~- T,_l, else set T ~ -  maxima (T,_t Uv,*). 
4 If~ =n,  h a l t ; e l s e s e t i c - z - b l a n d r e t u r n t o s t e p 3  

THEOREM 3.1. The vector v, zs a maximal  element of V zf and only i f  v,* E T~ . 
PROOF. Assume  induc t ive ly  t h a t  T,_i = {Wl, . .  , w,} is t he  set  of t he  m a x i m a  of 

{vk* I k = 1, • • • , z - 1}. F r o m  s tep  1 in A lgo r i t hm 3.1 we know t h a t  xi(v,)  < xl(v~) for 
3 -- 1, 2, . . .  , ~ --  1. B u t  for any  vj (.7 = 1, . . .  , ~ --  1) t he re  is some w E T~-i such  
t h a t  vs* ~ w. T h e  cond i t ion  v,* < T,_~ means  t h a t  for any  w E T,_~ the re  is a t  leas t  one  
coord ina te  xk(k  = 2, . .  • , d) such  t h a t  xk(w)  < xk(v,) ; t h u s  we h a v e  xk(v,)  ~_ xk(w)  < 
Xk(V,). T h e  two condi t ions  Xl(V,) < xl(vs) and  Xk(V,) > Xk(V~) for 2 = 1, 2, " -  , z --  1 
show t h a t  v~ is a ma x i m a l  e l ement  in  T , .  Converse ly ,  t he  cond i t ion  v,* < T, - i  m e a n s  
t h a t  the re  is a t  leas t  one w E T,_i such  t h a t  xk(v,) < x~(w) for k = 2, . . .  , d. W e  also 
k n o w  t h a t  w coincides wi th  vh*, for some h in the  range  [1, i - 1]; recal l ing t h a t  x~(v,) < 
x~(vh), we conclude  t h a t  v, ~ vh, i.e. v, is n o t  a m a x i m u m .  O 

N e x t  we e s t ima te  the  r u n n i n g  t ime  of A lgo r i t hm 3.1. I n  add i t i on  to s tep  1, which  re- 
quires  O(n  log n)  compar isons ,  the  work is essent ia l ly  due  to s tep  3 ( i m p l e m e n t a t i o n  
of t he  t e s t  v,* ~ T,_i and,  when  required,  t he  c o n s t r u c t m n  of T , ) .  W e  ana lyze  these  two  
opera t ions  for d = 2 a n d  d = 3, separa te ly .  
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d = 2. In  this case vj* = x2(vj), whence T,_~ consists of only one element 
maxs-i x2(v~) which is denoted by W,_l. Therefore the test v,* ~ T,- i  reduces to the single 
eoraparison between x~(v,) and w,-i ; moreover when x2(v,) > w,-1, the construction of 
T, is trivial, since w, = x2(v,). In  summary the number of required comparisons is 
0 (~  log n) + O(n),  i.e., O(n log n). 

d -- 3. In  this case we assume inductively that  the two-dimensional elements of 
T,_a are arranged as a sequence Wl, . . .  , w~ such that  x2(wl) > x2(w2) > . . .  > x2(w~). 
We; carry out the test v,* ~ T,_i as follows: "Determine the largest value 3" of the index 
j such that  x2(w~) >_ x2(v,) for wj E T,_I ; v,* -~ T,_i if and only if xa(v,) < xa(wj.) ."  
The critical operation is the determination of j*. This is most readily done by adopting an 
AVL tree [1, Sec. 6.2.3] as the information structure which stores the elements of T,_t.  
Since the length of the longest path in an AVL tree with ~ vertices is upper bounded by 
1.44 log (p + 1), the determination of J* requires at most O(log ~) < O(log n) com- 
parisons, and O(n log n) comparisons are needed by the tests v,* ~ T,-1.  When v,* 
T,._~, the construction of T, can be carried out as follows: "Compare x3(v,) with xa(wh) 
for h = j* -k 1, • . .  , q, where q is the smallest value of the index k such that  x3(v,) < 
xa(wk). To obtain T , ,  remove w~.+l , • • , Wq_l from T,_i and insert v,*, i.e. set T, = 
T,-1 - { w~ I J* ~ h ~ q} ~ v,*." Each insertion into or deletion from the AVL tree re- 
quires at most O(log n) comparisons. Since in the worst case at most n vectors are to be 
inserted and at most (n  - 1) vectors are to be deleted in the entire execution of the 
algorithm, the number of comparisons required by the algorithm for d = 3 is O(n  log n).  
Thus, we have proved that  O(n log n) is an upper bound to Cd(n) for d = 2 and 3. To- 
gether with the lower bound proved in Section 2, we have: 

THEOREM 3.2. Ca(n) = O(n  log n)  and Ca(n) = O(n  log n).  
Theorem 3.2 establishes (1.1). I t  is easily realized that  Algorithm 3.1 fails to achieve 

(1.2) for d > 3. Another technique incorporating a modification of Algorithm 3.1 will be 
developed in Section 5 to achieve the general bound (1.2). 

4. A General Algomthm for d > 3 

Without loss of generality, we assume that n = 2 r for some positive integer r, and that  
the elements of V have been arranged as a sequence Vl, - • • , vn so that  

Xl(Vl) > xl(v2) > . . .  > xl(vn). (4.1) 

(Note that  this sorting operation takes O(n log n) comparisons.) 
Like many other "fast" algorithms (e.g. F F T ) ,  our algorithms will first solve two sub- 

problems and then combine the results of the subproblems. We shall first find R, the set 
of the maxima of {vl, . . .  , vn/2} and S, the set of the maxima of {v~/:+l, . .  , v,,}. Observe 
that  by (4.1) the elements of/~ are also maximal elements of V, but  the elements in 
are not necessarily maximal elements of V. In  fact, an element in ~ is a maximal element 
of V if and only if it is not less than or equal to any element in/~. Therefore, we have the 
following algorithm: 

ALGORITHM 4 1 

We define a recurslve procedure for finding the set V~ of the maxima of V = {v~ , .. .  , ~'~} To find 
VM , we find R, the set of the maxima of {vl , .- • , v./2}, find S, the set of the maxima of {v,/~+~ , .. 
v,l, and then find I', the set of elements m S which are not less than or equal to any element in 2~i 
Then set V M ~ t~ [.] 7~. 

The number of comparisons required by Algorithm 4.1 depends on the number  of 
comparisons required to find T. Define 

Fd(r, s) = rain max f,~(A, R, S ) ,  
A IRI  -- r 

ISl - -  • 
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where R and S are any  sets consisting of r and  s, respectively, d-dimensional  vectors, and  
f~(A, R, S) is the number  of comparisons used by  any  algori thm A for finding the ele- 
ments  m S which are no t  less than  or equal to any  element in R. Hence T can be found in 
F~(n/2, n/2) comparisons, since I R I, I S I ~- n/2. Observe, ho,, 'ever, tha t  because of 
the relat ion (4.1),  for u ~ /~, v E S, u > vi f  and  only if x,(u) >_ x,(v) f o r i  = 2, • • - , d. 
To find T, the first components  of the vectors do not  have to be considered. We end up 
with considering (d - 1)-dimensional  vectors. Hence T can be found in  Fd_l(n/2, n/2) 
instead of F~(n/2, n/2) comparisons. Therefore, by  Algori thm 4.1, we obta in  the follow- 
ing recurrence relation on Cd(n) : 

Cd(n) < 2C~(n/2) + Fd_~(n/2, n/2). (4.2) 

In  Section 5, we shall show (Theorem 5.2) tha t  

Fd(r, s) _< (adr + /3~s)(iog r ) ( log  s) ~-3 + dr (4.3) 

for d _> 3, where a~ and/~d are constants.  By (4.3), we have 

F~_~(n/2, n/2) < O(n( log  n) d-3) for d > 4. (4.4) 

Therefore, from (4.2) and (4.4) we obta in  C~(n) < O(n( log  n)~-~), which yields the 
central  result:  

THEOREM 4.1. Cd(n) < O(n(log n) d-2) for d > 4. 

5. Upper Bounds on Fd(r, s) 

This  section deals with the proof of the following result .  

Fd(r, s) < (adr -b f~ds)(logr)(logs) d-3 + dr, for d ~_ 3. (5.1) 

Let  R and S be two sets consxsting of r and s, respectively, d-dimensional  vectors. 
Assume d _> 3. Wi thou t  loss of generali ty we assume tha t  the elements of R have been 
arranged as u l ,  • • • , u, and  the elements of S as v, ,  • • - , vo so tha t  

x~(u~) > x~(u~) > . . .  > z ~ ( u , ) ,  x , (v~)  > x~(v~) > . .  > x , ( v , ) .  (5.2) 

Also, we assume tha t  s = 2 m for some positive integer m. Define xt(uo) = 
and x~(u,+l) = - ~ .  Using b inary  search we find k, 0 _< k < r, such tha t  

xl(~) > x~(v,/~) > x~(u~+~). (5.3) 

We now divide R into two subsets R~ and  R~ such tha t  R~ = {u~ [ 1 < z < k} and  R, = 
{u, I k < i < r I . Also divide S into two subsets St and  S~ such tha t  $1 = {v, I 1 < i ~. s/21 
and  $2 = {v, Is/2 < z _< s}. 

Ul 

R r  
uk 

'uk+l 
R2" 

& ,  

'Vl = 

Ym/2 = 

~)a/2+l = 

V,m = 

= ( x l ( u d ,  x ~ ( u d ,  " .  , x , , ( u , ) ) ,  

= ( x , ( u ~ ) ,  x~(u~) ,  . . .  , x d ( u ~ ) ) .  

( x , ( u k + ~ ) ,  x~(u~+~),  . . .  , xd(uk+~)  ) ,  
: 

( x l ( u ~ ) ,  x ~ ( u , ) ,  . . .  , x ~ ( u , )  ) .  

( x~( v~) , x : (  v~) , . . .  , x , (  v~) ) , 
: 

(x l ( v , l~ ) ,  x~(v./~),  . . .  , x~(v./~) ) .  

( x ~ ( v . ) ,  x~(v , ) ,  . . .  , x~ (v , )  ) .  
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Recall that our problem is to find all elements m S which are not less than any element in 
R. We let [~] denote this problem. I t  is trivial to see that the problem [~] can be solved 
by solving four subproblems, [~], [~], [~:], and [sR:]. Observe that the problem [~:] is 
trivml, since by (5.2) and (5.3) we know there is no element in R2 which is greater than 

R2 any element in S~. Thus, we do not have to worry about the problem [si ]. Furthermore, 
observe that  by (5.2) and (5.3), the first component of any element in R1 is greater than 
that  of any element m $2. Hence by the same reason as we used in Section 4, to do the 
problem [~:] we only have to consider (d - 1)-dimensional vectors rather than d-dimen- 
sional vectors. Thus, to solve the problem Is R] for d-dimensional vectors, we can instead 
solve the three subproblems: 

(1) The problem [s~] for d-dimensional vectors. 

(2) The problem [~] for d-dimensional vectors. 

(3) The problem [s~] for (d - 1)-dimensional vectors. 
Therefore, we have shown 

Fd(r, S) _< Fd(k, s / 2 )  + Fd(r -- k, s /2 )  + Fd-~(k, s / 2 ) .  (5.4) 

In  the remainder of the section we shall first prove (5.1) for d = 3, and then use (5.4) 
to prove (5.1) for general d by induction. 

THEOREM 5.1. F3(r, s) < ( ~ :  + l~ss)(log r) for constants c~3 and ~s.  
PROOF. We establish the theorem by exhibiting an algorithm and evaluating its 

running time. 

ALGORITHM 5 1 

This algorithm accepts two sets R and S of 3-dimensional vectors with r and s elements, respectively, 
and finds all the elements of S whmh are not less than any element of R. This algorithm, which is very 
closely remimscent of hst-merge, is an adaptation of Algorithm 3.1 and adopts its notational convert- 
trans. 

1 Arrange elements of R as a sequence u~ , .. ,u, suchthat x~(ul) > x~(u2) > . . .  > xl(ur). De- 
fine Xl (u,+,) . . . .  

2 Arrange the element of S as a sequence vl, - • , v, with the property that x~(vj) < x~(u,) < 
x l (va)~3 < h. (Comment: The sequence vl , ... , r, is formed by binary insertion of xl(vj) in the 
sequence Xl(Ul), . . .  , xl(u,) ) 

3 Set~--1,3~--1, andT0~--~:~ (To,Tl,. .-aresetsof2-dimensionalvectors) 
4 If x~(u,) < x~(v~) go to step 7. 
5 Ifu.* < Ti_~ ,setT,~-T._~ , else set T, *-- maxima (T,_~ I.Ju,*) 
6 Set ~ ~- ~ -}- I and go to step 4. 
7. If v~* < T,_~ , discard vj , else v~ is not less than any element in R 
8. If 3 =s,  ha l t ,e l sese t3~- j+landgotos tep4 

The proof of the validity of Algorithm 5.1 closely parallels the one we presented for 
Algorithm 3.1, and will therefore be omitted. We now estimate the number of compari- 
sons performed by the algorithm. Step 1 requires O(r log r) comparisons, and step 2 
requires O(s log r) comparisons (s binary insertions into a set of cardinality r). We have 
shown in Section 3 that a test of the type "w ~ T "  requires O(log ~) comparisons if 
I T [ = ~,; since step 7 is executed s times, step 5 is executed at most r times, and log ~, 
_< log r, these tests require at most O((r -t- s) log r) comparisons. We have also shown in 
Section 3 that  the total number  of comparisons required to construct the sequence To, 
Tl, • • • is at most O(r log r). This shows that  Fs(r, s) is O(r log r) % O(s log r). 

THEOREM 5.2. For d _> 3, 

Fd(r, s) < ( adr + •s ) ( log  r)( log s) d-~ + dr, (5.5) 

where ad = a3 + 3 -b 4 + . . .  + ( d -- 1) and ~d = 2--(d--S)~3. 
(aS, ~3 are given by Theorem 5.1.) 
PROOF. We shall prove the theorem by induction on d. By Theorem 5.1, (5.5) holds 
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for d = 3. Assume  t h a t  (5 .5)  ho lds  for d = l --  1. W i t h o u t  loss of genera l i ty ,  we a s sume  
t h a t  s = 2 m for some pos i t ive  in tege r  m. T h e n  we h a v e  

Fl-l(r, 2 " )  < (az-1 r +/3z_1 2m)( log r)m :-4 + (l -- 1)r .  (5 .6)  

By  (5.4)  we know t h a t  t he re  exist  p l (  = k/r)and ql ( = (r - k ) / r )  such  t h a t  

F~(r, 2 "~) _< F~(plr, 2 '~-~) + F~(qlr, 2 ~-~) + Fz-l(plr, 2~"-~). (5.7) 

N o t e  t h a t  

0_<  p l ,  q l_< 1 a n d  p l + q l  = 1. (5 .8)  

We shal l  use (5.6)  a n d  (5.7)  to  p rove  t h a t  

Fl(r, 2 m) < (azr + /3~2m)(log r)  m l-3 + lr, 

t h a t  is, (5 .5)  for d = I. T h e  proof  below is e l e m e n t a r y  b u t  tedious.  T h e  essent ia l  idea is 
to  app ly  (5.7)  recursively.  I t  is no t  difficult  to  see f rom (5.7)  t h a t  we can  p rove  t h a t  

F~(r, 2 ~) _< ~ [ F ~ ( A  . . . . . .  r, 1) + Fz(B . . . . . .  r, 1)] 

+ 2 Z F,-,(  o . . . . .  ,r, 2'~-~), (5 .9)  

where  A,,  . . . . .  B,~. .,~ and  D,~, ,,, a re  defined as follows: 

A . . . . . .  = p . . . . . .  E . . . . . . .  B . . . . . .  = q . . . . . .  E . . . . . . .  
D . . . . .  , = p . . . . .  , E  . . . . .  , ,  (5 .10)  

where  E~ = E2 = 1 a n d  t h e  E,~. .,~ are  def ined recurs ive ly  b y  

= ~P,1, .,~_~E . . . . .  ,_~ if z3 = 1, ( 5 . 1 1 )  
E,, ,  ,,, tq , , ,  , , ,_,E,, ,  ,,,_, if i~ = 2, 

a n d  t he  p, , ,  .,~, q,,, ,,~ are c o n s t a n t s  sa t i s fy ing  the  fol lowing cond i t ions  l ike (5 .8 ) .  

0 _< p,~,....,k , q . . . . .  ~ < 1, P . . . . .  k + q . . . . .  k = 1. (5 .12)  

W e  first  e s tab l i sh  some proper t i e s  of A , ,  , 'm, B, , .  ,'m, D,, ,  . , , ,  and  E, , ,  . , , .  

E , ~ , .  ,~, = 1. ( 5 . 1 3 )  

~k~l,2 

T h e  proof  of (5.13)  follows f rom t he  fac t  t h a t  

Z E*i .,2 -~ E m +  EL.. = pl + qx = 1 and  

Z E . . . . .  , = Z (P . . . . .  ~_,E . . . . .  ,_, + q . . . . . .  ,_ ,E, ,  . . . . .  ,_ , )  
:k--l ,2 ~--1 ,2  

= ~ E , , ,  

N o t e  t h a t  b y  (5 .10) ,  

A . . . . .  ~ + B , , , . . , m  = P . . . . . .  E . . . . . .  + q . . . . . .  E, , ,  .,,m = E . . . . . . .  . 

H e n c e  by  (5.13) we h a v e  

~ ( A  . . . . . .  + B,, , .  ,,~) = 1. 

tk~l ,2  

Similar ly ,  we can  show t h a t  
< 1. 

z 
~k~l,2 

,~$--1" 

(5 .14)  

(5.15) 
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Furthermore, from (5.10), (5.11), and (5.12), it is trivial to see 

A u . . . . .  B,1...,,,~ , D,I, ..,,, < 1. 

Therefore, by (5.14), 

[Fz(A,,,. , , j ,  1) + Fz(B,,.. , , j ,  1)l _< ~ (lAu,.  
Ik--1,2 ~k~l,2 

By (5.6) and (5.15), we have 

Z f~_l(D . . . . .  7 ,  2m-') 

,,Mr + lB,1. . , j )  = lr. 

_< ~ ~ [ ( /  -- 1)D,~, ,,,r -F (a , - tD  .... ,,,r +/~,_12m-')(log r)m l-'] 
~k--l.2 

< ~ [(l -- 1)r + al_lr + 2 ~-1/~-i 2 ~-~ ](log r )m l-4 

_< [(a~-i -F l -- 1)r + (~,_l/2)2ml(1og r ) m / - 3  

Hence by (5.9) we obtain that  Fl(r, 2 ~) < lr + (azr + /~2m)(Iog r)m l-s, where t~z = 
at--1 + (l -- 1) and/~z = flz-1/2. We have proven the theorem. [] 
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