On Finding the Maxima of a Set of Vectors

H. T. KUNG

Carnegqie-Mellon Unmversity, Pittsburgh, Pennsylvama
F. LUCCIO

Umwersitd dv Pisa, Pisa, Italy

F. P. PREPARATA

Umwersity of Illinors, Urbana, Illinos

ABSTRACT. Let U, ,U,, ..., Usbe totally ordered sets and let V be a set of n d-dimensional vectors
mmU; X Us. . X Us. A partial ordering is defined on V in a natural way The problem of finding all
maximal elements of V with respect to the partial ordering 1s considered The computational com-
plexity of the problem 1s defined to be the number of required comparisons of two components and
is denoted by Cy(n). It is trivial that C:(n) = n — 1 and C4(n) < O(n?) for d > 2 In this paper we
show: (1) Ca(n) = O(nlogen) for d = 2, 3 and Ca{n) < O(n(logsm)d-?) for d > 4, (2) Ca(n) > MNogs nl
ford > 2

EEY WORDS AND PHRASES: maxima of a set of vectors, computational complexity, number of com-
parisons, algorithm, recurrence

CR CATEGORIES. .25, 5.31, 5.39

1. Introduction

Let Uy, U, -, Uy be totally ordered sets and let V be a set of n d-dimensional vectors
in the Cartesian product U, X U, X -+ X U, .Forany vectorvin V, let z,(v) denote the
1th component of ». A partial ordering < is defined on V in a natural way, that is, for »,
uw €V, v < uif and only if z.(v) <, z.(u) forall: = 1, -+, d, where <, is the total
ordering on U.. (We shall often write < for <,. The context should make clear the
meaning of <.) Forv € V, vis defined to be a maximal element (or, briefly, a mazimum)
of V if there does not exist w € V such that « > v and u # ». We consider the problem of
finding all maximal elements of V., The computational complexity of the problem is de-
fined to be

Ca(n) = min max cq(A, V),
A \ 4

Copyright © 1975, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material 1s granted provided that ACM’s copyright notice is
given and that reference 13 made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

This research was supported in part by the National Science Foundation under Grant GJ32111, the
Office of Naval Research under Contract N0014-67-A-0314-0010, NR044-422, and the National Research
Council of Ttaly (C.N.R), through the Istituto di Elaborazione dell’Informazione, Pisa, Italy.
Authors’ addresses: H. T. Kung, Department of Computer Science, Carnegie-Mellon University,
Schenley Park, Pittsburgh, PA 15213; F. Luccio, Istituto di Scienze dell’Informazione, Universita
di Pisa, 56100 Pisa, Italy; F. P. Preparata, Coordinated Science Laboratory, University of Illinois,
Urbana, IL 61801

Journal of the Association for Computing Machinery, Vol 22, No 4, October 1975, pp 460-476

470 H. T. KUNG, F. LUCCIO, AND F. P. PREPARATA

where ¢4(A, V) is the number of comparisons used by any algorithm A on any such set V.
In other words, Cy4(n) is the maximum number of comparisons used by the algorithm
that solves the problem the fastest in the worst case. We are interested in obtaining the
upper and lower bounds on Cy(n) for all d. We assume that », the number of vectorsin V,
is much greater than d, the dimension of V.

This problem arises in & number of applications, typically in pattern classification and
in operations research, and is of mterest only when d > 1, that is, when V is a partially
ordered set. In fact when d = 1, i.e. V is a totally ordered set, we trivially have Cy(n) =
n — 1. It is not difficult to realize that any algorithm designed to find the maxima of a
general partially ordered set requires O(n®) comparisons in the worst case. A natural ques-
tion is whether the particular structure of the partial ordering on V can be exploited to
obtain alfaster algorithm. This question is answered affirmatively in this paper, where
we show

Ci(n) < O(nlogn) for d =23, (1.1)
Ca(n) < O(n(logn)®™) for d >4, and (1.2)
Ca(n) > Mog nft for d > 2.7 (1.3)

Since log n!is approximately 7 log n, the bounds in (1.1) and (1.3) are sharp for d = 2
and 3, with respect to the order of magnitude. It remains an open problem to show whether
the bounds in (1.2) are sharp for d > 4.

The results (1.1) for d = 2 and d = 3 were onginally obtained by Luccio and Prepa-
rata [3]. Their technique, however, did not generalize to a larger number of dimensions.
The general results (1.2) were later obtained by Kung [2] with a different technique, where
their algorithm for d = 3 is used as one of the important components. The lower bound
results (1.3) were also originally given in {2]. Hence the present paper is a combination
of papers [2] and [3].

The paper is organized as follows. In Section 2 we prove (1.3). In Section 3 we describe
a technique which achieves (1.1). In Section 4 we describe the basic recursive proce-
dure for obtaining (1.2), which is based on a merge-hke algorithm described in Section
5. Upper bounds on the number of comparisons for solving this problem are established
by another recursive procedure, in Section 5.

2. Lower Bound

LemMma 2.1. Cyy(n) < Ca(n) for d > 2.

Proor. Consider a set V41 of n (d — 1)-dimensional vectors in Uy X -+ X Uj
Let each vector in V,_; be extended by the same element of U, and let V; be the set of
these d-dimensional vectors. Then it is clear that v is 2 maximum of V4_y if and only if the
vector extended from v is a maximum of V,;. Hence for finding the maxima of V,; it
suffices to find the maxima of V4 Therefore, Cy_1(n) < Cy(n). O

Lemma 2.2. Co(n) = log nil.

Proor. Let (@, bi), (a2, b)), - -, (@n, b.) be n 2-dimensional vectors, where
@1,a, - , @, are n distinet elements from a totally ordered set. Define an ordering on
b1, b2, - -+, b, by the following rule: for any 7, 7,

b.<b, if a,<a,. (2.1)

Hence the ordering for b. | b, 1s detected by comparing a. toa, .

1 In this paper, all logarithms are to base 2 and all comparisons are between components of the vectors
in V

2 Yao {4] has shown that Cs(n) > S(n) + n — 1 where S(n) is the minimal number of comparisons to
sort n keys. Since S(n) is about n log n, she has slightly improved the lower bound in (1 3). Note that
for d = 2, her lower bound is sharp and 1s achieved by our algorithm in Section 3.

On Finding the Maxima of a Set of Vectors 47

Consider any algorithm for finding the maxima of n 2-dimensional vectors. Apply this
algorithm to the vectors (a1, b), (a2, b2), - - -, (an , b.). We shall use the well-known in-
formation-theoretic argument (Knuth {1]) to show the algorithm requires at least {log n 1]
comparisons in the worst case. It suffices to show that the (binary) comparison tree asso-
ciated with the algorithm has at least n ! leaves, i.e. one for each ordering of a1, a3, - ,a, .

Each leaf can be associated with a directed graph (Hasse diagram), in which there
exists an arc from node a. to node a, if and only if a, < a, was the result of a comparison
on the path from the root to the leaf. For each (a., b.) the algorithm must determine
whether (a., b.) is a maximal element or not. To determine that (a., b,) is maximal, the
results of all comparisons in the algorithm must be sufficient to decide that for any other
vector (a, , b,), either @, < a.or b, < b, ,1.e.a, < a,, holds. Since by (2.1) all (a., b.)
are maximal, the transitive closure of the directed graph at a leaf then must have an arc
between every pair of nodes. Hence this transitive closure determines the ordering of
a1,0, - -, a, . Therefore, each leaf is associated with a unique ordering of a1, a2, -+,
a, . This implies that there are at least n! leaves. [

Therefore, by Lemmas 2.1 and 2.2, we have shown the following:

THEOREM 2.1. For any d > 2, Ca(n) > Caa(n) 2 --- > Co(n) > llog nll, so that
O(n log n) comparisons are needed for finding the maxima of n d-dimensional vectors in
the worst case.

3. Algorithms ford = 2,3

In this section we shall present algorithms which achieve Co(n) = O(nlogn) and C3(n) =
O(n log n). In the subsequent sections we shall use a modification of the algorithm for
d = 3 to achieve the general upper bounds asserted in (1.2). Here and hereafter, we
assume that for any two vectors, u, v in the sets V, R, or S defined below, z.(u) # z.(v)
for all 7. This simplifying assumption helps bring out the central ideas of the algorithms,
while the modifications required by the unrestricted case are straightforward.

ALGORITHM 3.1

This algorithm finds the maxima of a set of d-dimensional vectors V = f{v,, -+ , va}. Given a d-di-
mensional vector u, by u* we denote 1ts projection on the coordinates zz , - -+ , s . We assume that a
test for the conditions “u < T’ is available, where u 18 a (d — 1)-dimensional vector, T is a set of
(d — 1)-dimensional vectors, and “u < 7"’ means that there1saw € T suchthatu < w

1 Arrange the elements of V as asequencev; , -, vssuchthat
i) > z(va) > -0 > zlva).
2. Setie—1land Toe— . (To, Ty, --- ,aresets of (d — 1)-dimensional vectors.)

3 Ifo*<T.,,setT,— T, ,elseset T,— maxima (T,.. Uuv.*).
4 If1 = n, halt;else set 2 < 2 4+ 1 and return to step 3

TurEorREM 3.1. The vector v, 18 a mazvmal element of V 1f and only if v,* € T, .

Proor. Assume inductively that T._; = {wi, -, w,} is the set of the maxima of
{w*|k=1,.-- 12— 1}. From step 1 in Algorithm 3.1 we know that z:(v,) < z:(v,) for
7=12 -, 12— 1 Butforanyv, () =1, ---,2 — 1) there is some w € T._; such
that v,* < w. The condition v.* « T._, means that for any w € T.., there is at least one
coordinate xx(k = 2, - -+ | d) such that z.(w) < zi(v.); thus we have z:(v,) < z(w) <
2e(v.). The two conditions z1(v,) < a1(v,) and zx(v.) > x(v,) fory =1,2,.--,2 — 1
show that v, is a maximal element in 7, . Conversely, the condition »,* < T,; means
that there is at least one w € T._; such that 7, (v.) < m(w) fork = 2, -+, d. We also
know that w coincides with ».*, for some & in the range [1, ¢ — 1]; recalling that z,(».) <
21(v), we conclude that v, < u, 1.e. 2, is not a maximum. O

Next we estimate the running time of Algorithm 3.1. In addition to step 1, which re-
quires O(n log n) comparisons, the work 1s essentially due to step 3 (implementation
of the test ».* < 7., and, when required, the construction of T',). We analyze these two
operations for d = 2 and d = 3, separately.

472 H. T. KUNG, F. LUCCIO, AND F. P. PREPARATA

d = 2. In this case v»,* = x,(v,), whence T._; consists of only one element
max;=; 22(v,) which is denoted by w._, . Therefore the test v.* < T'._; reduces to the single
comparison between x,(v.) and w._; ; moreover when z,(v,) > w._;, the construction of
T, is trivial, since w. = x(v,). In summary the number of required comparisons is
O(»n log n) + O(n), ie., O(n log »).

d = 3. In this case we assume inductively that the two-dimensional elements of
T... are arranged as a sequence wy , - -+, w, such that x2(wi1) > xa(we) > -+ > za(wy).
We carry out the test »,* < T, as follows: “Determine the largest value ;* of the index
7 such that zo(w,) > zo(v.) for w, € Tuoy; 0.% < Ty if and only if z3(v.) < zs(we).”
The critical operation is the determination of ;*. This is most readily done by adopting an
AVL tree [1, Sec. 6.2.3] as the information structure which stores the elements of T,_; .
Since the length of the longest path in an AVL tree with » vertices is upper bounded by
1.44 log (» + 1), the determination of ;* requires at most O(log ») < O(log n) com-
parisons, and O(n log n) comparisons are needed by the tests v, < T._;y. When »,* K
T..1, the construction of 7', can be carried out as follows: “Compare x3(v.) with xz(ws)
for h = 7* + 1, -+, g, where ¢ is the smallest value of the index k such that z5(»,) <
zs(wi). To obtain T, , remove wpyy, © + , Wey from T._; and insert v.*, i.e. set T, =
T — {wn|7* < kb < ¢} + v.*.” Each insertion into or deletion from the AVL tree re-
quires at most O(log n) comparisons. Since in the worst case at most n vectors are to be
inserted and at most (n — 1) vectors are to be deleted in the entire execution of the
algorithm, the number of comparisons required by the algorithm for d = 3 is O(n log n).
Thus, we have proved that O(n log n) is an upper bound to Cy(n) for d = 2 and 3. To-
gether with the lower bound proved n Section 2, we have:

TarOREM 3.2. Cx(n) = O(nlog n) and Cy(n) = O(nlog n).

Theorem 3.2 establishes (1.1). It is easily realized that Algorithm 3.1 fails to achieve
(1.2) for d > 3. Another technique incorporating a modification of Algorithm 3.1 will be
developed in Section 5 to achieve the general bound (1.2).

4, A General Algorithm for d > 3

Without loss of generality, we assume that n = 2" for some positive integer r, and that
the elements of V have been arranged as a sequence v, - - - , v, so that

o) > m(vy) > -+ > z(va). (4.1)

(Note that this sorting operation takes O(n log n) comparisons.)

Like many other “fast” algorithms (e.g. FFT), our algorithms will first solve two sub-
problems and then combine the results of the subproblems. We shall first find B, the set
of the maxima of {0, - - - , a2} and S, the set of the maxima of {#/241, - ,va}. Observe
that by (4.1) the elements of R are also maximal elements of V, but the elements in §
are not necessarily maximal elements of V. In fact, an element in S is a maximal element
of V if and only if it is not less than or equal to any element in B. Therefore, we have the
following algorithm:

ALGORITHM 4 1

We define a recursive procedure for finding the set Vy of the maxima of V = {o;, .-+, va} To find
Vau,wefind R, the set of the maxima of {o AR vasa}, find S, the set of the maxima of {vara01, -,
v}, and then find T, the set of elements 1n § which are not less than or equal to any element in R.
Then set Vy— B U T.

The number of comparisons required by Algonthm 4.1 depends on the number of
comparisons required to find 7. Define
F4(r, s) = min max f4(4, R, S),

A Rl =1
18] =«

On Finding the Maxvma of a Set of Vectors 473

where R and S are any sets consisting of r and s, respectively, d-dimensional vectors, and
fa(A, R, S) is the number of comparisons used by any algorithm A4 for finding the ele-
ments in S which are not less than or equal to any element in E. Hence T can be found in
Fa(n/2, n/2) comparisons, since lRl [8| < n/2. Observe, ho'vever, that because of
the relation (4.1), foru € B, v € 8, u > vif and only if .(u) > x.(v) fori = 2, , d.
To find T, the first components of the vectors do not have to be considered. We end up
with considering (d — 1)-dimensional vectors. Hence T can be found in Fa 1(n/2, n/2)
instead of Fa(n/2, n/2) comparisons. Therefore, by Algorithm 4.1, we obtain the follow-
ing recurrence relation on Cy(n):

Ca(n) < 2Ca(n/2) + Faa(n/2, n/2). (4.2)
In Section 5, we shall show (Theorem 5.2) that
Fu(r,s) < (aar + Bas)(log) (log $)** + dr (43)

for d > 3, where aq and B, are constants. By (4.3), we have
Fai(n/2,n/2) < O(n(logn)*™*) for d > 4. (4.4)
Therefore, from (4.2) and (4.4) we obtamn Ca(n) < O(n(log »)**), which yields the

central result:

TreOREM 4.1. Cu(n) < O(n(log n)*?) ford > 4.
5. Upper Bounds on Fy(r, s)
This section deals with the proof of the following result.

Fu(r, 8) < (agr + Bas)(log r)(log 8)** + dr, for d > 3. (5.1)

Let B and S be two sets consisting of r and s, respectively, d-dimensional vectors.
Assume d > 3. Without loss of generality we assume that the elements of R have been
arranged as ¥, - -+ , %, and the elements of Sas v, - - -, v, so that

i(w) > a(us) > -+ > z(un), zi(v) > x1(we) > oo > x(vs). (5.2)

Also, we assume that s = 2" for some positive integer m. Define ni(u) = o«
and z1(%,41) = — . Using binary search we find k, 0 < k < r, such that
z(ur) 2 (o) > Z1(Urs). (5.3)

We now divide R into two subsets RB; and Rs such that By = {wn |1 €2 < k} and R, =
{u. | k < 7 < r}. Also divide S into two subsets S; and S, such that S; = {u, l 1<1<s/2)
and S; = {v.|s/2 <1< §}.

{u! = (xl(u1)> xz(ul)7 Y l'd(u],)),
R : . .

= (m(ur), 2o, -+, zale)).

{“kﬂ = (xl(qu), 22(uk+l), oy Za(Uega)),

= (xl(uf)3 132(?1,,'), Tty xd(ur))'

{ = (xl(vl), (1), -+ -, 2a(ma)),
Ves2

= (.ml(v,/z),.xa(vm), .' . xd(vaﬂ))-

{v.mx = (z,(v,ml) To(Vspz1), 5 Ta(Vopsa))

(1'1(1);) .’1?2(1).), " '.' :xd(vl))'

474 H. T. KUNG, F. LUCCIO, AND F. P. PREPARATA

Recall that our problem is to find all elements 1 S which are not less than any element in
R. We let [§] denote this problem. It is trivial to see that the problem [§] can be solved
by solving four subproblems, [§], [¢2], [&}], and [§2]. Observe that the problem [§?] is
trivial, since by (5.2) and (5.3) we know there is no element in R, which is greater than
any element in S; . Thus, we do not have to worry about the problem [§2]. Furthermore,
observe that by (5.2) and (5.3), the first component of any element in R; is greater than
that of any element 1n S, . Hence by the same reason as we used in Section 4, to do the
problem [5}] we only have to consider (d — 1)-dimensional vectors rather than d-dimen-
sional vectors. Thus, to solve the problem [§] for d-dimensional vectors, we can instead
solve the three subproblems:
(1) The problem [§}] for d-dimensional vectors.

{2) The problem [§?] for d-dimensional vectors.

(3) The problem [§}] for (d — 1)-dimensional vectors.
Therefore, we have shown

Fa(r,s) < Fa(k, 8/2) + Fa(r — k, s/2) + Fau(k, s/2). (54)

In the remainder of the section we shall first prove (5.1) for d = 3, and then use (5.4)
to prove (5.1) for general d by induction.

TasorEM 5.1. Fi(r, s) < (agr + Bss)(log) for constants oy and B; .

Proor. We establish the theorem by exhibiting an algorithm and evaluating its
running time.

ALGORITHM 51

This algorithm accepts two sets R and § of 3-dimensional vectors with r and s elements, respectively,
and finds all the elements of S which are not less than any element of R. This algorithm, which is very
closely reminiscent of list-merge, is an adaptation of Algorithm 3.1 and adopts 1ts notational conven-
tions.

1 Arrange elements of R as a sequence w; , - , ur such that z,(u1) > z(us) > -+ > z1(us). De-
fine 71 (Up+1) = — .

2 Arrange the element of S as a sequence v, - -, v, with the property that z:(v,) < z:(u.) <
z1(0) =3 < h. (Comment: The sequence v; , - - , v, is formed by binary insertion of :(z,) in the
sequence 2 (1), -, 1{ur))

3 Seti—1, 3«1 andTo— & (To,T:, - aresets of 2-dimensional vectors)

4 If zy(u.) < z:1(v,) go to step 7.

5 Ifu*<T.1,setT.— T, elseset T, maxima (T.., Uu,*)

6 Sets— 12+ 1andgotostep4.

7. Ifv,* < T,y ,discard v, , else v, 18 not less than any element in B

8. Ify = s, halt,elsesety« 4+ 1and go tostep 4

The proof of the validity of Algorithm 5.1 closely parallels the one we presented for
Algorithm 3.1, and will therefore be omitted. We now estimate the number of compari-
sons performed by the algorithm. Step 1 requires O(r log r) comparisons, and step 2
requires O(s log r) comparisons (s binary insertions into a set of cardinality r). We have
shown in Section 3 that a test of the type “w < T requires O(log ») comparisons if
| 7| = v; since step 7 is executed s times, step 5 is executed at most r times, and log »
< log r, these tests require at most O((r + s) log r) comparisons. We have also shown in
Section 3 that the total number of comparisons required to construct the sequence T,
Ty, - - - is at most O(r log 7). This shows that Fs(r, s) is O(rlog r) + O(slog r). [

THEOREM 5.2. Ford > 3,

Fu(r,s) < (aar -+ Bas)(log r)(log 5)°~° + dr, (5.5)

where ag = oz + 3+ 4+ -+ (d—1) and B = 2748,
(3, B are given by Theorem 5.1.)
Proor. We shall prove the theorem by induction on d. By Theorem 5.1, (5.5) holds

On Finding the M axima of a Set of Vectors 475

for d = 3. Assume that (5.5) holds for d = | — 1. Without loss of generality, we assume
that s = 2™ for some positive integer m. Then we have

Fia(r,2™ < (it + B 27 Qog rym™ + (I —)r. (5.6)
By (5.4) we know that there exist pi(= k/r)and ¢ (= (r — k)/r) such that
Fu(r,2™) < Fu(pr, 2"7) + Fular, 277') + Fra(prr, 277). (5.7)
Note that
0Ly, <1l and ;m+ ¢ = 1. (5.8)

We shall use (5.6) and (5.7) to prove that
Fu(r, 2™) < (ar + B2")(log r) m' ™ + Ir,

that is, (5.5) for d = l. The proof below is elementary but tedious. The essential idea is
to apply (5.7) recursively. It is not difficult to see from (5.7) that we can prove that

F;(T, 2m) S El[FI(AH. sl 1) + Fl(B‘l' smly 1)]

1=1,2
+ Z z Fl—l(Dn. ,.’7', 2"‘“9), (59)
= 1:l=l,12
where 4.,, .., B.,. .,and D, . aredefined as follows:
AH. am = Day, v’mE’l' Vimoy B'l- Vim [/ -’mEnv im
D., ., =p. LE, ., (5.10)
where £y = E; = 1 and the E,, ., are defined recursively by
B I By a0 i =1 (5.11)
DR q.,, y’;-lE'lv vyl lf i] = 2,
and the p.,, .., ¢, ., are constants satisfying the following conditions like (5.8).
0L Py s Qs o < 1, Die v+ @y, o = 1. (5.12)
We first establish some properties of 4,,, ..., B.;, .., D., .,,and E, ., .
Y E.,. . s, = L (5.13)
1;l=l.l2

The proof of (5.13) follows from the fact that
ZE:N, = g+ Eie = m+q=1 and

11=1
19=1,2
Z-:qE”' o, = zZml(p”, Y U 3 VRO U |
1:)-1.2 zk‘=l,2
1),1—1.2
Note that by (5.10),
AH- 1im + B'l" vim = Pay, »'mEH- vim + Qs v'mE‘]- ‘el E‘lv m
Hence by (5.13) we have
2 (Ay, opt B ua) =1 (5.14)
asie
Similarly, we can show that
D, . <1l (5.15)

476 H. T. KUNG, F. LUCCIO, AND F. P. PREPARATA

Furthermore, from (5.10), (5.11), and (5.12), it is trivial to see
4., B.,.. D, <L

vim Y Citm 3 ety =

Therefore, by (5.14),
_}__‘,I[FI(A.,,. oaly 1) + Fi(Boy. r, VIS 2 (AL, ot + 1By) = I
%™

11=1
11=1,2 1;=1,2

By (5.6) and (5.15), we have

Z Z Fl—l(D‘lv 4,7 2'm-J)

=1 1=l

13=1,2
<Y L= DDy, w4 (@aDu. o + Bia2™) (log Im'™]
=
<200 = U7 + arar + 27 £ 277 Y(log r)m"™
=1

< (o + L = D)r + (Bim1/2)2™(log r)m"™.

Hence by (5.9) we obtain that Fi(r, 2™) < Ir + (aur + 8:2™)(log r)m* ™, where o; =
apy+ (I = 1) and 8; = Bi1/2. We have proven the theorem. O

ACKNOWLEDGMENTS. The authors wish to thank Dr. H. Freeman of the Polytechnic
University of New York for bringing this problem to thewr attention and Dr. M.
Schkolnick of Carnegie-Mellon University for his comments on the paper.

REFERENCES

1. Knute,D.E The Art of Computer Programmang, Vol 3: Sorting and Searching. Addison-Wesley,
Reading, Mass , 1973

2. Kung, H. T. On the computational complexity of finding the maxima of a set of vectors Proc
15th Annual IEEE Symp. on Switching and Automata Theory, Oct. 1974, pp. 117-121 (also avail-
able as a Comput. Sex Dep. Rep , Carnegie-Mellon U , Pittsburgh, Pa , April 1974).

3. Luccio, F., aNp PreEPARATA, F. P. On finding the maxima of a set of vectors. Istituto di Scienze
dell’Informazione, Universita di Pisa, 56100 Pisa, Italy, Dec. 1973

4. Yao,F.F On finding the maximal elements 1n a set of plane vectors Comput. Sci. Dep Rep,
U. of Illinois at Urbana- Champaign, Urbana, Iil., July 1974.

RECEIVED JANUARY 1975; REVISED APRIL 1975

Journal of the Association for Computing Machinery, Vol. 22, No 4, October 1975

