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Introduction 

Given an n x p matrix X with p < n, matrix trianguiarizalion, or lriangularizalion in short, is to detenniIie 
an n x n nonsingular matrix AI such that 

MX = [ Ro] 

where R is p x p upper triangular, and furthennore to compute the entries in R. By triangularization, many 
matrix problems are reduced to the simpler problem of solving triangulaF linear systems (see for example, 
Stewan12). When X is a square matrix. triangularization is the major step in almost all direct methods for 
solving general linear systems. When AI is restricted to be an orthogonal matrix Q, triangularization is also the 
key step in computing least squares solutions by the QR decomposition. and in computing eigenvalues by the QR 
algorithm. Triangularization is computationally expensive, however. Algorithms for perfonning it typically 
require rI operations on general n x n matrices. As a result, triatlgularization has become a bottleneck in some 
real-time applications.ll This paper sketches unified concepts of using systolic arrays to perfonn real-time 
triangularization for both general and band matrices. (Examples and general discussions of systolic architectures 
can be found in other pap~rs.6.7) Under the same framework systolic triangularization arrays are derived for the 
solution of linear systems with pivoting and for least squares computations. More detailed descriptions of the 
suggested systolic arrays will appear in the final version of the paper. 

Triangulari1.ation for General Matrices 

Basic Ideas 

Consider a partially triangularized matrix as shown in Figure 1 (a). 'Ine triangularization can be carried out 
a stcp further by replacing the fourth row successively with some linear combination of itself with the first row, 
itself with the second row. and itself with the third row so that the resulting fourth row wi11 have zeros in its first 
three entries. as shown in Figure 1 (b). Clearly this process can continue to the fifth row, the six row, and so on, 
until the trianguJarization is complete. 

A triangular systolic- array as depictcd in Figure 2 is wen suited for the execution of the triangulari7.ation 
process described above. The systolic array consisl<; of two types of cells. infernal cells (represented by squares) 
and boundary cells (represented by circles). Internal cells basically perfonn multiplies and adds. whereas 
boundary cells perform divisions or reciprocals plus possibly other operations. During the computation, X enters 
the systolic array from its lOp boundary one row after another row in a skewed order. Current entries in the ;-th 
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Figure 1. A st~p in triangularization for general matrices. 
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Figure 2. Abstraction of a triangular systolic array for triangularizing a general matrix. 
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row of R are kept in the i-th row of the systolic array, one entry at each cell. Initially zeroes are stored in all 
cells, and when computation is complete, cntries in R will be readily read out, one from each cell. 

The first row of the systolic array, Le., the top row of cells in the systolic array, turns every arriving- row of 
X into a row with zero in its first cntry, and outputs results to the second row of the systolic array. Similarly, the 
secqnd row of thc· systolic array turns every row of X it reccives into a row with zcro in its sccond entry, and 
outputs results to the third row of the systolic array, and so on. ·While updating a row of X, a row of the systolic 
array may also updatc current entries of R that are stored in ·its cells. The boundary cell at the left end 
determines parameters needed for both updates, and they are sent to the right to be used in actual updatings 
taking place at internal cells. Because row.s of X pass through the systolic array in the skewed order, parameters 
determined at the boundary cell will- rcarch internal cells at right times. 

Triammlarization with Nei2.hbor Pivoting 

Triangularization needed in solving linear systems is classically performed by Gaussian elimination. For 
nt:lmerical stability, Gaussian elimination in general requires pivoting, and the usual partial or complete pivoting 
strategy is not suited to a systolic array since it may require global communication for pivot sclection. The 
triangularization process outlined above suggcsts another pivo~ng strategy. This technique, callcd neighbor 
pivoting here, introduces a zero to a row by subtracting a multiple of an adjacent· row from it, interchanging the 
two rows when necessary to prevent the mul~plc from exceeding unity. The fractional multiple suggests that 
triangularization with neighbor pivoting is numerically stable. Indeed numerical experiments have confinned 
this.9,10 Figure 3 specifies cells in a triangular systolic array that can perform triangularization with neighbor 
pivoting. At every cell cycle a boundary cell generates a multiplier m as well as a Boolean variable v, which 
signals a row interchange when having value one. 

INTERNAL CELL: 

BOUNDARY CELL: 

if v in then 
begin 

X out .. x + min· xin ; 

x .. x
in 

end 
else 

if IXinl ~ Ixi then 

begin 

VOUI .. 1 ; 

mout .. if xin to then .. x / xin 
else 0: 

x .. xin 

end 

else 
V

OUI 
.. 0 ; 

moul .. .. xin / x 

Figurc 3. Cell definitions for a triangular systolic array for performing 
triang.ularizalion wilh neighhor pivoting. 
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The idea of performing neighbor pivoting in Gaussian elimination was known at least as early as 1960 for a 
tota])ydiffercm reasons -- it was used for the purpose of minimizing storage requirements rather than for 
avoiding global communications. 

Orthogonal TIiammlaIization 

The classical procedure of performing a sequence of plane rotations (known also as Givens rotations) for 
onhogonal triangularization is a special case of the general tIiangulaIization process described earlier. 
Consequently a triangular systolic array with cells defined in Figure 4 can perfonn orthogonal triangularization. 
It is of interest to note that the same paral1elism as used in the present systolic array was actually assumed in a 
previous error analysis of QR decompositions by Givens rotations.4 

INTERNAL CELL: 

BOUNDARY CELL: 

Xout··-Slnx + cin,x lII 

if XIII· 0 then 

begin . 

Cout • 1 ; 

Sout ·0 
end 

else 
begin 

Cout • xII X2+X! 

Figure 4. Cell definitions for a triangular systolic array for performing orthogonal 
triangulari7.ation with Givens rotations. 

Observe that in this case boundary cells are considerably more complex than internal cells. Boundary cells 
compute square roots as we11 as reciprocals. whereac; internal cells perform only additions and multiplications. 
Since all the cells in the -systolic array must operate at the same throughput rate. boundary cells could fonn a 
bottleneck for the overall performance. 'I11US it is desirable to reduce the complexity of boundary cells so that it 
can be close to that of internal cells. In GentlemanL and Hammarling5 methods arc described for performing 
Givens rotations without square roots. Using similar techniques. systolic arrays for performing orthogonal 
triangubri/.atilln that -involve no square roole; have been devised. For example. in one of these designs a 
boundary cell perfonns five multiplications and one reciprocal at each cycle. TQ carry out. the scaling needed for 
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the square root free scheme. boundary cells on the diagonal of the systolic array are now required to be linearly 
-connected. as depicted in Figure 2. De.tailed cell definitions of this square root free systolic array will be given 
in the final version of the paper. 

On-the-fly Linear Least Squares Computations 

Let X be an 11 x p matrix X with p < n. a~d y an n-vector. the linear least squares problem is to determine 
a p-vector b such that II)' - Xbll 2 is minimized. where the norm is the usual Euclidean norm. The use of the QR 
decomposition to solve the least squares problem has proven to be a successful method. Assuming X has full 
rank. the method consists of the following steps. 

Step 1 (Orthogonal Triangularization). Find an 11 x n orthogonal matrix -Q such that 

QX= [:] 

where R is p x p upper triangular. 

Step 2 (Solution of Triangular Linear System). Solve 

for h, where Q1 is the matrix consisting of the first p rows of Q. 

Step 1 can be carried out by a triangular systolic array as described earlier. Note that QlY can be fonned at the 
same time as X being orthogonally triangularized by treating y as an additional column of X in its right-hand 
side. By a result in Kung and Leiserson7, step 2 can be realized with a linear systolic array. Chaining the two 

-systolic arrays together, as shown in Figure 5, forms a powerful system capable of producing on-the-fly the least 
squares fit to all the data that have arrived up to any given moment Since Givens transformations without 
Square roots actually solve' the weighted linear least square problem, 2,3 exponential decays or other appropriate 
-weights are readily incorporated in the system. 

It should be obvious that a similar system can be fonned for solving general linear systems using neighbor 
pivoting or orthogonal triangularization. For this case the fonner costs about half as much as the latter in tenns 
of the required hardware. 

A Remark 

In Bojanczk. Brent and Kung l a different systolic array for performing the orthogonal triangulari1.ation for 
square matrices is described. '1l1at scheme was designed for providing a numerically stable solution for solving 
linear systems and the convenience of performing the QR algorithm in finding eigenvalues. as opposed to solving 
the least squares problem. With that scheme. when computation is complete factors of Q rather than entries of 
R arc -storcd inside the systolic array. 

Triangularil.ation for Band Matrices 

When triangularizalion is to be done on a band matrix. it is possible to organizc the systolic array so that its 
sizc depends on the band width of the matrix rathcr than on the order of the matrix. Figure 6 illustrates the 
general idea of how to construct such a systolic array. /\s in the preceding section. by defining the two kinds of 
cells appropriately the systolic array can perform triangularil.ation with neighbor pivoting or orthogonal 
triangulariZJlion. 
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Figure 5. On-the-fly least squares solutions using systolic arrays. 

Concluding Remarks 

ileing able to perfonn neighbor pivoting and Givens rotations by systolic arrays appears to be an important 
realization. Because of this matrix triangularizalion or other similar computations such as reduction of a general 
matrix to it.'> Hesscnberg fonn can all be handled with relatively simple special-purpose modulcs. Results of this 
paper and other papersP suggest that a few types of simple VI _SI chips can used to configure a large variety of 
systolic arrays for real-time matrix computations. These linear algebra chips should be built in the ncar future. 
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Figure 6. Systolic array for lriangulJrizing a band matrix. 
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