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Abstract

Zero Queueing Flow Control (ZQFC) is a new credit-
based flow control method for ATM networks. The receiving
node of such a flow-controlled link will have zero queue-
occupancy in the steady state. ZQFC uses both link and VC
flow control simultaneously over the link to implement the
required rate adaptation for achieving zero queueing.

Because of its zero queueing property, ZQFC is able to
solve a head-of-the-line blocking problem that may arise
when multiple VCs share the same receiver buffer in imple-
menting their flow control. 

ZQFC works well with TCP traffic. When there is any
queue buildup associated with a TCP connection in a
shared buffer, ZQFC will identify the connection and take
steps to reduce its arrival rate at the buffer. This will allow
many TCP connections to share the buffer efficiently and
fairly. It makes sense to deploy ZQFC for just a single link
where performance improvement is critical. Simulations
using real-life TCP code have demonstrated these advan-
tages of ZQFC.

1. Introduction

A challenge in network flow control has been the
design of adaptive schemes capable of adjusting rates or
buffer allocations dynamically, in order to improve overall
network performance. Zero Queueing Flow Control
(ZQFC) described in this paper represents a general idea of
adjusting the arrival rate of a connection at a shared buffer
based on its buffer occupancy. The goal of ZQFC is that in
the steady state, a connection will occupy no buffer space. 

In this paper, ZQFC is presented as an ATM-layer
credit-based flow control method, enhanced with a new
adaptation scheme for VC buffer allocation. The adaptation
assures that each VC will occupy zero or a very small
amount of buffer space. 

Due to its zero-queueing property, ZQFC solves a
head-of-the-line blocking problem (i.e., the “hot-spot”
problem) associated with those credit-based flow control
methods which allow VCs to “over-subscribe” buffer at the

receiver. We explain in Section 4 how ZQFC solves the hot-
spot problem.

A major applications objective of ZQFC is its support
for TCP traffic. We show that for a class of TCP load
configurations, ZQFC can improve the network perfor-
mance significantly. We use a metric in Section 7, the CAB
number, to characterize this class. We point out, in Section
5.3, that it can be worthwhile to deploy ZQFC for just a
single link where performance improvement is critical. 

2. Notations and Assumptions

This paper uses the following notations and assump-
tions:

• Buff_Size Buffer size in ATM cells. Buffers are
denoted by black rectangles in diagrams;
see, e.g., Figures 2 and 1. 

• Link_BW Link bandwidth. All links are assumed to
have Link_BW = 1, unless otherwise
explicitly stated.

• Cell_Time Transmission time for one ATM cell on a
link of Link_BW = 1.

• Link_RTT Link round-trip time in Cell_Time.

• Packet_Size TCP packet size, which is assumed to be
512 bytes.

• Win_Size TCP window size, varying from 16 kB to
64 kB.

All performance results reported in this paper have
been obtained from a simulator based on real-life TCP code.
See Appendix A for a description of this simulator. 

Each reported simulation result represents an average
over a 2-minute real-time execution. We use this long, two-
minute execution for simulations to ensure that measured
performance will become stable before simulation ends.
Typically, each of these results took 5 to 10 hours of
200MHz Pentium Pro CPU time to generate.
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3. Background Information

When presented as an ATM-layer flow control method,
Zero Queueing Flow Control (ZQFC) can be viewed as a
credit-based ATM flow control method. It can be naturally
implemented in conjunction with input-buffered ATM
switches. Like Quantum Flow Control (QFC) [1], ZQFC
uses both VC and link flow control simultaneously, to
control flows of VCs over a link. Unlike QFC, ZQFC
employs a novel buffer allocation scheme with the objective
of achieving zero buffer occupancy, in the steady state, for
every VC sharing the buffer. This section briefly reviews
input- and output-buffered switches, and VC and link flow
control.

3.1 Input-Buffered vs. Output-Buffered Switches

Switches can be classified as input-buffered and
output-buffered switches. Figure 1 (a) or (b), respectively,
shows two connections over a network made of input-buff-
ered or output-buffered switches. One can view the output-
buffered configuration as derived from the input-buffered
configuration by moving all its buffers upstream by one
position. For instance, buffer X in Figure 1 (a) moves
upstream by one hop to arrive in its new position in Figure 1
(b).

Output-buffered switches are easy to understand.
Consider, for example, switch S0 of Figure 1 (b). Data
arriving at the two input ports will flow immediately to the
output buffer X. If the output buffer is full, packets are
dropped at the entrance of the buffer. In principle, an output
buffer needs to take in data at N-speed, if the switch has N
input ports. Thus the implementation of output-buffered
switches is not very scalable to large values of N. 

Input-buffered switches are more scalable than output-
buffered switches. Consider, for example, switch S0 of
Figure 1 (a). Data arriving at the two input ports will stay in
the input buffers, waiting to be sent to the output port. There
is an internal flow control mechanism inside the switch
which will inform the input buffers to forward data to an
output port when there are transmission slots available on
the output link. When an input buffer is full, arriving data
from the corresponding input port may be dropped, but
there will be no data drops at output buffers. All data paths

in an input-buffered switch operate at 1-speed, indepen-
dently of the value of N, although some control paths may
need to operate at N-speed. Since bandwidth requirements
for control paths are typically much smaller than data paths,
input-buffered switches are much more scalable than
output-buffered switches. Because of their high scalability,
this paper will focus on ZQFC implementation for input-
buffered switches.

3.2 Review of VC and Link Flow Control

VC flow control ensures that, for each VC, the trans-
mitter of the link will not overrun the VC’s allocated buffer
at the receiver. It is well-known that the buffer allocation of
each VC needs to be sufficiently large to allow the VC to
transmit at a high rate. To avoid excessive use of buffer, it is
therefore important that multiple VCs can dynamically
share a fixed-size receiver buffer much smaller than the
total buffer allocated to all these VCs.

This buffer “over-subscription” could result in buffer
overflow when enough of these VCs want to use their allo-
cated buffer space at the same time. “Link flow control”
described below provides a solution to this problem.

Link flow control prevents possible buffer overflow due
to buffer “over-subscription”, by ensuring that the total
buffer space actually occupied by all the VCs, at any given
time, does not exceed the available buffer space at the
receiver. When the available space in the receiver’s buffer
becomes smaller than Link_RTT, link flow control will kick
in to slow down or stop all the incoming VCs to prevent
buffer overflow.

4. “Hot-Spot” Problem of Link Flow Control

Link flow control, when inappropriately used, can
cause the so-called “hot-spot” problem. That is, when
congestion develops at one part of the network, link flow
control may unnecessarily slow down or stop VCs
concerning other parts of the network. 

Figure 2 (a) illustrates this “hot-spot” problem, which
will arise when ZQFC is not used for this configuration. We
assume that a round-robin scheduler is used at each output
port in scheduling VCs which have both credits and data to
send. Since VC1 shares with two other VCs on the link from
S1 to S2, VC1 will get a bandwidth of 1/3. If VC1 enters
into buffer A at a rate higher than 1/3, then the occupancy
level of buffer A will build up, the available buffer space in
A will shrink, and link flow control will kick in to reduce
the overall flow rate from S0 to S1. The total flow rate over
the link will keep decreasing until the VC1’s arriving rate at
buffer A has been reduced to 1/3. 

Since a round-robin scheduler is used among VCs from
S0 to S1, VC2 will output at the same rate as VC1. Because
VC1’s rate is 1/3, VC2 will have the same rate of 1/3,
instead of the remaining link bandwidth of 2/3 left by VC1.

Figure 1:  Configurations with (a) input-buffered and
(b) output-buffered switches. Black rectangles denote
buffers.

X

(a) Input-buffered: (b) Output-buffered:

X
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Thus, the total utilization of the link from S0 to S1 by VC1
and VC2 together is only 2/3. Our simulation has validated
this under-utilization.

The example of Figure 2 (a) illustrates that when link
flow control is used, a “hot-spot” originating at one part of a
network can cause under-utilization at other parts of the
network. That is, for Figure 2, congestion at the output link
from S1 to S2 has caused under-utilization of the link from
S0 to S1. 

One can prove that, under round-robin scheduling, link
flow control will force all the VCs over the same link to run
at the same rate when the total available space in the shared
buffer falls below Link_RTT. This rate shared by all the
VCs will be equal to the smallest VC rate allowed by down-
stream congestion. For example, in Figure 2 (a), VC1 and
VC2 will output from S0 at the same rate of 1/3. This is
because downstream congestion conditions will allow VC1
to transmit at the rate of 1/3 and VC2 at the rate of 1, and
the rate 1/3 is the smaller of the rates 1/3 and 1. 

Under-utilization caused by the “hot-spot” problem can
severely impact the performance of a network. If any VC is
downstream congested somewhere, all other VCs sharing
the same link can be forced to run at the same slow rate as
this slow VC. All these VCs will in turn slow down other

VCs in other parts of the network. The chain reaction can
quickly bring the whole network to a halt.

Simulations have demonstrated that the “plain QFC”
[1] (PQFC), the primitive QFC scheme without any buffer
allocation adaptation, indeed exhibits this “hot-spot”
problem. In addition to the configuration of Figure 2 (a), our
simulation results have shown, for example, that when
PQFC is used for the configuration of Figure 9, the utiliza-
tion of the link from S0 to S1 is only 50%. This simulation
result is completely predictable using the reasoning given
above. That is, for the three VCs over the link from S0 to
S1, the smallest VC rate allowed by downstream congestion
is 1/6. Thus, each of the three TCPs in Figure 9 will end up
with the same rate of 1/6, and the total rate achievable by
them is 3*(1/6) or 50%.

5. Description of ZQFC Algorithm

ZQFC is designed to avoid the “hot-spot” problem
described above. Unlike previous credit-based ATM flow
control methods, ZQFC makes sure that, in the steady state,
the shared buffer in the receiver is not occupied, and there-
fore link flow control will not kick in. Since link flow
control does not generally take place, the “hot-spot”
problem described above is avoided. 

More precisely, when ZQFC is applied to a link, the
receiver follows the following two rules in allocating buffer
space for the VCs over the link:

• Rule 1: If a VC starts to build up a queue, i.e., the VC is
above some high threshold, and if the remaining buffer
space shared by all the VCs over the link is less than
Link_RTT, then reduce the VC’s buffer allocation. 

By the property of credit-based flow control [4, 7],
reducing a VC’s buffer allocation will reduce its arriving
rate, and will eventually clear its queue occupancy. Note
that, when the remaining shared buffer space is Link_
RTT or more, link flow control will not affect the over-
all flow rate over the link. Thus, in this case, there is no
need to reduce the VC’s arriving rate.

• Rule 2: If the VC queue is empty or below some low
threshold, then increase the VC’s buffer allocation until
Link_RTT is reached. 

This will guarantee that each VC will eventually get its
fair-share use of the link. An interesting consequence of
Rule 2 is that idle VCs will eventually get full buffer
allocation of Link_RTT. Therefore, when any of these
VCs has data to send, it can send them out instantly at
the full link rate. (Note that the buffer allocated to each
VC is only a virtual buffer rather than a real buffer. Even
if every VC eventually receives its full buffer allocation

Figure 2:  “Hot-spot” problem of link flow control.
(a) Without ZQFC: Hot spot at the link (S1, S2) can
cause under-utilization of link (S0, S1). 
(b) With ZQFC: Hot spot problem disappears. 
A round-robin scheduler among outputting VCs is
assumed at each output port. Black rectangles de-
note input buffers of size Link_RTT.

VC1

VC2
BA

S0 S1 S2

(a) Without 
ZQFC

(b) With ZQFC 
on All Links

Achieved BW for VC2 1/3 2/3

Utilization of Link (S0, S1) 2/3 1

(a) Without ZQFC

Achieved BW for VC is 1/3.

(b) With ZQFC applied to all links

VC1

VC2
BA

S0 S1 S2

Achieved BW for VC is 2/3.
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of Link_RTT, the total real buffer can be much smaller
than n*Link_RTT where n is the number of VCs. Link
control will prevent the overflow of the real buffer.)

This ZQFC adaptation on VC buffer allocation is
performed only at the receiver, transparent to the credit
protocols between the transmitter and receiver. After having
decided to change the buffer allocation of a VC, the receiver
will simply reflect the change in the credit amount sent to
the transmitter for that VC [7]. Thus, the adaptation will
only affect the contents of protocol messages, not the proto-
cols themselves. This implies, for example, that the QFC
protocols messages [1] can be used without any modifica-
tion to implement the adaptation.

The ZQFC scheme used to derive all the simulation
results reported in this paper increases VC buffer allocation
by a factor of 1.01, and decreases it by a factor of between
.5 and 1, inversely proportional to the current queue occu-
pancy of the VC. 

Every 2*Link_RTT time, the receiver of the link will
check the amount of available space in the input buffer. If
the space is less than Link_RTT, the receiver will scan all
the arriving VCs over the link to find those whose queue
occupancy is above some high threshold (e.g., 20 cells). The
receiver will reduce the buffer allocations of these VCs, as
described in Rule 1 above. The receiver will also scan all
the arriving VCs over the link to find those VCs whose
queue occupancy is below some low threshold (e.g., 5
cells). The receiver will increase the buffer allocations of
these VCs as described in Rule 2 above.

Our simulation results have shown that an input buffer
of 2*Link_RTT cells is large enough for ZQFC to achieve
high link utilization. The buffer needs to be at least Link_
RTT to absorb the Link_RTT feedback delay inherent to the
ZQFC adaptation. By increasing the buffer to 2*Link_RTT,
the chance that the available buffer space becomes less than
Link_RTT will be significantly reduced. Consequently, by
Rule 1 above, the chance that link flow control will kick in
to reduce the overall flow over the link is also significantly
reduced.

For simple configurations such as that of Figure 2 (b)
which greedy traffic sources, an input buffer of size LinK_
RTT is sufficient to achieve high link utilization. Our simu-
lation has indeed shown the result of Figure 2 (b), that is,
the achieved bandwidth of VC2 is 2/3 and the total utiliza-
tion of the link from S0 to S1 is 100%.

5.1 Comparisons with Other Adaptation 
Schemes

ZQFC is fundamentally different from other adaptation
schemes in the credit-based flow control area. Previous
buffer allocation adaptation methods in [4, 5] are based on
recent bandwidth usages of VCs rather than their queue
occupancy. These methods tend to occupy VC queues much

more than ZQFC and thus reduce the available shared buffer
that can be allocated to uncongested VCs. Since a VC’s
maximum data rate is bounded by the amount of buffer allo-
cated to it, these methods in [4, 5] in general have inferior
performance, compared to ZQFC. In particular, in these
methods idle VCs will only get little allocation since they
use no bandwidth, and as a result, they can not ramp up
quickly when they do have data to send. Moreover,
measuring the bandwidth usage of a VC is generally more
costly than measuring its queue occupancy. 

Another adaptive scheme for buffer allocation has been
reported in [11]. The method does not give differential treat-
ments among VCs in the sense that it always allocates the
same buffer space to all the VCs sharing the same link in
either congested or non-congested condition. This adapta-
tion algorithm tends to bounce between congested and non-
congested conditions, and waste a lot of link bandwidth due
to link flow control. We have implemented the method on
our simulator and measured its performance. For example,
for the configuration oft Figure 4 (a), the method in [11] can
only achieve a low utilization of 29% for the link (S0, S1).
In contrast, ZQFC can achieve a utilization of 95% for the
same configuration. 

5.2 ZQFC for Input-Buffered and Output-
Buffered Switches

ZQFC can be naturally implemented on input-buffer
switches. VC flow control over a link is implemented with
per-VC flow control messages from the downstream node to
the upstream node. Figure 3 (a) depicts how link flow
control can be implemented. 

For output-buffered switches, each input port of a
switch will have a dedicated link FIFO of size Link_RTT, as
shown in Figure 3 (b). This buffer can be viewed as a part of
the link hardware. Cells in this buffer will be forwarded to
an output buffer only when there is space available in the
output buffer. Thus, ZQFC implementation for an output-
buffered switch assumes a dedicate FIFO for each input
link, and an internal flow control mechanism inside the
switch.

Figure 3:  Link flow control (LFC) implementation for
(a) input-buffered and (b) output-buffered switches.
Arrows denote directions of credit flows.

(a) Input-buffered: (b) Output-buffered:

LFC LFC
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5.3 Applying ZQFC to a Single Link

ZQFC can be applied strategically to individual links
for which performance improvements are most desirable. It
turns out that implementing ZQFC on just a single link can
already improve network performance for TCP traffic
substantially, as demonstrated in Sections 8 and 9 and
explained in Section 10. For the rest of the paper, whenever
ZQFC is used, we will state explicitly whether it is applied
to one link or to all links.

6. Input- and Output-Buffered Switches for 
TCP Traffic: Performance Examples

Improving network performance for TCP traffic is a
main objective for ZQFC. This section describes some
related background issues on the performance of input-buff-
ered and output-buffered switches for TCP traffic.

Consider the configuration of Figure 4 where band-
width of downstream links are limited. For example, for the
last link out from S1 in Figure 4 (a), Link_BW = 1/256. (In
this paper, the notation [α] means that the maximum-
possible bandwidths of all the TCP connections in question
is α due to downstream congestion or link bandwidth limi-
tation.) 

The output-buffered configuration of Figure 4 (a)
achieves a utilization of 94% while the input-buffered of
Figure 4 (b) achieves only 18%. The poor performance of
the input-buffered case is caused by the fact that the shared
input buffer of switch S1 is filled by packets waiting to be
output on relatively slow downstream links. The filled
buffer will cause packet dropping for all the TCP connec-
tions. (As Table 3 shows, ZQFC will fix this problem.) 

For the rest of this paper we will report performance
improvement of ZQFC for TCP traffic on both input- and
output-buffered configurations. (Refer to Section 5.2 for
ZQFC implementations on these two configurations.)

7. Some Challenging Load Configurations 
and the CAB Metric

We show in this section a class of challenging TCP load
configurations for which, as to be shown in later sections,
ZQFC can improve the network performance significantly.
Section 7 describes a metric, the CAB number, which will
be used to characterize this class of loads. Section 7.3
demonstrates that the network performance decreases as the
CAB number decreases.

7.1 CAB Numbers

A collection of TCP connections over a link tend to
achieve a high link utilization when their downstream
congestion is small. To characterize various degrees of
downstream congestion, we use a notion called “the CAB

number”, which stands for “Configuration Allowed Band-
width” relative to the bandwidth of the current link. The
CAB number of a link is the maximal total bandwidth that
all the TCP connections over the link can possibly achieve,
subject to the given downstream congestion or link band-
width limitation, divided by the bandwidth of the current
link. 

We illustrate the CAB number for the shared link (S0,
S1) in Figures 5, 6, and 7. For Figure 5, each of the three
TCP connections is not congested downstream and thus can
achieve a maximal bandwidth of 1. Consequently, the
maximum-possible total bandwidths achievable by the three
TCPs is 3. This number divided by the shared link’s band-
width (which is 1) is still 3. Therefore the CAB number for
the link is 3. We denote the link as a CAB = 3 link.

Figure 4:  (a) Input-buffered and (b) output-buffered
configurations where switch S1’s output links have
various Link_BW values smaller than 1. (Buff_Size =
960 for buffers A and B, Buff_Size = 50 for all the other
buffers; Win_Size = 16 kB; Link_RTT = 620 for the link
from S0 to S1; and Link_RTT = 10 for all other links.)

TCP1

TCP3

TCP8

[1/2]

[1/8]

[1/256]
S0 S1

TCP2 [1/4]

TCP1

TCP3

TCP8

[1/2]

[1/8]

[1/256]
S0 S1

TCP2 [1/4]

(a) Input-buffered:

(b) Output-buffered:

A

B

Figure 5:  Single-bottleneck CAB = 3 configuration.
The three competing TCPs sharing the link (S0, S1)
have no downstream congestions. The link is thus a
CAB = 3 link. (Buff_Size = 300; Win_Size = 16 kB;
and Link_RTT = 80 for all links.)

TCP1

TCP2

TCP3

[1]

[1]

[1]

CAB

S0 S1

= 3

Figure 5:  Single-bottleneck CAB = 3 configuration.
The three competing TCPs sharing the link (S0, S1)
have no downstream congestions. The link is thus a
CAB = 3 link. (Buff_Size = 300; Win_Size = 16 kB;
and Link_RTT = 80 for all links.)
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For Figure 6 (a), each TCP connection experiences two
bottlenecks, one at S0 and another one at S1. For example,
TCP1 competes with TCP2 and TCP3 at its output port of
switch S0, and also competes with other two TCPs at its
output of switch S1. After the (S0, S1) link, TCP1 competes
at S1 with the other two TCPs, and thus TCP1 can achieve a
bandwidth of at most [1/3]. The same is true for TCP2 and
TCP3. Thus the maximum possible aggregate bandwidth
that the three TCP connections can achieve is 1. Therefore,
the CAB number for the shared link (S0, S1) is 1.

For Figure 6 (b), each of the three TCP connections can
achieve a maximum downstream bandwidth of [1/2]. Thus,
the CAB number for the shared link (S0, S1) is 1.5. 

Figure 7 gives another example of links with CAB = 1,
involving a total of 12 TCP connections. This configuration
illustrates the point that a CAB = 1 configuration can arise
“naturally” with evenly distributed TCP connections. 

Note that the maximum bandwidth achievable on a link
is bound above by its CAB number. We define the utiliza-
tion of a link as follows. Let Y be the measured usage of the
link, and suppose that CAB number is λ. If the λ is equal or
greater than 1, then the link utilization is defined to be Y.
Otherwise, the link utilization is defined to be Y / λ. 

7.2 High Utilization under No Downstream 
Congestion

As mentioned earlier, high utilization of a link can
generally be expected under no or light downstream conges-
tion. An example is the “single-bottleneck” configuration of
Figure 5. For this configuration, each of the three competing

TCP connections over the bottleneck link experiences no
further congestion in other parts of the network. Thus, the
CAB number for the link has a high value of 3. Under this
situation, the TCP connections in aggregate will use the link
efficiently. For example, in this case they will achieve a
high utilization of 99.9%. 

Although achieving high utilization in aggregate, the
three TCP connections exhibit an oscillatory behavior, as
depicted by Figure 8. Each TCP will periodically time-out
for a lengthy period and resume later at a rate much higher
than 1/3. The three TCPs rarely transmit all at the same
time. TCP simulation results of this paper all exhibit this
oscillatory behavior, when ZQFC enhancements are not
applied to the link.

The high link utilization for the single-bottleneck
configuration of Figure 5 results from the fact that, at any
given time, at least one TCP connection can make good use
of the link bandwidth. Thus multiple TCP connections can,
in aggregate, achieve high utilization, although each of
them may operate in an oscillatory manner. 

We note that the oscillatory behavior of Figure 8 will
disappear after ZQFC is applied to the bottleneck link. Our
simulations have confirmed this, although because of space
limitation this result is not shown in this paper.

Figure 6:  Multi-bottleneck configurations where the
three TCPs are subject to congestion at both switch-
es: (a) CAB = 1 configuration, and (b) CAB = 1.5
configuration. (Buff_Size = 300; Win_Size = 16 kB;
and Link_RTT = 80 for all links.)

TCP1

TCP2

TCP3

[1/3]

[1/3]

[1/3]

CAB

S0 S1
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TCP1

TCP2

TCP3

[1/2]

[1/2]

[1/2]
S0 S1

(b)

= 1

CAB
= 1.5

Figure 7:  Multi-bottleneck CAB = 1 configuration,
with 12 TCP connections symmetrically distributed.
Switches S1, S2, S3 and S4 each have three TCPs
going to the other three switches. To avoid complicat-
ing the diagram, only those six TCPs from S2 and S3
are drawn. Since over the link between any two con-
necting switches there are three competing TCPs in
either direction, each TCP can get at most 1/3 of the
link bandwidth. Thus, each of these links has CAB =
1. (Buff_Size = 300; Win_Size = 16 kB; and Link_
RTT = 80 for all links.)

S0 S1

S2

S3

S4

CAB

CAB
=1

=1
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7.3 Network Performance as a Function of the 
CAB Number

Table 1 demonstrates that for Figures 5, 6, 7, and 9,
when ZQFC is not applied to the shared link (S0, S1), the
link utilization will decrease as its CAB number decreases.

Table 2 shows a similar result for the configuration of
Figure 9, assuming that the changes in the CAB number
result from increase in the bandwidth of the link (S0, S1).

8. Performance Improvement by ZQFC for 
Input-Buffered Switches

Consider the input-buffered configuration of Figure 4
(a). Recall from Section 6 that without ZQFC, the utiliza-
tion of the link (S0, S1) is only 18%. Suppose ZQFC is
applied to just the link (S0, S1). Then because of zero-
queueing, flows destined to slow links out from S1 will no
longer be able to occupy much of buffer X. This allows all
the TCPs to use the buffer fairly, and as a result, they no
longer time-out due to packet losses at the buffer. This
results in the high utilization of the link (S0, S1) at 90%, as
depicted in Table 3.

ZQFC can also improve fairness among competing
TCPs with different RTTs. Table 4 shows improved fairness
between two TCPs for the configuration of Figure 10 when
ZQFC is implemented in the link (S0, S1)

The results of Table 4 show that, without ZQFC, there
is a strong bias against connections with long end-to-end
RTTs. These results are consistent to similar results
published previously [2]. 

Case 
#

# 
TCPs

Network 
Config.

CAB 
#

 ZQFC 
on All 
Links

Without 
ZQFC

1 3 Fig. 6 (a) 1 99 33

2 3 Fig. 9 1 99 61

3 3 Fig. 6 (b) 1.5 99 75

4 3 Fig. 5 3 99 99

5 12 Fig. 7 1 99 60

Table 1:  Link utilization, in percentage (%), increases
with the CAB number of the link, for the configuration
of Figure 9. 

Figure 8:  Oscillatory behavior of the TCP connec-
tions of Figure 5.

1 second

Figure 9:  Multi-bottleneck CAB = 1 configuration,
which is similar to that of Figure 6 (a) or (b), but has
uneven downstream congestion. (Buff_Size = 300;
Win_Size = 16 kB; and Link_RTT = 80 for all links.)

TCP1

TCP2

TCP3

[1/6]

[1/3]

[1/2]

CAB

S0 S1

= 1

Case #
CAB 

#
Network 
Config.

ZQFC on 
All Links

Without
ZQFC

6 .5 Fig. 9 99 46

7 1 Fig. 9 99 61

8 2 Fig. 9 99 75

9 4 Fig. 9 99 84

10 8 Fig. 9 99 90

Table 2:  Link utilization, in percentage (%),
increases with the CAB number of the link, for the
configuration of Figure 9. 

Case 
#

# 
TCPs

Network 
Config.

CAB 
#

 ZQFC 
on one 

Link (S0, 
S1)

Without 
ZQFC 

11 2 Fig. 4 (a) 1 90 18

Table 3:  Utilization in percentage (%) for input-
buffered switches configuration of Figure 4 (a).



Page 8 of 9

9. Performance Improvement by ZQFC for 
Output-Buffered Switches

For output-buffered switches, ZQFC can improve
network performance for TCP traffic using the implementa-
tion described in Section 5.2. Table 1 summarizes perfor-
mance, with or without ZQFC, for configurations of Figures
6, 7, 5 and 9. Note that the performance improvements
resulting from ZQFC are significant when the CAB number
is 1 or near 1. 

For the configuration of Figure 9, we have also simu-
lated the case when ZQFC is implemented only on the link
(S0, S1) rather than all links. Table 5 summarizes utilization
improvement due to ZQFC in this case

10. Analysis of Performance Improvement by 
ZQFC for TCP Traffic

We provide explanations to the performance improve-
ments of ZQFC on TCP traffic, as demonstrated in the two
preceding sections. Recall that a TCP connection will keep
growing its congestion window as long as there are no
packet losses. At a congested gateway, a TCP connection,
independently of its actual transmission speed, can put its

maximum window worth of packets in the shared gateway
buffer. When this buffer is full, any new TCP connections
with small windows will easily time out when their packets
are dropped at the gateway [9]. This can result in low utili-
zation, unfairness and long delays. 

ZQFC will identify these offending TCPs whose
packets are occupying the buffer beyond their fair use, and
then clear their buffer occupancy by slowing down their
arrival rates at the buffer. Even if ZQFC is just applied to a
single link, the slowed down rates will force the offending
TCP to drop packets at the upstream node. As a result, after
a network RTT the TCP sender will reduce the congestion
window of the connection and slow down its transmission
speed, as desired. This is the reason why single-link or
single point ZQFC can work, as demonstrated in Tables 3, 4
and 5.

11. Concluding Remarks

ZQFC, as its name suggests, has the objective of
achieving zero queue-occupancy in the steady state. This
property enables ZQFC to solve a head-of-the-line blocking
problem that may arise when multiple VCs share the same
buffer in implementing their flow control. Consequently
ZQFC can allow for aggressive buffer over-subscription,
while achieving high link utilization and instant bandwidth
ramp-up for idle VCs.

The results of Sections 8 and 9 have demonstrated that
ZQFC can improve network performance for TCP traffic
substantially. The performance gain can be realized even if
ZQFC is applied only to a single link. 

Zero queueing in the steady state, in addition to the
benefits mentioned above, can also shorten the end-to-end
queueing delay, and make it predicable. This can be impor-
tant for real-time and interactive application programs. 

To be specific, this paper presented ZQFC and its
performance in the context of ATM networks. The basic
ideas of zero queueing are applicable to other networks. In a
future paper, we will describe an implementation of ZQFC
on an IP network.
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Appendix A. Simulator Used in This Paper
To study the performance of ZQFC and other related

methods, we have developed a “high-fidelity” simulator which
uses real-life TCP/IP implementations on real hosts. It is important
that we have a high degree of confidence on the correctness of the
simulator.

Our simulator architecture differs from traditional ones in
how it integrates the various simulation programs for the following
functions: 

1. Links with various delays and bandwidths. 

2. ATM switches which forward cells and implement
various ATM-layer protocols. 

3. Hosts that use TCP/IP protocol to send and receive
packets. 

4. Application programs that generate network traffic.

Unlike traditional approaches, our simulator architecture does
not combine parts 1, 2, 3 and 4 together to form a single complex
program. Instead, our simulator only combines 1 and 2 to form an
ATM network simulator. When 3, 4 and the ATM network simu-
lator run concurrently in a BSD UNIX environment, their execu-
tions together simulate an ATM network and generate network
traffic.

In fact, our network simulator need only simulate a network
of ATM switches (part 1 and 2). The required TCP/IP protocol
processing at hosts in a simulated ATM network is simulated by
the “real-life” TCP/IP code in the simulation host’s kernel by using

tunnel network interfaces found in most UNIX environments. A
tunnel network interface is no different from an Ethernet interface
except that it is a pseudo interface with no physical network
attached to it. Application programs used in the simulation system
are real-world applications, which can be existing or yet-to-be-
developed programs. An application program sends/receives its
data to/from the kernel for transmission/reception via the normal
socket system calls. The kernel, acting as any host in a simulated
ATM network, then uses selected protocols (e.g., TCP, UDP or IP)
to send/receive these data to/from the tunnel network interface
associated with a VC in an simulated ATM network. This applica-
tion program, thinking that its data is exchanged over a real phys-
ical network, never knows that its data is in fact exchanged over
the simulated ATM network. 

The architecture of our simulator is depicted in Figure 11. The

kernel part of our simulator is NetBSD 1.2_BETA, derived from
BSD 4.4, with the “Reno” version of the TCP/IP protocol code. 

Our network simulator is an ATM simulator [8], which has
been used extensively for more than a year in testing credit-based
flow control protocols over ATM networks, especially the QFC
scheme [1]. To emulate packet switching, we have implemented
EPD [12] on our simulator. 

Our application programs are two simple network programs
(stcp and rtcp), which are basically the TCP-sender and TCP-
receiver. The load generated by the TCP-sender is greedy, in the
sense that the TCP-sender always has data to send whenever it is
allowed to send under the TCP flow control. 

Figure 11:   Use of the tunnel network interface to
simulate a TCP connection in an ATM network. The
top and bottom rectangular boxes, with dash-line
boundaries, stand for an ATM network and simulator,
respectively.
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