
u

to
M
gl
n
h
m

 i
e
5

c
th
+
d
s

e
ed
n
h
l-
ir
s
th
 w
r
d

ch
n
D
n

C-3

y
a

he
he
ift
n

ne
DS
ks

 not
ble
uilt
nd

to-
ied
r
ld

the
ell
ces
e,
r

ter-
ce
f
ng

p
st
e,
DS
of

A PC-BASED ATM LINK DELAY SIMULATOR

Mark Gaynor, Brad Karp and H. T. Kung
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138, USA

email: {gaynor,karp,kung}@eecs.harvard.edu

Proc. 1998 Summer Computer Simulation
Conference (SCSCÕ98)
ATM, Propagation Delay, PCs, Test Equipment, Sim-
lators

ABSTRACT

We have implemented a low-cost, flexible, and easy-
use Link Delay Simulator (LDS) for OC-3 (155 Mbps) AT
links using a commodity Pentium PC equipped with a sin
PCI ATM host adapter. The LDS is a useful tool for studyi
the effects of varied link delays on protocol behavior. T
LDS demands 100% sustained, full-duplex bandwidth fro
the ATM host interface. This performance requirement
significantly greater than those of typical applications. Th
LDS cannot use the host interface in whole-packet (AAL
mode, essential for attaining sustained high-performan
on many host adapters. Our LDS implementation meets
bandwidth requirements of a full-duplex OC-3 link (300
Mbps over the PCI bus) by aggressively using burst-mo
DMA, large network buffers, device polling to reduce ho
CPU interrupts, and null cell buffering to obviate sched-
uling computations for preserving inter-cell spacing of th
delayed data. The contributions of this work are a detail
description of the LDS architecture and implementatio
and a discussion of host adapter architecture for hig
performance, real-time, network applications. Other rea
time systems also present streaming input, and requ
careful attention to buffer sizing, interrupt load on the ho
CPU, and bus performance; we offer a detailed study of
LDS as one such system. To show the utility of the LDS,
use it to validate othersÕ analytic predictions of TCP fai-
ness for competing flows in the presence of varying roun
trip delay.

1. INTRODUCTION

The ATM Link Delay Simulator (LDS) described in
this paper adds propagation delay to the ATM link on whi
it is installed, to allow control of link propagation delay i
network protocol experiments. Implemented on a NetBS
UNIX Pentium PC with an ATM adapter card, the LDS ca
-

e
g
e

s

)
e
e

e
t

,
-

e
t
e
e

-

add a delay between 1.5 and 500 milliseconds to an O
(155 Mbps) ATM link. The device is logically a fixed-delay
shift register for ATM cells, in the way shift registers dela
data paths in circuit designs. ATM links use SONET,
synchronous line protocol. Each 53-byte cell time at t
OC-3 rate, a cell arrives at and departs from the LDS. T
LDS passes each arriving cell through this fixed-delay sh
register before transmitting the cell further along the link o
which it is interposed.

While link delays can be achieved several ways, no
is as economical, flexible, or easy-to-manage as an L
made from commodity hardware. For example, actual lin
in real-world ATM WANs certainly provide propagation
delays, but are expensive, hard to manage, frequently do
exhibit reproducible behavior, and do not have adjusta
propagation delays. Other alternatives, such as custom-b
devices and spools of fiber, are often not cost-effective, a
require resources not widely available.

The purpose of this work is to create a flexible, easy-
use, and cost-effective research tool for studying var
propagation delaysÕ effects on network protocol perfo-
mance in a controlled laboratory setting. The tool shou
support a wide range of delays, and should not modify
delayed data in content, order of interleaving, or inter-c
spacing. Because our LDS design simultaneously sour
one OC-3 fiber and sinks another, it demands real-tim
high-bandwidth I/O, at over 300 Mbps. We meet this perfo-
mance requirement by aggressively using host-adap
mastered, burst-mode DMA, large network buffers, devi
polling to reduce host CPU interrupts, and null cell buf-
ering to obviate scheduling computations for preservi
inter-cell spacing through the delay.

The contributions of this work are a detailed descri-
tion of our LDS implementation and a discussion of ho
adapter architecture for high-performance, real-tim
network applications such as the LDS. We also use the L
to validate othersÕ analytic predictions of the effects
Page 1 of 11

s
ls)
rd
and
t a
rd

 as
an

es

C
s
r
ut
or
et
d

varying round-trip delay on competing TCPsÕ bandwidth
sharing.

2. OVERVIEW OF USING THE LDS

One typically uses the LDS in conjunction with an
ATM switch, by interposing it between two switch ports and
routing circuits to be delayed over this physical path, as
depicted in Figure 1.

Multiple instances of the LDS with ATM switches can
simulate more complex network configurations. Figure 2(a)
illustrates such a configuration. Host A in Massachusetts is
connected to Host C in California by a transcontinental
ATM/SONET link. Host A is also connected to Host B in
Japan via a satellite ATM circuit. Figure 2(b) shows how
two instances of the LDS and an ATM switch can simulate
this network configuration in a laboratory, with the proper
round-trip delays.

We have built several working prototypes of the LDS,
and use them to conduct network research experiments at
Harvard. These prototypes delay ATM circuits routed
through them without changing, reordering, or dropping any
data cells.

3. RELATED WORK

BBNÕs Long-Link Emulator (LLE) [1] works at the
SONET link protocol level, rather than the ATM layer. It is
built on a SPARC workstation with custom VME cards to
implement SONET. The range of delays supported by the
LLE is 0.41 microseconds to 826 milliseconds in 0.82-
microsecond (128-bit-time) increments. While the LLEÕs
delay is adjustable, the operation of the LLE link must be
disabled to change it; the LDS allows delay adjustment
during operation. The LLE is made from expensive, custom
hardware, and is special-purpose--its ATM interface cannot
be used as a conventional host adapter.

Carnegie-MellonÕs virtual port card [2] implement
delay and switch functions (such as flow control protoco
in commodity PC hardware. However, the virtual port ca
requires two host adapters (the LDS only requires one),
the virtual port card does not support full OC-3; it runs a
significantly reduced rate. Furthermore, the virtual port ca
does not preserve the time spacing of ATM data cells
they arrive on the link; because it discards null cells, it c
only approximate data cell spacing by transmitting bursts of
null cells to rate-match its input and output when it receiv
data at less than the link rate.

4. LDS HOST AND HOST ADAPTER
PLATFORMS

The prototype LDS runs on a 133 MHz Pentium P
with 32 MB of RAM and a Triton PCI chipset, and IntelÕ
OC-3 IJET PCI ATM host adapter. TritonÕs support fo
burst transfers is essential to high PCI throughput; witho
burst transfers, bus arbitration overhead cannot be am-
tized over multiple words. The earlier Neptune PCI chips
supported only single-word (32-bit) PCI transfers, an

Figure 1: A typical LDS configuration for experimenta
use. The solid arrows indicate the delayed path
through the LDS; the dashed line shows the non-de
layed path.

Host A

Host B

ATM Switch
LDS

PC Hardware

Normal Path

Delay Path

Delay

Figure 2: (a) A network configuration example; and (b)
simulated lab configuration using two instances of LDS
and an ATM switch. The VCI/VPI values of ATM cells
will pass through the LDS unchanged.

Host A
Host C

Host B

RTT = 240 ms

RTT = 55 ms

Transcontinental cable

California

Japan

Geostationary Satellite

(a)

Massachusetts

(b)

Host A

Host B Host C

LDS LDSATM Switch

55 ms delay240 ms delay
Page 2 of 11

n

en
ts
smit

5]
or
and
le,
ole
ry,
al
tto

tifi
ry.

T
re

st
aw
o
ia
n

se
hs
use

ion
cell
ells
ou
us
g
r-

e
ull
ry

in
are
ant.
 is
and
are
ive
uld
 in
ote,
t it
could not sustain sufficient bandwidth to sink one OC-3 link
rate TCP flow. (The LDS must maintain twice OC-3 band-
width across the PCI bus.) The LDS software runs in the
NetBSD UNIX 1.0 kernel, and is built on an IJET device
driver developed by Carnegie Mellon in collaboration with
Intel.

The IJET research prototype ATM host adapter, like
many other ATM host adapters, is optimized for processing
packets, i.e., AAL5 PDUs. This design choice makes sense
for typical host uses of ATM networks; high-bandwidth
flows generate and receive large packets (significantly
larger than 48-byte ATM cell payloads, with hundreds of
cells possible). Because ATM cells arrive very frequently at
the OC-3 rate (one arrives every 2.83 microseconds), the
host CPU should not be involved in per-cell processing;
rather, it must perform packet-level computations only.

The IJET controls AAL5 PDU segmentation and reas-
sembly with an ASIC, to keep per-cell work off the host
CPU. In addition, the IJET ASIC contains separate hard-
ware DMA engines to read data to be sent on the link from
host memory and write data received on the link to host
memory. There is no cell buffering on the IJET apart from a
small amount required to rate-match the OC-3 link with the
PCI bus; cell data are transferred to or from host memory
via DMA as they arrive or depart, respectively. While
network data are transferred to and from host memory
directly by DMA, the IJET keeps descriptors (pointers) to
these host memory buffers in a local control SRAM.

The IJET hardware demulitplexes the multiple VCs of
the inbound cell stream on the basis of cell VCI and VPI
values, and requires host applications enqueue data per-VC.
In typical operation, cells for different VCs will be received
interleaved on the ATM link. The IJET maintains a separate
host memory receive/reassembly buffer for each VC, and
appends inbound cells to that VCÕs current buffer via
DMA. Host receive buffers are obtained from a host buffer
free list, maintained in control memory on the IJET. When a
receive buffer becomes full or the end of the received PDU
is detected, the IJET optionally interrupts the host CPU to
report the bufferÕs filled status, and obtains a new, empty
receive buffer from the free list. Note that buffer full and
PDU complete are separately maskable interrupts. This
separation allows the host CPU to be notified of receive
DMA completion per-buffer, regardless of whether received
data are AAL5. It is the host CPUÕs responsibility to return
receive buffers to the receive free list.

The IJET associates a separate transmit queue with
each VC. A scheduling mechanism, not relevant to this
work, selects one VC per cell cycle. The IJET DMAs one
cellÕs worth of data (stored in host memory) from the head

of this VCÕs transmit buffer descriptor list (stored i
control memory) and transmits it on the ATM link. As with
receive operation, when a transmit buffer has be
exhausted (fully transmitted), the IJET optionally interrup
the host CPU so that the host CPU can reuse the tran
buffer.

Other ATM host adapters, such as DigitalÕs Otto [
for the TurboChannel and newly released Meteor [7] f
PCI, take somewhat different approaches to reassembly
buffer management than the IJET. The Otto, for examp
reassembles PDUs in local adapter memory, holds wh
PDUs which await transmission in local adapter memo
and DMAs whole PDUs between host memory and loc
adapter memory in single TurboChannel transfers. The O
also organizes receive and transmit completion event no-
cation buffers in a contiguous ring of physical host memo

It is what these ATM interfaces, others, and the IJE
have in common that is more noteworthy: namely, all a
optimized for AAL5 operation, and demultiplex the
received ATM cell stream into separate, per-VC, ho
memory buffers. These ATM interfaces also support a r
cell mode, in which a VC can be identified as non-AAL5, s
that for that VC, individual cells are sent and received v
DMA, and interrupts on receive and transmit completio
per-cell are generated. As one would expect, the
commodity ATM interfaces cannot sustain high bandwidt
in raw cell mode when these interrupts are enabled, beca
these interrupts violate the Òper-packet-onlyÓ computat
requirement at the host CPU, and thus saturate it. Raw
mode is a data formatting concern, which dictates that c
be buffered with header and payload both. The IJET dec-
ples raw cell mode from interrupt frequency, and can th
transfer raw cells to and from buffers while only generatin
interrupts once every buffer completion, or never, if pe
buffer interrupts are disabled.

5. LDS ARCHITECTURE

The overall structure of the LDS is quite simple. Th
IJET receives cells as they arrive on the link (including n
cells) at the OC-3 line rate, stores them in host memo
without demultiplexing them per-VC, and transmits them
the same order. As the transmit and receive link rates
equal, the buffer usage in host memory remains const
Spacing of data cells due to idle time on the receive link
precisely preserved, because null cells are stored
delayed. Other approaches to preserving cell spacing
possible, but not as accurate; for example, multi-cell rece
buffers could be time-stamped, and these time stamps co
be used to schedule full receive buffers for transmission
an attempt to preserve the spacing of received data. N
however, that such a scheme would be imprecise in tha
Page 3 of 11

c
e

able
 in
S.

ost
on
ot
te-
ill
se
Õs
ng
a

nd
nd

DS
Õs

fi

e
mit

ich
a

nd
 1.5

t
ch

ost
e,
for
nd
on

ed
 in

o,
quantizes receipt times to buffer boundaries (i.e., timings of
cell receipts within a buffer are lost). Scheduling on the
basis of time stamps would complicate our implementation,
and further increase host CPU overhead. While our design
consumes a great deal of PCI bus bandwidth, it consumes
no more than the timestamp design would in the worst case
(all back-to-back data cells received with no null cells), and
we meet this PCI bandwidth requirement.

For VCs in raw mode, the IJET does not transfer only
cell payloads to and from host memory on receive and
transmit (as in AAL5 operation); it transfers whole cells,
headers included. Thus, if the IJET is made to do no per-VC
demultiplexing, and instead views all arriving cells as logi-
cally corresponding to the same, raw-mode VC, it will
stream all received cells into a single chain of receive
buffers in host memory. Each receive buffer will be full of
cells exactly as they arrived on the link. It is then a simple
matter to Òturn aroundÓ these full receive buffers in FIFO
order, by appending them to a queue of transmit buffers for
a single, raw-mode transmit VC.

Because the single transmit VC is scheduled for
transmit at the OC-3 link rate, and cells are appended to that
VCÕs transmit queue in complete receive buffers at the
OC-3 link rate, the length of the transmit queue should not
change, and determines the delay added by the LDS.

To initialize the LDS, we disable the IJETÕs cell trans-
mitter, and enqueue as many null cells for transmit on the
single, raw-mode VC as required by the desired delay. We
then enable cell receipt on the single, non-demultiplexed,
raw-mode VC, and immediately enable the IJETÕs cell
transmitter. All that is required of the CPU during LDS
operation is the per-buffer append operation for completed
receive and transmit buffers, described above.

After carefully tuning our system, we found that this
approach indeed results in a constant queue length for the
single, raw-mode VCÕs transmit queue when the LDS is
run in UNIXÕs single-user mode with 177-cell or larger
buffers. The overheads of taking interrupts on the host CPU
for receive buffer completion, linking these buffers onto the
transmit queue, and other (non-LDS) PCI bus activity do
not prevent the system from meeting the real-time, OC-3
transmit and receive constraints under these operating
parameters. If there were a rate mismatch between transmit
and receive, this transmit queue length would not remain
constant; if cells were dropped on receive due to resource
limitations in the LDS, the transmit queue would shrink,
while this queue would lengthen if the IJET failed to
transmit cells at the link rate.

In multi-user mode, however, the transmit queue length
changes by a single bufferÕs worth of cells once every

several hours even with large, 354-cell buffers. We conje-
ture that transient resource limitation in the LDS is th
cause of such changes. If the PCI bus becomes unavail
long enough to cause overrun in the rate-matching FIFO
the IJET receive path, a cell will be dropped by the LD
Transmit DMA is strictly lower priority than receive DMA,
by design--data queued for transmit are buffered in h
memory, and not dropped when transmit DMA is starved
the PCI bus. Thus, if transmit DMA on the IJET cann
transfer a whole cellÕs data in less than a transmit ra
matching FIFOÕs worth of time, the transmit queue w
grow by a single cell. Over time, multiple instances of the
single-cell events can cause a change of a full buffer
length in the transmit queue. In the interest of maintaini
the desired delay in the face of such low-frequency fluctu-
tions in multi-user mode operation, the LDS monitors a
adjusts the number of buffers on the transmit queue a
adds or deletes a buffer full of cells as needed. The L
adjusts the delay at the buffer level because the system
software can only monitor the transmit queue length ef-
ciently at a buffer granularity; finer monitoring would
require cell-level computations, which are intractable. W
continue an investigation of the exact cause of the trans
queue length variation in multi-user mode.

There are limits to the delay range and precision, wh
we explore in detail in Section 9 and Section 10. To summ-
rize, the LDS allows delay adjustment in 500-microseco
increments, and our prototype supports delays between
and 500 milliseconds.

6. DISTINGUISHING REQUIREMENTS
OF THE LDS

As we note earlier, the LDS is an atypical ATM hos
adapter application. The requirements of the LDS whi
distinguish it as atypical include:

¥ 100-percent receive and transmit duty cycle: The
real-time nature of the LDS design requires that the h
adapter maintain full, OC-3 rate transmit and receiv
averaged over a short interval (25 microseconds
transmit and 50 microseconds for receive), beyo
which the rate-matching receive and transmit FIFOs
the IJET overflow or run dry, respectively. Typical ATM
applications do not approach this 300+ Mbps sustain
bandwidth requirement; they send and receive data
either lower bit-rate streams (e.g., video or voice) or in
short bursts at (or below) the link rate (e.g., distributed
simulation, or web browsing). Many, including all appli-
cations which use TCP and real-time voice and vide
tolerate data drops, unlike the LDS.
Page 4 of 11

he
re
ft
nts

A
ry

of
us
e-
n
d

g
st
U
it
er

ust

ll-
r

ign,
d
he
-

s
if

w,
o

 for
s
c

 a
nd
le

bit
or
ich
 to
to
s
K

¥ Lack of per-VC cell demultiplexing: The LDS must
preserve the precise interleaving of cells it receives by
storing them contiguously in host memory. Cells from
different VCs must all be transferred to the same receive
buffers. In typical ATM applications, separate VCs rep-
resent logically distinct connections, each of which has
a separate receive buffer in host memory, and each of
which is owned by a distinct application (or protocol in
the operating system kernel).

¥ Receipt of null cells: The LDS preserves the spacing of
cells which arrive on the receive fiber by storing the null
cells which arrive on the fiber between non-back-to-
back data cells; because SONET is a synchronous phys-
ical link protocol, idle slots on the link are filled with
these null cells. Host adapters in normal operation drop
null cells without even considering them for reassembly
or DMA to the host, because these cells arrive at a
potentially great rate and normally contain no useful
information.

¥ Receipt of cells with headers: The LDS must store
cells with their headers, so that it can forward them to
the next switch with their header information (including
VCI and VPI values) intact. Because typical ATM appli-
cations see data at the PDU (packet) level, cell headers
are normally irrelevant to host software, and are there-
fore discarded without being transferred to host mem-
ory.

¥ Exact receive/transmit clock synchronization: The
LDS relies very heavily on the equality of the host
adapterÕs receive and transmit rates. Even an extremely
small difference in these rates could result in a progres-
sive lengthening or shortening of the delay over time.
But the LDS must keep the delay constant over indefi-
nitely long periods. A host adapter in normal operation
recovers its receive clock from the receive data stream,
but uses a local crystal to generate its transmit clock.
Even a tiny difference between the frequency of the
crystal used for transmit clock generation upstream of
the LDS and the crystal on the LDSÕ host adapter,
within tolerances of crystals, will be a problem.

7. DESIGN FEATURES OF THE LDS

The above properties of the LDS require a substantially
different configuration of the ATM host adapter than is
typical. Indeed, the required configuration is potentially
outside the normal parameter range which yields high
performance for transmit and receive, as adapter designers
optimize their designs for the most common application
usage patterns.

An examination of how the unusual requirements of t
LDS we list above interact with host adapter architectu
and system software is instructive. Our prototype, its so-
ware, and its IJET hardware meet these LDS requireme
as follows:

¥ Large DMA burst size: The Triton PCI chipset and
IJET DMA engines make good use of burst-mode DM
operations for transfer of cells between host memo
and the ATM link. Burst mode amortizes the latency
PCI bus arbitration over a multi-word transfer, and th
yields significantly greater bus bandwidth than singl
word transfers. Burst mode DMA is essential to attai-
ing the LDSÕ required 300+ Mbps average bus ban-
width.

¥ Pipeline and DMA engine designed for single-cell
DMAs: The IJET does not buffer full AAL5 PDUs
locally for reassembly; rather, it DMAs each arrivin
cell into the appropriate VCÕs reassembly buffer in ho
memory. This design feature reduces latency of PD
delivery to system software and applications, but
requires aggressive pipelining on the IJET. Consid
that each cell time (2.83 microseconds), the IJET m
be prepared to identify two different VC data buffers
(one for transmit, one for receive) and begin two ce
sized DMAs (again, one for transmit, the other fo
receive). In a local reassembly and segmentation des
such as DigitalÕs Otto, DMA operations are performe
much less frequently, at the PDU level. Because t
design of the IJET does not rely on infrequent, PDU
sized DMAs to maintain the link rate, the LDS can su-
tain full-duplex OC-3 even without PDU reassembly
large buffers are used to accumulate the raw cells.

¥ Raw cell receive and transmit: The IJET permits each
logical transmit and receive VC to be tagged as ra
includes cell headers in DMA operations for VCs s
tagged, and does not compute AAL5 CRCs or search
end-of-PDU bits for them. By marking the single tran-
mit and receive VCs used in the LDS as raw, we su-
cessfully preserve delayed cellsÕ headers.

¥ VCI demultiplexing masking: For every cell received,
the IJET must map the cellÕs VCI and VPI fields to
receive buffer. Because the space of possible VCIs a
VPIs is so large (24 bits), the IJET uses a configurab
subset of the VCI and VPI bits to generate a 10-
index. This smaller index is used to look up VC state f
receive processing. We use the mask register wh
selects the VCI and VPI bits used in index generation
map all cells whose 10 low-order VCI bits are zero
the same 10-bit index, with the result that the IJET doe
not demultiplex cells which arrive on the remaining 16
Page 5 of 11

ng
er
er
fer

the
e
 it
ta

 of

r
her
ven
rk
tem
 to
te
M
ter
ut

alty
ard
m

ore
nces
m.
us
ela
ry
DS
e.
st

ict
s
ed
rs
 a
e
e
er
ital
r at
i
he
o a
VCI/VPI values1. Thus, we meet the LDSÕ requirement
that cells for all delayed VCs be kept in order, without
being demultiplexed.

¥ Null cell preservation: The SUNI Lite SONET chip on
the IJET discards null cells by default, but we configure
it to pass null cells to the IJETÕs reassembly and DMA
hardware. Thus, we meet the LDSÕ requirement that
null cells be preserved in the cell stream for conserva-
tion of data cell spacing across the delay.

¥ Allocation of large blocks of contiguous physical
memory: The virtual memory implementation in Net-
BSD UNIX only guarantees physical contiguity within
pages. Thus, it does not directly support allocation of
physically contiguous regions more than 4K (the Pen-
tium virtual memory page size) in size. Because the
IJET generates one interrupt per filled receive buffer,
and because the maximum delay will be determined by
the total amount of data that can be queued for transmit,
we need to allocate large receive buffers. But the IJET
requires physically contiguous buffers, as it is unaware
of virtual-to-physical address translation. To permit
allocation of large (20K), physically contiguous receive
buffers, we modified NetBSD UNIXÕs virtual memory
system to support allocation of physically contiguous
regions larger than the system page size.

¥ Host CPU decoupling: The host CPU in the LDS never
touches cell data--a luxury unavailable to most network
applications. The decoupling of buffer data and manage-
ment for the IJET keeps the host CPU out of the high-
bandwidth data path.

¥ Polling to reduce interrupt count: The LDS config-
ures the IJET to deliver receive complete interrupts. But
because the LDS should retire one transmit buffer for
every filled receive buffer (from the equality of the
transmit and receive rates, on average), notification of
transmit buffer completion by interrupt from the IJET is
unnecessary. Instead, our software disables the transmit
complete interrupt, and polls the IJET for completely
transmitted buffers once per filled receive buffer. The
LDS software also implements the common optimiza-
tion of polling the receive complete queue before return-
ing from a receive interrupt context, to reduce the

number of interrupts taken by the host CPU. The polli
done by our software reduces the frequency of int-
rupts, long-latency operations on the Pentium, and p-
mits the host CPU to keep pace with the required buf
management.

¥ Receive-to-transmit SONET clock loopback: To
ensure that the transmit clock and receive clock on
IJET are perfectly synchronized, we configure th
IJETÕs SUNI chip to loop back the receive data clock
recovers by phase-locked loop to drive its own da
transmission. Thus, we meet the LDSÕ requirement
exact transmit and receive clock rate matching.

8. DISCUSSION OF HOST BUFFER
SYSTEM DESIGN

While our software and the IJET delivered the perfo-
mance the LDS required, we note that there are furt
aspects of host adapter architecture which could yield e
further reduced overhead for demanding, real-time netwo
systems such as the LDS. One such area is buffer sys
design. Recall that the IJETÕs buffer descriptors (used
link host memory buffers into a free list, a receive comple
queue, or a per-VC transmit queue) are stored in SRA
local to the IJET. Both the host CPU and the host adap
hardware must manipulate these buffer descriptors. B
either the host CPU or the host adapter must pay a pen
for accessing them, because the CPU or the adapter h-
ware must be on the Òwrong sideÓ of the PCI bus fro
them. The IJET design makes the buffer descriptors m
readily accessible to the adapter hardware, and sente
the host CPU to programmed I/O in order to access the
This is not the optimal choice; the host CPU is a precio
resource, whereas the host adapter hardware can poll r-
tively easily. Putting the buffer descriptors in host memo
would reduce the host CPU overhead incurred by the L
for moving each full receive buffer to the transmit queu
Digital adopts just this strategy in its designs of Fa
Ethernet host adapters [6].

The LDS always processes received buffers in str
FIFO order. This behavior is not the norm; UNIX IP driver
have no knowledge of when and in what order receiv
buffers will be consumed by applications. These drive
must return buffer descriptors to the host interface with
different host buffer pointer, to prevent overwriting of th
newly filled physical buffer before its contents ar
consumed by the destination application. When buff
descriptors are stored in a ring, as they are on the Dig
Otto, the standard IP driver must both point the descripto
a new physical buffer and flip a bit in the descriptor ind-
cating its availability to the host adapter. On the Otto, t
LDS would never need to assign a new physical buffer t

1 Our initial scheme for avoiding demultiplexing did not limit the number
of VCs that could be delayed. It identified all VCI and VPI values as Òout-
of-rangeÓ, and relied on the IJET to map them to a defined logical VC for
out-of-range cells. Unfortunately, the error path in the hardware could not
perform this mapping at the link rate for back-to-back cells, and we aban-
doned this scheme for the one we present above. The abandoned scheme
bears mention as an example of the real-time failure of host adapter hard-
ware at the boundary of its design (link rate).
Page 6 of 11

s
e
r

per

ed
s
he
ro

s
re

m
fer
 to
 a

ee

of
of
e
al
s

es
 32-
hat
a

I
PU
g

ch.
for
gs

ent
ds
not
the
d,
 the
s

ur
Õs
receive descriptor, because the same physical bufferÕs
contents will always be transmitted before that descriptor
comes up for re-use in the ring. Ensuring this property is a
matter of allocating more receive descriptors than the delay
duration. Thus, the LDS would only need to flip the avail-
able bit on the descriptor in a single programmed I/O to
return it to a ring of buffer descriptors like the OttoÕs. To
return a receive buffer descriptor to the IJET, the LDS must
read the tail pointer of the receive buffer descriptor list, set
the next pointer of that tail descriptor to the appended
descriptorÕs address, and set the next pointer of the newly
appended descriptor to NULL. These operations take three
programmed I/Os.

9. PCI AND INTERRUPT
PERFORMANCE

In this section, we present a description and timing
measurements of the work performed by the LDS when
receiving a buffer full of raw cells, appending it to the
IJETÕs transmit list, and recycling a fully transmitted
buffer onto the free list. This information will be used in
Section 10 to explain the LDSÕ performance limitations.
For each filled receive buffer, the LDS performs the
following work:

¥ DMA of received and transmitted cells between host
memory and IJET over PCI: Receive DMA occurs as
cells arrive, and competes for the PCI bus with ATM
transmit DMA. Both DMAs require OC-3 throughput,
and compete in turn with all other PCI devices in the
system (including a display adapter and disk controller).
Bus contention and efficiency of the IJETÕs DMA
implementation determine the throughput of these DMA
operations.

¥ Change-of-buffer in the IJET: The IJET must obtain
an empty receive buffer descriptor from its free list in
time to continue DMA without interruption after filling
the last cell of a receive buffer. If the latency of this
operation exceeds the time required to fill a buffer
(dependent on buffer size), or if the operation is not
begun far enough in advance of filling the current
receive buffer for any reason, the IJET will drop incom-
ing cells until its ASIC obtains the new buffer descrip-
tor.

¥ Interrupt to the host CPU: The IJET interrupts the
host CPU once for every receive buffer fill event. If the
kernel is already in the IJETÕs interrupt handler, the
interrupt handler finds newly filled buffers by polling
for them before returning. The latency of an interrupt on
the Pentium varies widely depending upon the processor
context at the time of the interrupt. The load on the host

CPU from interrupts is determined by buffer size, a
receive buffers fill at the OC-3 rate. Interrupt load on th
host CPU is also determined by the interleaving of inte-
rupts; it is possible to average less than one interrupt
buffer if many buffer fill events occur while the IJET
interrupt handler is already active.

¥ Reading identity and contents of receive buffer
descriptor across PCI bus: In the receive interrupt han-
dler, the host CPU reads the identity of the complet
receive buffer and a few fields from the bufferÕ
descriptor from the IJETÕs control memory, across t
PCI bus. These small reads are rather inefficient p-
grammed I/O across a busy bus.

¥ Writing and appending of receive buffer descriptor
across PCI bus: The host CPU must modify a few
fields in the buffer descriptor to prepare it for the tran-
mit queue, and link it there. These small writes, too, a
programmed I/O across the busy PCI bus.

¥ Processing completed transmit buffers across PCI
bus: The host CPU must read the IJETÕs control me-
ory across the PCI bus to determine whether buf
descriptors for transmitted buffers need to be returned
the IJETÕs transmit free list. The process for returning
completed transmit buffer descriptor to the transmit fr
list involves a few writes across the PCI bus.

Noteworthy in the above itemized list is the amount
host CPU programmed I/O required by the placement
buffer descriptors in SRAM on the IJET; we mention th
trade-offs of this placement decision in Section 8. A typic
interrupt in LDS operation occurs after a single bufferÕ
worth of cells is received and a single buffer complet
transmission, and requires a total of 8 32-bit reads and 8
bit writes by the host CPU across the PCI bus. We find t
over 99% of all interrupts generated by the IJET in
running LDS fall into this category.

In Table 1 we show the time required for PC
programmed I/O reads and writes, and the total host C
execution time required for buffer processing, not includin
hardware interrupt latency and software interrupt dispat
We made these measurements with the Pentium per-
mance counters [8]. We make single read and write timin
after warming the instruction cache with the measurem
code, and with all interrupts disabled. These single rea
and writes are to and from CPU registers, and so are
distorted by main memory access times. The timings of
IJET interrupt routine are not instruction-cache-warme
and are made under the usual interrupt masks set by
IJET device driver. Thus, our programmed I/O timing
reflect only variation caused by PCI bus activity, while o
interrupt routine timings measure the whole system
Page 7 of 11

on
The
it
 the
e

behavior, including the PCI bus, interrupts, and the CPUÕs
caches.

The data in Table 1 show that programmed I/O does not
significantly limit the performance of the LDS; the average
total cost per-interrupt of programmed I/O to IJET registers
and memory is 1,392 CPU cycles. Buffering of PCI bus
writes by the Triton PCI chipset reduces the best-case host
CPU PCI write latency to only 8 cycles, whereas unbuf-
fered, non-cached reads take a minimum of 59 cycles. As
the PCI bus runs at 33 MHz, the ratio of clock cycles to PCI
cycles in our measurement machine is 4:1. Histograms of
the frequencies of ranges of per-read and per-write times for
programmed I/O in Figures 3(a) and (b) reveal that most of
these operationsÕ durations are distributed more closely to
their minima than their maxima.

On average, the LDS interrupt handler consumes 3,754
cycles per interrupt. With 354-cell buffers, approximately
1,000 IJET interrupts occur per second, and so the handler
consumes 4% of the available 133 MHz CPU cycles. Note
that these measurements neglect hardware interrupt latency
and operating system interrupt dispatch latency, both of
which can sum to hundreds of clock cycles [9]. Even if we
included hardware interrupt latency and kernel interrupt
dispatch, the worst-case several hundred additional cycles
per interrupt would still not come close to saturating the
host CPU. Thus, PCI bus contention or the cost of per-
buffer operations on the IJET board itself are the remaining
plausible bottlenecks in the LDS. We are measuring the PCI
bus activity of a running LDS with a logic analyzer to deter-
mine the degree of PCI bus contention in the system.

10. LDS DELAY BOUNDS AND
GRANULARITY

The user-configurable size of the buffers in which the
IJET stores incoming ATM cells determines the granularity
at which the delay may be specified, and the frequency of
interrupts to the host CPU (one per completed receive
buffer). Our system reliably sustains the OC-3 rate with
177-cell (about 500-microsecond) to 1,236-cell (maximum
length supported by the IJET hardware) buffers. The default
LDS buffer size is 354 cells (1 ms of data at OC-3). For

shorter buffers, the interrupt rate and bus contenti
increase. Bus contention can cause cell drops two ways.
IJET receive rate-matching FIFO will drop cells when
becomes overrun after the bus has been unavailable to
IJET receive DMA engine for 50 microseconds. Mor

Samples Mean Minimum Maximum Variance

32-bit PCI PIO Read 5,144 140 59 699 0.06

32-bit PCI PIO Write 5,066 34 8 457 0.13

IJET Interrupt Routine 5,057 3,754 2,831 9,005 3,774

Table 1: PCI access and interrupt timings (in 133 MHz cycles) for 354-cell buffers (1 ms at OC-3).

Figure 3: (a) Histogram of 32-bit programmed I/O PC
read times; (b) Histogram of 32-bit programmed I/O
PCI write times. All are for 354-cell buffers.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-32 8 48 88 128 168 208 248 288 328 368 408 448 488 528 568 608 648 688 728 768 808

32
-b

it
P

C
I P

IO
 R

ea
d

E
xe

c.
 T

im
e

F
re

qu
en

cy

CPU Cycles (133 MHz)

0

500

1000

1500

2000

2500

3000

3500

4000

-32 8 48 88 128 168 208 248 288 328 368 408 448 488 528 568 608 648 688 728 768 808

32
-b

it
P

C
I P

IO
 W

rit
e

E
xe

c.
 T

im
e

F
re

qu
en

cy

CPU Cycles (133 MHz)

(a)

(b)
Page 8 of 11

ng
der

DS.
pli
 all
nel
ps

e-
time
ffer
 the
nce
P
d
the
se
on
nce
he
e

 of
dd
th

l
nt
for
 it
es
-trip
 to
ur
 by
 the
i

3

e
CP
ns
S
f

subtly, our software must drop entire cell buffers when the
IJET transmit rate matching FIFO (lower priority for DMA
than the receive DMA engine by design) repeatedly under-
flows because of PCI bus unavailability--otherwise, the
delay would grow as transmit averaged a lesser long-term
rate than receive.

The upper delay bound is determined by two
constraints. First, host memory size minus operating system
overhead limits the quantity of data that can be buffered.
This limitation is not very restrictive; our prototype, 32 MB
LDS allocates 12 MB of contiguous physical memory at the
end of core, sufficient to buffer about 0.75 seconds of data
at OC-3. The second constraint, the quantity of SRAM for
buffer descriptors, is not very restrictive either; over 30,000
descriptors fit in the IJETÕs SRAM. While our prototype
has large physical memory and buffer descriptor SRAM,
there is a trade-off in any design similar to ours: small
buffers offer maximal delay precision, but large buffers
offer maximal delay length. Maximizing one reduces the
other, for fixed physical memory and buffer descriptor
SRAM. Our LDS uses one-millisecond buffers, and weÕve
tested it with up to 500 such buffers. Longer delays (with
larger and/or more numerous buffers) are possible.

We conjecture that some combination of PCI bus
contention and limited processing for change-of-buffer
operations on the IJET, both of which would limit the buffer
processing rate of the system, determines the minimal
buffer size at which the LDS can sustain full-duplex OC-3.
The shortest delay the LDS can create depends on the
systemÕs minimum transmit queue length in cells. The
transmit queue length can be shortened both by making host
buffers smaller and by enqueueing fewer of them before
enabling the IJET transmitter. When the delay is long, the
worst-case latency between the filling of a receive buffer
and its linking onto the transmit queue need only be shorter
than the total delay, so long as the average rate of appends
remains equal to the OC-3 link rate. However, when the
delay is very short, the worst-case latency between receive
completion and append becomes a bottleneck, as there is a
danger that the transmit queue can run dry. When we run the
LDS with 177-cell buffers in UNIXÕs single-user mode,
the smallest delay attainable is 1.5 milliseconds.

11. MEASUREMENT OF LDS INDUCED
DELAY

We show that the LDS meets two important correctness
criteria: that it does not drop ATM cells, and that it produces
a consistent delay.

We have verified that the LDS does not drop cells by
sending UDP and TCP packets through it at rates between a

few bytes per second and the link rate. The receivi
systemÕs kernel counters reveal no bad packet hea
checksums, so no partial packets were dropped by the L
For whole packets, in the case of UDP, we measured ap-
cation-level, per-packet sequence numbers to ensure
packets were delivered; for TCP, the senderÕs ker
retransmission counters verified that no packet dro
occurred.

To measure the delay introduced by the LDS, we tim
stamp UDP packets on a sending system, reflect these
stamps to the sender at the receiver, and compute the di-
ence between the time a reflected time stamp arrives at
sender and the received time stampÕs value. This differe
represents the round-trip time experienced by the UD
packet, including the LDS, link delay, switch delays, an
end-system hardware and software delays. To isolate
delay contributed by the LDS, we simply repeat the
measurements both with and without the LDS installed
the path between receiver and sender. The differe
between the average round-trip time with and without t
LDS in the loop is the delay introduced by the LDS. Th
variance in round-trip times with the LDS installed and
without it installed hovers at 35 microseconds for delays
1.5 milliseconds and greater, so the LDS does not a
measurable variance to the round-trip time of the pa
between end systems.

12. EXAMPLE USE OF THE LDS

To demonstrate the utility of the LDS in protoco
behavior studies with real implementations, we prese
empirical measurements of TCPÕs fairness behavior
competing TCPs with varying round-trip delays. Because
permits controlled generation of delays, the LDS mak
such measurements possible over a wide range of round
times, while most such work in the past has been limited
analytical models and simulations. In this case, o
measurements closely match those predicted analytically
Floyd in [3]. These results demonstrate the usefulness of
LDS for creating different network topologies for exper-
mentation in a laboratory.

12.1. Measurement Configuration

Our configuration, shown in Figure 4, consists of 4 13
MHz DEC Alpha 3000/400 hosts, a Fore ASX-200BX ATM
switch, a Harvard-Nortel CreditNet ATM switch, and th
LDS. Each of two senders opens a single, greedy T
connection to one of two receivers, and the two connectio
share a bottleneck link. The CreditNet switch links the LD
into the first TCP connection, permitting adjustment o
Page 9 of 11

hile
Õs
he
fer
tic

two
ity
the
in
 in
nk
o
ost
ng
long-tcpÕs RTT. The RTT of short-tcp is roughly one milli-
second.

We adjust the RTT of long-tcp between one and 20
milliseconds, and compare the bandwidths achieved by
long-tcp and short-tcp. Our measurements use 64K TCP
windows (the norm in 4.4-derived, Reno TCP) and 9180-
byte packets (the IP MTU for ATM). The bottleneck on the
Fore switch has a 1,200-cell buffer and applies EPD [4]
(Early Packet Discard) with a threshold of 1,000 cells. It is
conjectured in the network research community that EPD
gives ATM switches packet dropping behavior similar to
that of drop-tail packet routers. With 64K windows, this
switch buffer size is about half the sum of the combined
TCP windows.

12.2. Measurement Results

Figure 5 shows link goodput of long-tcp and short-tcp
as a function of the ratio between their RTTs. Our measure-
ment of goodput is the percentage of link capacity (133
Mbps after allowing for SONET, ATM headers, and IP and
TCP header overhead with 9180-byte packets) received at
the application level on a receiving host. Our data points
represent mean values among at least three repeated
measurements, and each of the three or more repetitions
varied no more than ten percent from the mean. The two
lines together show the fairness of the bandwidth allocation
between the two TCPs on the bottleneck link. Note the bias
in favor of short-tcp, the connection with the shorter RTT, as
the ratio between the two connectionsÕ RTTs grows.

Figure 6 depicts the same bandwidth sharing compar-
ison, but as predicted by FloydÕs analytical model. Note
that FloydÕs model predicts throughput, while we measure
goodput; because we observed few retransmissions in our

measurements, the two are nearly equal in this case. W
the overall trend between our empirical results and Floyd
analytical ones is the same--greater bandwidth for t
connection with the shorter RTT--our measurements dif
at the boundary cases where the RTT ratio is least. In par-
ular, our measurements suggest similar goodput for the
connections in this region. We conjecture that this dispar
may be caused by buffering in the end systems for
shorter RTT connection (typically 1 or 2 packetsÕ worth
the device driver and socket buffer at any instant, where
this case a packet is a full millisecond of data at the li
rate). This buffering effectively narrows the RTT rati
between long-tcp and short-tcp, and the narrowing is m
significant at the smallest RTT ratios. We are investigati
the cause of the difference.

Figure 4: Configuration with two TCPs competing ove
a 2:1 bottleneck. All links are OC-3.

LDS

Fore ATM Switch

Variable Delay
long-tcp
short-tcp

bottleneck

Host 2

CreditNet ATM Switch

Host 1

Host 4Host 3
0

20

40

60

80

100

5 10 15 20

%
 G

oo
dp

ut

RTT ratio

short-tcp
long-tcp

Figure 5: Measured Goodput vs. RTT Ratio.

0

20

40

60

80

100

5 10 15 20

%
 T

hr
ou

gh
pu

t

RTT ratio

short-tcp
long-tcp

Figure 6: Predicted Throughput vs. RTT Ratio.
Page 10 of 11

r,

l

g
e,
ple
13. CONCLUSIONS

We have presented an ATM link delay simulator (LDS),
built from commodity PC hardware, that supports delays
between 1.5 and 500 milliseconds for OC-3 ATM links. The
LDS architecture preserves the precise ordering and spacing
of delayed data cells by avoiding per-VC demultiplexing
and by buffering null cells. This architecture requires 100-
percent duty cycle, full-duplex OC-3 from the PCI ATM
host adapter, at a total PCI bandwidth of over 300 Mbps. We
meet this significant bandwidth requirement in our system
by using DMA, tuning DMA buffer sizes, excluding the
host CPU from the cell data path, and avoiding all cell or
buffer scheduling computations on the host CPU. As a non-
standard, high-performance ATM end system application,
the LDS identifies host adapter design features important
for application flexibility and performance, demonstrates
the feasibility of such applications on hardware of moderate
cost, and illuminates whole-system (hardware and software)
ATM performance tuning. Other real-time systems also
present streaming input, and require careful attention to
buffer sizing, interrupt load on the host CPU, and bus
performance; we have offered a detailed study of the LDS
as one such system. We also have shown the value of the
LDS for measuring real behavior of protocol implementa-
tions in the face of varying propagation delays.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Depart-
ment of Energy under Grant No. DE-EG02-95ER25272,
and in part by Intel Corporation.

REFERENCES

[1] Milliken, W., The Long-Link Emulator System Description,
White Paper -- Advanced Networking Department, BBN
Systems and Technologies, September, 1993.

[2] Kosak, C., Eckhardt, D., Mummert, T., Steenkiste, P., and
Fisher, A., Buffer Management and Flow Control in the
Credit Net ATM Host Interface, Proceedings of IEEE
INFOCOM Õ97, Kobe, Japan.

[3] Floyd, S., Connections with Multiple Congested Gateways
in Packet-Switched Networks Part 1: One-way Traffic, ACM
Computer Communication Review, 21(5):30-47, October,
1991.

[4] Romanow, A. and Floyd, S., Dynamics of TCP Traffic over
ATM Networks, IEEE Journal on Selected Areas in Commu-
nications, 13(4), 1995.

[5] Digital Equipment Corporation, Otto ATM Interface Device
Driver Source Code, ftp://gatekeeper.dec.com/pub/DEC/
SRC/AN2/otto.tar.Z.

[6] Digital Equipment Corporation, Digital Semiconductor
21140A PCI Fast Ethernet LAN Controller, Hardware Refer-
ence Manual, Order Number EC-QN7NE-TE, Novembe
1996.

[7] Digital Equipment Corporation, METEOR PCI-ATM 155
Mb/s SAR Chip, Functional Specification, Revision 1.2,
February, 1996.

[8] Intel Corporation, Pentium Processor Family DeveloperÕs
Manual, Volume 3: Architecture and Programming Manua,
Appendix H, 1995.

[9] Endo, Y., Wang, Z., Chen, J.B., and Seltzer, M., Usin
Latency to Evaluate Interactive System Performanc
Second Symposium on Operating Systems Design and Im-
mentation (OSDI Õ96), October, 1996
Page 11 of 11

	ABSTRACT
	1. Introduction
	2. Overview of using the LDS
	Figure 1: A typical LDS configuration for experimental use. The solid arrows indicate the delayed...
	Figure 2: (a) A network configuration example; and (b) simulated lab configuration using two inst...

	3. Related Work
	4. LDS Host and Host Adapter Platforms
	5. LDS Architecture
	6. Distinguishing Requirements of the LDS
	7. Design Features of the LDS
	8. Discussion of Host Buffer System Design
	9. PCI and Interrupt Performance
	Table 1: PCI access and interrupt timings (in 133 MHz cycles) for 354-cell buffers (1 ms at OC-3).
	Figure 3: (a) Histogram of 32-bit programmed I/O PCI read times; (b) Histogram of 32-bit programm...

	10. LDS Delay Bounds and Granularity
	11. Measurement of LDS Induced Delay
	12. Example Use of the LDS
	12.1. Measurement Configuration
	Figure 4: Configuration with two TCPs competing over a 2:1 bottleneck. All links are OC-3.

	12.2. Measurement Results
	Figure 5: Measured Goodput vs. RTT Ratio.
	Figure 6: Predicted Throughput vs. RTT Ratio.

	13. Conclusions
	Acknowledgments
	References
	[1] Milliken, W., The Long-Link Emulator System Description, White Paper -- Advanced Networking D...
	[2] Kosak, C., Eckhardt, D., Mummert, T., Steenkiste, P., and Fisher, A., Buffer Management and F...
	[3] Floyd, S., Connections with Multiple Congested Gateways in Packet-Switched Networks Part 1: O...
	[4] Romanow, A. and Floyd, S., Dynamics of TCP Traffic over ATM Networks, IEEE Journal on Selecte...
	[5] Digital Equipment Corporation, Otto ATM Interface Device Driver Source Code, ftp://gatekeeper...
	[6] Digital Equipment Corporation, Digital Semiconductor 21140A PCI Fast Ethernet LAN Controller,...
	[7] Digital Equipment Corporation, METEOR PCI-ATM 155 Mb/s SAR Chip, Functional Specification, Re...
	[8] Intel Corporation, Pentium Processor Family Developer’s Manual, Volume 3: Architecture and Pr...
	[9] Endo, Y., Wang, Z., Chen, J.B., and Seltzer, M., Using Latency to Evaluate Interactive System...

