
Traffic Management for Aggregate IP Streams

Alan Chapman

Nortel Networks
P.O.Box 3511, Station C, Ottawa, Ontario K1Y 4H7

achapman@nortelnetworks.com

H.T.Kung

Harvard University
Division of Engineering and Applied Sciences

33 Oxford Street, Cambridge, Mass. 02138
kung@harvard.edu

ABSTRACT

The IP networking industry is defining ways to differentiate service levels and provide contracted
quality of service. Much of the work, such as multi-protocol label switching, is moving toward traf-
fic engineering models for aggregate streams that closely parallel those of ATM networks. A gen-
eral architecture, similar to that used for ATM connections, is suggested for the traffic management
of IP aggregates.

ATM networks use resource management cells for control. These cells are injected, monitored and
removed by the network. They do not intrude on the user traffic and do not have to be aware of the
user data protocols. Such a control overlay, which is absent from TCP/IP, is well-suited for a future
IP network.

The control overlay has particular value for the management of controlled network bandwidth shar-
ing between aggregate IP streams. Issues with TCP, the primary traffic sharing mechanism in
today’s network, are discussed. An approach that uses TCP’s congestion control to manage sharing
between aggregated streams of traffic is described. Enhancements are suggested for improving
scalability and response time for the TCP control.

Congestion detection in IP network routers has historically been done by monitoring buffer-fill
which has some inherent latency. For a flow-controlled aggregate stream it is possible to detect
congestion by monitoring link occupancy and thus minimise the latency.

INTRODUCTION

IP networks are evolving and there is a growing need for some demonstrable or contractual quali-
ties of service (QoS). To a large extent the requirements are similar to those of ATM (Asynchro-
nous Transfer Mode) networks and involve control over attributes such as loss, delay, throughput
and availability. However, the requirements will most likely be applied to traffic aggregates rather
than individual flows.

3rd Canadian Conference on Broadband Research
(CCBR’99), Nov. 1999



Why aggregates?

An aggregate traffic stream is a collection of IP flows that are grouped together for common treat-
ment between two points in a network. We call these aggregatesIP trunks . Packets from all flows
in a trunk travel the same path and are subject to the same traffic management policies. The concept
of IP trunks brings the Layer-2 values of ATM into the IP network. A well-known example is the
Multi-Protocol Label Switching (MPLS) [1] activity in the Internet Engineering Task Force (IETF),
although an IP transport, that uses IP addresses as labels, may be appropriate for virtual private net-
works [2].

By encapsulating many IP flows with a common label, MPLS treats an aggregate traffic stream
rather than individual flows. These aggregates can follow determined paths and be given a consis-
tent QoS treatment. A labelled path can exist between any two points in the network and multiple
paths can themselves be aggregated within another label. This hierarchical aggregation simplifies
the management of network resource and facilitates engineering of QoS.

Performance commitments from a carrier to its customers are likely to be at the aggregate level
rather than for individual flows. For applications such as virtual private networks the performance
of the aggregate in terms of throughput, latency, loss rates, security and availability over the com-
plete trunk path are more relevant than knowledge about individual flows or network links.

Why congestion control for aggregates?

The Transmission Control Protocol (TCP) is the most widely used method to achieve elastic shar-
ing between end-to-end IP flows. At present the core network basically relies on end-system TCP
to provide congestion control and sharing but this will not be acceptable in the future for several
reasons:

To avoid time-out, each TCP connection requires that some number of packets be stored in the
network and most of that storage occurs in the router buffer at a point of congestion. Without
sufficient storage, time-outs will give end users poor performance and prevent any predictable
sharing. Unfortunately, providing sufficient storage for a very large number of connections will
cause too much latency. As a corollary, if latency is to be contained then the number of
connections must be severely limited. Suppose that it is desired to bound the delay in a core
network to 10ms. Then, for the minimum possible window of a single one kilobyte packet, the
connection cannot run slower than 1Mb/s without going into time-out. This implies that to
provide fair sharing of a 1Gb/s link, the number of competing TCPs should be no more than
1,000.

Most traffic today is carried by very short TCP flows. The fast retransmission feature [10] of
TCP requires a window size of several packets in order to work and short flows often never
achieve a large enough window size to be able to recover from a packet loss without entering
time-out. Fine-grain bandwidth sharing, where sharing is achieved over time intervals under 1
or 2 seconds, is important for interactive applications, but is not possible unless connections
avoid time-out.

TCP is a dominant protocol today but may not be so in the future, especially as the amount of
traffic using User Datagram Protocol (UDP) is growing rapidly. It is dangerous, therefore, to
rely only on host TCP to achieve good sharing in the future network.

End system TCP implementations are not totally standard and, in particular, can be modified to
the benefit of the end system but at a cost to the network.



Finally, end-to-end TCP will strive for fair sharing between individual flows and this will not
meet the requirements in a network managed as aggregate streams. For example, for those
Internet Service Providers which provide services to institutions, the management of minimum
throughput and the control of elastic bandwidth sharing will usually be more relevant at the
aggregate level than at the level of individual flows.

Congestion control at the aggregate level also reduces the number of flows visible to the core net-
work. This protects user flows from the effects of highly populated IP network [8].

It is beneficial to the network operator to aggregate many user flows into a new, preferably lossless,
flow-controlled stream between chosen edge-points in the network. This pushes the loss and
latency problems out to the edge of the network where it is possible to be more selective in allocat-
ing that loss and latency to individual IP flows. Further, a network-based method for providing con-
trolled, elastic bandwidth-sharing between these aggregates will be essential to ensure full use of
the network without detracting from promised performance.

MANAGEMENT OF IP TRUNKS

Historically, the IP network management has considered end-to-end flows and router-to-router
links. Given that IP trunks will be such an important part of the future network architecture, there is
need for a well designed and consistent approach to their traffic management. There must be ways
to provide monitoring and management of these trunks in order to check the integrity of the path as
well as testing how well it is meeting the QoS requirements.

In a multi-protocol network, the management architecture should be independent of the end users
protocols. In ATM networks the use of resource management cells has been well developed. These
cells are injected into the traffic stream in a non-intrusive way in order to test various attributes of
the connection.

A similar approach of injecting management packets is suitable for the management of trunks in an
IP network and allows the management to be over any defined path in the network rather than over
single links or between end systems. The decoupling from user data packets and protocols means
that the management packets can be inserted as often as the application needs and can carry infor-
mation specific to that application between the two ends of the trunk.

For example, management packets can be inserted into the trunk to test for continuity of the path.
The far end of the trunk responds to these packets to confirm that the path is working. The absence
of response from the other end of the trunk can be used to trigger the diversion of trunk traffic to a
back-up route in far less time than it would take by waiting for the routing protocols to propagate
the information. In a path equipped for differentiated services [9], the acknowledgements can be
protected against loss with packet marking to make failure detection more robust.

Similarly, loss can be sampled by sending numbered packets which are acknowledged by the far
end. Latency can be sampled by injecting packets with time-stamps. GPS (global positioning sys-
tem) deployment can make these latency measurements very accurate.

USING TCP FOR ELASTIC SHARING BETWEEN IP TRUNKS

In addition to monitoring performance, management packets can be used to facilitate controlled
elastic sharing. At present there is no mechanism for elastic sharing between aggregates but this is
essential for keeping network utilisation high without detracting from trunk performance commit-
ments. It would be desirable to reuse TCP for this purpose because of the large body of knowledge
available and also because the buffer management mechanisms [3, 7] in routers exist for, and are
being evolved for, TCP.



There are, however, some aspects of TCP that one would want to avoid for trunks:

It is not practical to encapsulate the user data in TCP headers. This adds bandwidth and
processing overhead for every packet, and would make it difficult to manage trunks within
trunks.

It is not desirable to incur the overheads (storage, re-ordering and latency) of retransmission
for user data. Apart from the cost of extra storage at the sender and receiver, this feature would
incur latency for all flows in the trunk without any knowledge as to whether the data sources
prefer reliability to lower latency. It is better to leave reliability to the individual end-user
protocols.

It is not desirable to incur the loss of user data as is usual when TCP probes for available
bandwidth. It is better to incur loss closer to the edge of the network where management or
protocols can be more selective in allocating that loss to chosen flows.

What is wanted from TCP is:

The end-to-end simplicity. Any complexity of TCP is contained within the sender and receiver
and very little is required from the intermediate switches.

The robustness of the self clocking nature of TCP. The number of packets in the network is
contained in the sense that new packets cannot be injected until old ones leave.

The tested approach of additive increase and multiplicative decrease in rate. This has been
shown to provide predictable bandwidth-sharing for long lived flows.

We define aTCP trunk as an IP trunk whose data packets are subject to TCP’s congestion control
mechanism but without the undesirable features [2, 5]. This is achieved by means of a decoupled
management flow [5, 11] in the following manner.

A stream of management or control packets is sent into the trunk by a virtual TCP sender and
received and acknowledged by a corresponding virtual TCP receiver at the other end of the trunk
(Figure 1). This management TCP connection carries no user data and deals only with a notional
stream of bytes. The stream of control packets sample the state of congestion at the routers along
the trunk path and, in normal TCP fashion the sender adjusts its sending rate based on the discard or
marking of the control packets. However, in addition, the sending rate of the control stream will
directly control the sending rate of user data over the trunk.

Virtual Sender

User flows assigned

Acknowledgment packets
identify management packets received

to this trunk (label)

FIFO

User packet
Management or acknowledgment packet

(Inserts management packets and
controls transmission of user packets

(Acknowledges

Figure 1 : Use of management TCP and GMB controller in implementing TCP’s congestion
control and guaranteed minimum bandwidth (GMB) for an aggregated traffic stream

Controlled Aggregate (Trunk)

beyond the GMB rate)

of Management TCP
GMB

Controller

(Sends user packets
at the GMB rate)

Virtual Receiver
of Management TCP

management packets)



When the intermediate routers are equipped for differentiated services, loss priority makes it possi-
ble to protect the user data and only discard control packets so that a lossless, flow-controlled con-
nection is achieved. See [5] for an analysis of the lossless property, and related experimental
results. Moreover, a TCP trunk can traverse an ATM network over a UBR connection and, using
packet loss priority, can provide lossless elastic sharing without the need for ATM-based ABR ser-
vice. (A native TCP trunking service can be also provided directly at the ATM layer; but this topic
is beyond the scope of this paper.)

A virtual maximum segment size (VMSS) [5, 11] is defined as the number of user data bytes
released for each control packet. This is an average number since the packet boundaries of the user
data are maintained. To keep some synchronism between the real data and the sampling of conges-
tion a control packet is only released into the trunk, on average, after one VMSS of user data is
sent. For efficiency, if there is no user data to be sent then no control packets are sent and, further-
more, in the continued absence of data, the management TCP will steadily reduce its window down
to the minimum.

The release of user data under control of the management TCP is separate from and in addition to
the release of data resulting from a configured guaranteed minimum bandwidth (GMB) transmis-
sion rate.

OPTIMIZATIONS OF MANAGEMENT TCP

The mechanism of the management TCP is network-based and under control of the network opera-
tor. It also operates over a fixed path. It is possible, therefore, to consider changes to the mechanism
which are beneficial in this environment.

Speeding up response to congestion

Since in a TCP trunk there is little chance of packet order being changed, it is acceptable to assume
packet loss the first time that a duplicate ACK is received, rather than wait for three occurrences as
is usual in host-based TCP. This modification will make the trunk respond faster to congestion. If
congestion notification is implemented in future routers then the packets are marked rather than
discarded and the sender will get an even faster indication of network congestion.

Extending TCP operation into the low-speed domain

As discussed earlier, there is a limit to how slowly TCP connections can run and the absolute limit
is one packet per round trip time (RTT). Such small windows are undesirable since the rate of
increase of transmission in this case is very large. Increasing a one-packet window to two packets
will double the rate, and many connections doing this will almost certainly result in some packet
loss. Fast retransmission [10], which helps a connection avoid time-out, can only work when the
window contains several packets and good sharing requires that the connections do not enter time-
out (see [6]). For these reasons it would be desirable that the window is always above some mini-
mum size and that when bandwidth sharing required the connection to run more slowly, the sender
employed a secondary mechanism to achieve this.

One such mechanism is based on artificial increases of RTT at the TCP sender. After receiving an
acknowledgement, the sender will delay the release of a packet for some period. The total of the
real RTT plus the artificially added time is defined as the virtual round trip time (VRTT)

Doubling the VRTT has the same effect on transmission rate as halving the window size. The addi-
tive increase in rate is achieved by decreasing the VRTT. This can be made to directly emulate the
rate increase that would be experienced by increasing window size. When the VRTT once again
equals the real round trip time then TCP returns to the normal mode of operation.



Avoiding large windows

Buffer management schemes such as random early detection (RED [3]) spread packet loss statisti-
cally over all the flows passing through the congestion point. Instead of the sudden and immediate
loss experienced by drop tail buffers, the loss will stabilize at the value that maintains an acceptable
average buffer-fill.

It is known that, under fast retransmit and recovery of TCP, the window size (W) and the loss ratio
(L) are linked by the relationship [4]:

L = K/W2

where K is some constant. Thus, the average number of round trip times for a connection to experi-
ence a lost packet can be calculated as:

Average number of RTTs before a loss = W/K

It takes some time to realise ‘averages’ and typically some connections see no loss for a while and
others see more than the average. The effect of multiple rate decreases on one connection is much
less than that of single decreases on multiple connections which means greater excursions in buffer-
fill. The larger window takes much longer (e.g., many RTTs) to recover after a decrease. Overall,
large windows give a looser control loop, wider ranges of buffer-fill and therefore wider ranges of
latency.

In a TCP trunk, the amount of data sent per control packet (VMSS) can be configured to a rela-
tively large value to avoid large windows. When there is a large value for VMSS, the ability to
extend virtual round trip time (VRTT) will still permit the trunk to run slowly when necessary.

Controlled sharing

Current TCP implementations strive for fair sharing but are influenced by the round trip time (RTT)
experienced and maximum segment size (MSS) used. Loss in the network, particularly with buffer
management schemes such as random early detection (RED), tend to make all connections have the
same window size. The rate that a connection achieves is then directly proportional to MSS/RTT.

In a managed network of TCP trunks it is possible to define a benchmark value for MSS/RTT and
to make each connection aware of how its own value compares to the benchmark. By suitably
adjusting the base values of VMSS and VRTT or by changing its reaction to loss, the trunk can
ensure fair sharing or deliberately unfair sharing with other trunks.

LOW-LATENCY THROUGH VIRTUAL BUFFER ACCOUNTING

Today’s IP networks use buffer-fill as the trigger to begin discarding packets in order to slow down
TCP sources. Large buffer-fills produce large latency and, in fact, this has been a benefit in helping
the source TCP senders to slow down. The round trip time experienced under congestion conditions
can be several times that of the idle network. For TCP trunks using the concept of virtual round trip
time, the sender has no limit on how slowly it can run and needs no buffering help from the net-
work. It is possible, therefore, to consider having minimal latency at the congestion points. This can
be achieved in the following way.

To minimise latency at the congestion point, the process of discarding packets must begin before
the outgoing link becomes fully utilised. In this case there is no buffer-fill and discard must be
based on some measure of link utilisation. In order to re-use the buffer management techniques
such as random early detection (RED) that are being developed, the concept of a virtual buffer is
introduced (Figure 2). This virtual buffer has one token added to it for every packet that arrives but



is drained at a rate less than the real link. The fill of this virtual buffer is used to trigger discard and
the drain rate can be adjusted to trade off link utilisation against real buffer-fill.

A network with this feature deployed would allow low-latency trunks, thereby avoiding the need
for special queues for real-time traffic and generally giving a crisper performance for interactive
applications.

DEPLOYMENT SCENARIOS

This section describes some deployment scenarios of TCP trunking. In these scenarios TCP trunks
provide guaranteed and elastic bandwidths in those areas of networks where traffic congestion may
occur. Because of its easy deployment, involving only the two end nodes of a trunk to implement
the associated management TCP, and its ability to use available bandwidth dynamically, TCP
trunking represents an attractive enhancement to other traffic engineering approaches such as those
based on ATM, Frame Relay, MPLS and VLANs.

Example scenarios

Three deployment scenarios are illustrated in Figure 3:

• Core Networks: Between each pair of edge routers (R), one or multiple bidirectional pairs of
TCP trunks are provided.

• Enterprise Networks: Routers inside an enterprise network are connected via TCP trunks to
routers in the other side of the congested network region.

• Virtual Private Networks (VPNs): TCP trunks connect gateways (G), of various sites of a
VPN. There are multiple trunks between some sites to differentiate traffic treatments. Behind
each gateway, there could be hosts and proxy servers, denoted by H and P, respectively. A
proxy server can classify packets based on their IP addresses, protocol types, etc. For each out-
going packet, a gateway can select which trunk to use, based on its classification.

Figure 2. Avoiding high buffer fill, in real buffer, by using a virtual buffer

Data packets arriving

Virtual buffer is drained at a rate ofα * R

One token is put in for each packet
put in the real buffer

Data packets leaving

Virtual buffer

Real buffer

(α is adjusted for the proper trade-off
between average latency and link utilisation)

Link rate = R

max-th min-th

Discards
with a probability based on

virtual buffer fill



Discussions on deployment

Dedicated TCP trunks can be provided for UDP flows so that their total bandwidth usage can be
constrained, in spite of the fact that UDP flows do not perform congestion control by themselves.
(See [5, 11] for experimental results on the use of TCP trunks to contain UDP flows.) For those
campus and backbone networks where use of UDP-based streaming protocols has been increasing
rapidly, this could be a major reason for deploying TCP trunks.

Non-trunk traffic can be allowed in a network region where TCP trunks are used. For example, via
bandwidth partitioning, TCP trunks may compete only among themselves for a certain portion of
network bandwidth, while traffic which is not carried by TCP trunks uses the remaining bandwidth.
Of course, there will be no need for bandwidth partitioning if the region has sufficient bandwidth
and expects no congestion.

For a network region where bandwidths are abundant, end points of TCP trunks can be anywhere
inside the region. That is, they do not have to be on the network edge. For example, Figure 3 (b)
assumes that the enterprise network is a high-bandwidth network, and thus, it is appropriate that the
trunk end points R1 and R2 are inside the network. Because of trunk end points can be placed any-
where convenient to the user, this flexibility eases the deployment and management of TCP trunks.

An experimental testbed for TCP trunking has been deployed in Taiwan over an 80km ATM link
connecting two cities, Taipei and Hsinchu. It is an enterprise model, where the trunk end points are
in campuses with gigabit Ethernet links.

Additional testbeds are available at Harvard University for the purpose of validating basic proper-
ties of TCP trunking. See [5, 11] for various performance results on TCP trunks.

CONCLUSIONS

It is suggested that a new traffic management architecture is needed for future IP networks, where
much of the traffic is managed as aggregates between intermediate points. A general management
approach, similar to that used in ATM, has been described.

R4
R2

R3

R1

R1
R2

R3
R4

G2
G3

G1

P
H

(a) Core network (b) Enterprise network (c) VPN

Figure 3. TCP trunking usage examples, for (a) core networks, (b) enterprise, and (c) VPN.
Shaded regions denote potential congestion areas in the network. Each solid line denotes a
bidirectional pair of TCP trunks. In (a), round circles inside the shaded region denote
routers and switches; in (b) and (c) these are omitted for clarity.



The particular application to congestion control meets a future need for sharing between aggre-
gates. In addition it protects the user’s short flows from time-out and reduces the number of elastic
flows seen by the core network and therefore the latency encountered. Having the network conges-
tion control in the network operator’s management domain ensures its integrity and permits
enhancements and evolution to be independent of the host-based protocol implementations.

It has been shown that the well-tested congestion control mechanisms of TCP can be reused to pro-
vide elastic sharing of bandwidth between aggregate streams without the need for changes in the
intermediate routers. By varying VMSS and VRTT, TCP trunks can always operate under a moder-
ate sized window to achieve improved robustness and fairness. It has further been shown that, with
enhancements to the intermediate routers, the performance can be improved and, in particular, very
low-latency trunks can be implemented.

ACKNOWLEDGMENT

This research was partially supported by Nortel, Sprint, Air Force Office of Scientific Research
Multidisciplinary University Research Initiative Grant F49620-97-1-0382, and National Science
Foundation Grant CDA-94-01024.

REFERENCES

[1] IETF Multiprotocol Working Group, http://www.ietf.org/html.charters/mpls-charter.html

[2] A. Chapman and H. T. Kung, “Enhancing Transport Networks with Internet Protocols,”
IEEE Communications Magazine, Vol. 36, No.5, May 1998, pp. 100-104

[3] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”
Transactions on Networking, 1993

[4] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM’88

[5] H. T. Kung and S. Y. Wang, “TCP Trunking: Design, Implementation and Performance,”
IEEE ICNP’99

[6] D. Lin, and H. T. Kung, “TCP Fast Recovery Strategies: Analysis and Improvements,” IEEE
INFOCOM'98, pp. 263-271.

[7] D. Lin and R. Morris, “Dynamics of Random Early Detection,” ACM SIGCOMM’97

[8] R. Morris, “TCP Behavior with Many Flows,” IEEE ICNP’97

[9] K. Nichols, V. Jacobson and L. Zhang, “A Two-bit Differentiated Services Architecture for
the Internet,” IETF draft, 1998

[10] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms,” RFC 2001, 1997

[11] S. Y. Wang, “Decoupling Control from Data for TCP Congestion Control,” Ph.D. Thesis,
Harvard University, September 1999


