
Abstract1

This paper proposes a simple methodology for
constructing extensible and high-fidelity TCP/IP simulators
in BSD UNIX environments. A simulator constructed under
this methodology will simulate multiple network nodes by
re-entering the UNIX kernel of the simulation host multiple
times. Generated simulation results are derived from
executing the native TCP/IP protocol stack on the simula-
tion host. They are thus more accurate than those generated
from a TCP/IP network simulator that implements only an
abstraction of a real-life TCP/IP implementation.

By using this methodology, the simulator architecture
creates an illusion for the BSD UNIX kernel that the simu-
lated network is a real network. All existing application
programs such as ftp, telnet and http, and all network utili-
ties such as route, ifconfig and tcpdump are immediately
applicable to a simulated network for generating network
traffic, configuring networks, gathering statistics, etc. Addi-
tionally, the network simulator provides the standard UNIX
API on every node in a simulated network so that any
existing or future application program can run on any node
in a simulated network. This allows a network simulator to
be easily extended to study high-level network architecture
and application issues.

1. Introduction

Network simulators implemented in software are valu-
able tools for researchers to develop, test and diagnose
network protocols. Simulation is economical because it can
carry out experiments without the actual hardware. It is
flexible because it can, for example, simulate a link with
any bandwidth and propagation delay and a router with any
queue size and queue management policy. Simulation

1 Due to the paper length limitation, this is a heavily condensed version of
its original version of 16 pages. Detailed discussions on addressing,
address-remapping, and routing schemes in Section 2.3 are omitted. For the
complete version, please visit http://www.eecs.harvard.edu/networking.

results are reproducible and easy to analyze because the
simulated network environment is free of other uncontrol-
lable factors (e.g., other unwanted external traffic), which
researchers may encounter when doing experiments on real
networks.

It is well known, however, that network simulators also
have their own limitations. Developing a complete network
simulator, including associated application programs and
network tools, is a large effort. Due to limited development
resources, typical network simulators have the following
drawbacks:

• Simulation results are usually not as convincing as those
produced by real hardware and software equipment. In
order to constrain their complexity, most existing net-
work simulators can only simulate real-world network
protocol implementations with limited detail.

• These simulators are not extensible. They lack the appli-
cation programming interface (API) that allows applica-
tion programs to be developed and run on nodes in a
simulated network. This causes the following two prob-
lems: First, these network simulators are limited to the
study of only network-level performance such as link
utilization, packet drop rate, etc. Application-level per-
formance of a real system (e.g., a distributed database
system’s response time when running on a particular
network configuration) cannot be studied. But a system
designer or network planner may need to know whether
a given network topology and associated link capacities
can provide reasonable application-level performance
for their systems. Commercial simulation systems have
been developed to meet some of this need [1]. Second,
the lack of API prohibits the use of these network simu-
lators in areas where user-developed programs need to
run on nodes to carry out tasks cooperatively. Examples
of these areas include “Active networks” [2], “intelli-
gent mobile agents” [3], “Mobile IP” [4] and “virtual
private networks” [5].

This paper proposes a simple simulation methodology
for alleviating these drawbacks. It simulates multiple
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network nodes by re-entering the UNIX kernel of the simu-
lation host multiple times. Based on this methodology, we
have constructed a TCP/IP network simulator that simulates
a network of BSD UNIX hosts and routers. This network
simulator has two good properties: 1) It makes direct use of
the real-life BSD UNIX TCP/IP protocol code, existing
network application programs, and existing network tools.
As a result, while being able to use existing software, it
generates more accurate simulation results than a traditional
TCP/IP network simulator that may abstract a lot away from
real-life TCP/IP implementations; 2) It provides the BSD
UNIX system’s API (i.e., the standard UNIX system call
interface) on every node in a simulated network and allows
application programs to be developed and run on any node
in a simulated network. Since a developed application
program is a real UNIX program, our simulator has an
important advantage that a program’s simulation implemen-
tation can be its real implementation on an UNIX machine.
As a result, when the simulation study is finished, we can
quickly implement the real system by reusing the simulation
implementations. For example, a Harvard network projects
course in the Fall semester of 1998 made direct use of
several programs, originally designed on our simulator, for
the real network testbeds in our teaching lab.

This methodology is said to besimplein the sense that
it allows easy development of high-fidelity TCP/IP simula-
tors with minimal time and effort, via the use of existing
code. Only about one hundred lines of code addition and
modification to the kernel are needed.

In this paper, we define a “high-fidelity” TCP/IP simu-
lation as one that uses a real-life unmodified TCP/IP imple-
mentation and can correctly reflect TCP/IP’s qualitative
behaviors under different network configurations. Note that
although it is desirable to run simulations that can predict
quantitative performance results as accurate as those gener-
ated by a real hardware experiment, so far, to the best of the
authors’ knowledge, no known simulators (including ns [6]
used by many papers on networking research) have been
able to achieve this goal. This is partly due to the difficulty
in simulating a real host or router’s packet processing time,
which contains non-deterministic, architecture-specific, and
vendor-specific components. Therefore, in this paper we are
satisfied with defining a “high-fidelity” simulation, not as
one that can precisely predict quantitative performance
results (as would be more desired), but as one that can
correctly reflect TCP/IP’s qualitative behaviors. Although
our high-fidelity simulator may not generate precisely the
same quantitative performance results as those generated
from experiments on real hardware, we can use the results
generated by the simulator under various network configu-
rations to study network issues. For example, we can study
the effect of different buffer allocation or packet scheduling

methods on TCP/IP performance. These quantitative perfor-
mance results may not be exactly the same as real perfor-
mances, but their trend can still provide valuable insights
and direct us toward a better design.

Our simulator is operational. Its simulation results have
been validated extensively against results obtained from
experiments done on real hardware, and shown to be able to
correctly reflect TCP/IP network behaviors. Several institu-
tions and companies are using the simulator to study TCP
performance on various network architectures such as “TCP
trunking” [7] and “mobile IP.” Because each simulated node
supports the standard UNIX API, the simulator can also be
used to study high-level network applications such as those
related to active networks [8, 9].

2. Simulator Architecture Overview

Our simulator architecture differs from traditional ones
in how they integrate the various component programs that
implement the following functions:

1. Links with various delays and bandwidths

2. Routers that forward IP packets

3. Hosts that use TCP/IP protocol to send and receive
packets

4. Application programs that generate network traffic

Unlike traditional approaches such as REAL [10] and
ns [6], our simulator architecture does not combine parts 1,
2, 3 and 4 together to form a single monolithic program.
Instead, our simulator has separate and independent parts
for 1, 2, 3 and 4. When these parts run concurrently in a
BSD UNIX environment, together their executions simulate
a network and generate network traffic.

In the rest of this section, we describe the key ideas and
techniques that have made our simulator architecture
feasible.

2.1. Tunnel Network Interface

Tunnel network interface, available in most BSD UNIX
environments, is a pseudo network interface that does not
have a real physical network attached to it. The functions of
a tunnel network interface, from the kernel’s point of view,
are no different from those of a normal Ethernet or FDDI
network interface. A network application program can send
out its packets to its destination host through a tunnel
network interface or receive packets from a tunnel network
interface, just as if these packets were sent to or received
from a normal Ethernet interface.

As depicted by Figure 1, we can simulate a network
configuration in which two hosts are connected together by



two one-way links of any bandwidth, delay and other char-
acteristics (e.g., packet corruption, packet dropping, re-
ordering, and duplication). This can be done simply by
writing an application program (we call it “virtual link”
object) that plays the role of a link. This application would
open a tunnel network interface’s special file in /dev and
then execute a loop in which it reads a packet from the
special file, waits the link’s propagation delay time plus the
packet’s transmission time on the link, and writes this
packet to the special file. The application continues this
loop forever.

2.2. Opaque and Transparent Network Cloud
Simulation Models

To extend simulated networks from single-hop
networks as shown in Figure 1 (a) to multi-hop networks,
we need to simulate an additional object type -- interme-
diate routers. A traditional way of simulating a network
composed of links and routers is to simulate them in a user-
level program. We call the simulated network formed this
way an “opaque network cloud.” It is “opaque” because the
kernel can not see through the network cloud. As Figure 2
(a) illustrates, once a packet is injected into an opaque
network cloud, it will be covered by the opaque network
cloud when it traverses through the routers on the way to its
destination host. The kernel of the simulation host can not
see this packet because the packet will not enter and leave
the kernel again until it finally reaches its destination host.
OPNET Modeler [1] and ns [6] are examples of network
simulators using the opaque network cloud simulation
model.

In contrast to the traditional approach, our method-
ology will simulate a router’s packet forwarding by sending
down each packet received from a simulated link to the
kernel, letting the kernel forward it toward the correct direc-
tion (i.e., put it into the correct output port’s queue), pulling
up the packet from the kernel (i.e., fetch it from the output
port’s queue), and then transmitting it on the next simulated
link. We call the simulated network formed this way a
“transparent network cloud.” “Transparent” here means that
as shown in Figure 2 (b), after a packet is injected into the
network cloud, this packet will go down (enter the kernel)
and go up (leave the kernel) when going through each router
on the way to the destination host. Thus the kernel will see
the packet when it traverses the network cloud.

A network simulator under the transparent network
cloud simulation model uses the UNIX kernel of the simula-
tion host to implement the routers in a simulated network.
As a result it has the following advantages: 1) There is no
need to spend time and effort on porting kernel routing/
forwarding code to a user-level program to simulate routers.
2) Because the unmodified real-world BSD UNIX routing/
forwarding code is used, simulation results are more cred-
ible than otherwise. 3) The standard UNIX system call
interface (API) is supported on every node. Thus all appli-
cation programs available on hosts can now run on routers
as well.

Figure 3 (b) and (c) illustrate the differences between
two simulated networks based on the opaque and trans-
parent network cloud simulation models, respectively. Both
of them are constructed to simulate the same network in (a).

Figure 1: A network (a) is simulated using tunnel network
interface (b).
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2.3. Addressing and Routing for the Transparent
Network Cloud Simulation Model

This section presents our addressing, routing, and
address-remapping schemes to support the transparent
network cloud simulation model. As described earlier, the
single simulation host will act as both hosts and routers
during a simulation. Using the network of Figure 3 (a) as an
example, we illustrate the operation of the simulation host
when sending a packet across the network from node 1 to
node 2. As depicted by Figure 4 it involves a sequence of
leaving and entering the kernel operations. That is, to
forward a packet along the path from the TCP_sender to the
TCP_receiver in Figure 3 (a), the packet will leave the
kernel along link 1 and then re-enter it, leave the kernel
along link 3 and then re-enter it, and finally, leave the kernel
along link 5 and then re-enter it.

For routing packets, the simulation host needs to main-
tain a routing table. Conceptually, since the simulation host
simulates all the routers and hosts in a simulated network,
by using the union of the routing tables in all the nodes, it
should be able to route packets correctly. However, together
these routing tables contain conflicting information. For
example, in the network of Figure 3 (a), when forwarding a
packet destined to host 2, host 1 will choose link 1 as its
next hop, router 1 will choose link 3 as its next hop, and
router 2 will choose link 5 as its next hop. If all these
conflicting (destination IP address, next hop) pairs are
stored in the single simulation host’s routing table, the
kernel will be confused and will not be able to choose the
correct next hop for forwarding a packet.

One solution to this problem is to have, in the kernel, a
separate routing table for every node in the simulated
network and to have each packet re-entering the kernel tell
the kernel which node it should simulate for the packet at
this time (e.g., when passing through router 2, the packet
will tell the kernel that now it should simulate router 2). The
kernel then uses this information to retrieve the proper

routing entry (destination IP address, next hop) from the
correct routing table.

Although the above method can solve the routing
problem discussed, it is not our preferred solution for the
following reasons: First, maintaining a separate routing
table in the kernel for every node is not the standard mecha-
nism used in the UNIX simulation host. In order to work
around, we will need to modify the kernel code related to
routing processing extensively. This violates our goal of
minimizing modification to real-life network protocol code
in order to provide high-fidelity simulation. Second, using a
different routing mechanism means that we no longer can
use existing utilities in UNIX environments, such as
“route,” to configure routes.

Our preferred solution is to use special address-remap-
ping and route-setup schemes. The basic idea is that by
remapping the destination IP address of a packet to a new
one before it arrives at and is forwarded by a router, a single
routing table can be used in the simulation host without the
conflicting problem. Because traffic may be bidirectional
(e.g., TCP traffic), address-remapping needs to be applied to
a packet’s both source and destination addresses. We call
the mapped version of an IP address on node i as this IP
address’s“As-Seen-By-Node(i)” address. Since before a
packet arrives at a router it is transmitted along a link, it is
natural that in our simulator the virtual link objects imple-
ment the address remapping. Figure 3 (d) illustrates the
address-remapping idea.

3. Required Supports from Kernel and
Applications

3.1. Kernel Modifications

Skip IP and UDP/TCP Checksum Tests.Because in
simulation the source and destination IP addresses of a
packet will change every hop (see Section 2.3), the check-
sums in the IP and UDP/TCP headers of the packet are
incorrect, and should not be checked. Skipping these
checksum tests will not affect the data integrity of packets
in our simulator since all packets in our simulated network,
in fact, never leave the simulation host. For situations where
we need to simulate a corrupted packet, we can simply set a
flag in its IP header. Nodes in the simulated network can
then detect the corruption, and discard the packet.

TCP Timers Based on Virtual Time. TCP slow and
fast timers will be triggered based on the virtual time of the
simulated network rather than the real time. If we would use
the real time, a TCP connection’s re-transmit (slow) timer
would prematurely expire at a time which is k times smaller
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Figure 4: Routing a packet along a route in the simulated
network of Figure 3 (c) is a sequence of leaving and en-
tering the kernel operations.



than it should, if our simulator is k times slower than the
real network.

Each Node Has Its Own Virtual Clock. In the real
world, each machine’s clock may be different from others’
due to clock drift. We should simulate this phenomenon to
avoid multiple TCP connections to drop packets, time out,
and “slow-start” in a lock-step manner. In our simulator, we
maintain a virtual clock for each node in the simulated
network. The granularity of these virtual clocks can be very
coarse (e.g., 100 ms) because a TCP slow timer is triggered
only every 500 ms and a TCP fast timer every 200 ms.
These virtual clocks are offset by some random time.

Immerse the Simulated Network into the Kernel.
Significant simulation speed up is achieved by imple-
menting virtual link objects in the kernel. Forwarding a
packet now becomes an inexpensive operation of moving a
pointer to a packet inside the kernel. Compared to the cost
of copying a whole packet out or into the kernel, the cost of
moving a pointer is minimal. Since the reduction of the
required CPU time is so great, our kernel-version IP simu-
lator can run three times faster than its original version. As a
consequence of eliminating packet copy cost, now sending
real data in our IP simulator is no longer a performance
burden, but an asset without any overhead (some other IP
simulators only send “fake” or “null” data in order to run
faster).

3.2. Application Modifications

An application needs to perform the following three
tasks to work with the simulator.

Associate the Application’s TCP Sockets with the ID
of the Node Where the Application Will Run. The simu-
lator provides the application the identity of the node in the
simulated network on which its TCP socket will be created.
The application program then makes the setsockopt()
system call to associate its TCP socket with the node iden-
tity provided. The TCP socket’s retransmit timer can now be
triggered based on the virtual clock of the node on which
the application is running.

Convert the Destination Address to the “As-Seen-
By-Node(i)” Address. The application normally would
need to convert its packets’ addresses before they are deliv-
ered to and routed by the kernel. The conversion can be
avoided if the destination address provided to the applica-
tion program is already the “As-Seen-By-Node(i)” address
of a packet’s destination address (assuming that the applica-
tion is running on node i).

Use Simulated Network’s Virtual Time. When an
application program reports data related to time, it should

use the simulated network’s virtual time, rather than the real
time. Examples include “ping,” which reports a packet‘s
round-trip time, and “ftp,” which reports the throughput of a
file transfer.

3.3. Simulator’s Event Scheduler

Our system has only one kind of object to simulate, i.e.,
virtual link objects that simulate links. Hosts and routers are
“simulated” or “run” by the BSD UNIX kernel of the simu-
lation host; therefore, we do not need to create corre-
sponding objects for them in the simulation system. Due to
this property, our simulation system’s event scheduler is
both simple and efficient. It schedules a time for a link to
read a packet from the link’s source node (in order to simu-
late the previous packet’s transmission time), and also a
time for a link to deliver a packet to the link’s destination
node (in order to simulate the link propagation delay).

Another task of this event scheduler is to send periodi-
cally the simulated network’s virtual time down into the
kernel so that the timers of TCP connections in the simu-
lated network can be triggered by the virtual time rather
than the real time. As discussed in Section 3.2, a node’s
virtual clock, which is used solely for triggering TCP
connections’ timers, can have a coarse granularity (e.g., 100
ms in the virtual time). This means that the overhead of
sending down the simulated network’s virtual time into the
kernel is very low (only 10 times per second in the virtual
time).

The simulator is a discrete-event dynamic system. The
unit of its virtual time can be set to any value as small as we
would like (e.g., nanosecond) to simulate high speed links.
All events can thus be precisely scheduled and triggered
based on the virtual time in the simulated network. For this
reason, simulation results are not affected by other activities
on the simulation host (e.g., disk I/O and network I/O).

4. Example Application Programs

Any existing real-world application program (e.g., the
Netscape web browser and the Apache web server) can
readily run on any node in our simulated network, after the
three slight modifications mentioned in Section 3.2. The
following are a few application examples that our simulator
has used. We illustrate them using the network of Figure 3
(a).

4.1. “Ping” Reports Round-Trip Time

“Ping” is a useful tool to test whether our simulator can
correctly simulate links with various delays and band-
widths. Usually, in a real-world network, “ping” can only be



executed on a host. This means that only the round-trip time
between an edge host and a node (an edge host or a router)
can be reported. In contrast, in our simulator, “ping” can
report a packet’s round-trip time between any two nodes.
The following example demonstrates that we can use “ping”
to estimate the round-trip time between router 1 (node 3)
and router 2 (node 4) of Figure 3 (a), neither of which is an
edge host.

# ping 1.1.4.3

PING 1.1.4.3 (1.1.4.3): 56 data bytes
64 bytes from 1.1.4.3: icmp_seq=0 ttl=255 time=7.000 ms
64 bytes from 1.1.4.3: icmp_seq=1 ttl=255 time=7.000 ms
^C
--- 1.1.4.3 ping statistics ---
2 packets transmitted, 2 packets received, 0%
packet loss
round-trip min/avg/max = 7.000/7.000/7.000 ms

4.2. “Traceroute” Shows the Routing Path

“Traceroute” can test whether routes are correctly set
up in our simulator. Being able to use “traceroute” to show
the routing path between any two nodes, our simulator has
been helpful in debugging routing algorithms. In the
following example “traceroute” outputs the routing path
from host 2 to host 1 of Figure 3 (a).

# traceroute 1.1.1.2

traceroute to 1.1.1.2 (1.1.1.2), 30 hops max, 40 byte 
packets
 1  1.1. 6.2  11.000 ms  11.000 ms  11.000 ms
 2  1.1. 4.2  19.000 ms  18.000 ms  18.000 ms
 3  1.1. 1.2  21.000 ms  21.000 ms  22.000 ms

Because of our address remapping and route setup
schemes, the output of “traceroute” in our simulation
system is somewhat different from its normal output. To
understand its output in our simulation system, we need
only look at the Link_ID field (the second least significant
byte) of the IP addresses reported by “traceroute”. In
general, the sequence of these Link_ID values shows us
how a packet is routed along these links. The only exception
occurs on the last hop of the reported routing path, where
the reported Link_ID gives us the reverse direction of the
actual link that is used to transmit packets to the destination
node. For example, in the above output, “traceroute” shows
that a packet is first sent on link 6, then on link 4, and finally
on link 2. (Although it reports that link 1 is the last hop,
according to our rule, we know it means link 2.) This
anomaly is caused by the fact that ICMP TTL_expired
packets are sent back at the previous hops while an ICMP
port_unreachable packet is sent back at the last hop and that
BSD uses different processing for these two different kinds
of packets.

4.3. “Ftp” Client and Server on Any Node

“Ftp” clients and servers can readily work on our simu-
lation system. Since ftp clients can accept scripts to “get”
and “put” files automatically, we can use them to generate
network traffic in different directions automatically. The
following example illustrates the use of “ftp” to “put” a file
to /dev/null on a remote node. (/dev/null is a sink device in
UNIX environments. It sinks all data without writing it to
disks, thus reducing unnecessary disk I/O operations on the
simulation host.)

# ftp -node 3 -server ftp4 1.1.4.3

Connected to 1.1.4.3.
220 reluctance.eecs.harvard.edu FTP server
ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for ‘/bin/ls’.
total 73408
-rw-rw-r--  1 root  wheel   2383872 Aug  8 23:53 file1
226 Transfer complete.
ftp> put file1 /dev/null
local: file1 remote: /dev/null
200 PORT command successful.
150 Opening BINARY mode data connection for 
‘/dev/null’.
226 Transfer complete.
2383872 bytes sent in 2.29 seconds (1017.04 Kbytes/s)

Option “-node 3” tells this ftp client to run on node 3.
Option “-server ftp4” tells it to connect to the ftp server on
node 4.

The above throughput report confirms that our simula-
tion system can simulate 10 Mbps links. This is because,
after removing the bandwidth consumed by the IP and TCP
header overheads, we can roughly achieve a throughput of
1017.04 KB/sec on 10 Mbps links with an MTU of 576
bytes.

Notice that the ftp server in the above example is on
router 2 (node 4) in the simulated network, not on an edge
host. Moreover, the ftp client is running on router 1 (node
3), also not on an edge host. Indeed, our simulation system
can run any application program on any node in a simulated
network. This capability allows network traffic, which need
not originate from edge hosts, to be generated deep inside a
simulated network.

4.4. “Tcpdump” Monitors Packets on Any Link

“Tcpdump” is a useful tool for monitoring and scruti-
nizing packets transmitted on a link (e.g., an Ethernet).
Since “tcpdump” opens a network interface to monitor a
network’s traffic and since, from the kernel’s point of view,
a tunnel network interface is no different from a normal
network interface, we can readily use “tcpdump” to monitor
network traffic on any link (tunnel network interface) in a
simulated network. This means that we can directly use
many useful “tcpdump” scripts (e.g., [11]) to analyze



network traffic. For example, the following shows the use
of tcpdump on link 3 of Figure 3 (a) to trace packets trans-
mitted on the link from node 3 to node 4:

# tcpdump -i tun3

22:10:01.034208 1.1.3.3.2882 > 1.1.4.3.8000: 
38232:39692(1460) ack 97 win 8192 (ttl 27, id 39326)

4.5. “Trpt” Traces Any TCP Connection

If compiled with the TCPDEBUG option, the UNIX
kernel will automatically trace the state and variables asso-
ciated with a TCP connection whenever certain events
occur (e.g., just sent out a packet, just received a packet, and
a timer just expired). The information recorded include
values of many important variables, such as the current
timestamp, sequence numbers, congestion window size,
slow start threshold, and timers’ information. This informa-
tion is beyond what “tcpdump” can observe. “Trpt”[12] is a
tool in the UNIX environment that can extract a TCP
connection’s information from the kernel to the user level
for analysis. The following is a line of “trpt”’s output that
contains send and receive sequence numbers, sending
window size, and timer (retransmit and keep alive) informa-
tion:
# trpt 

631 ESTABLISHED:output 
(src=1.1.3.3,3195,dst=1.1.4.3,8000)[75219d1..7521f85)@8e
754(win=8052)<ACK> -> ESTABLISHED rcv_nxt 8e754 rcv_wnd 
100a4 snd_una 7512a49 snd_nxt 7521f85 snd_max 7521f85 
snd_wl1 8e754 snd_wl2 74bf3c1 snd_wnd 10000 REXMT=3 (t_
rxtshft=0), KEEP=14400

4.6. Mobile IP Simulation Is Easy

Our simulator has been used to simulate home and
foreign agents in mobile IP. Figure 5 illustrates how this
simulator’s architecture allows us to easily implement a
home agent, which needs to intercept packets destined for a
mobile station that is not currently in its home network,
encapsulate them, and then send them to the mobile
station’s foreign agent. To intercept a mobile station’s
packets, we simply redirect them to a special tunnel network
interface (tun_redirect in this example) by changing an
entry in the routing table. For example, in Figure 5, we
change [1.1.1.3 -> tun2] to [1.1.1.3 -> tun_redirect]. The
home agent then can read redirected raw packets from this
special tunnel network interface in the same way as a virtual
link object reads raw packets from its associated tunnel
network interface. To encapsulate and tunnel these packets
to the foreign agent, the home agent need only treat these
raw packets as normal data and send them to the mobile
station’s foreign agent via a normal datagram socket.

Implementing a foreign agent on top of this simulator is
equally easy. Since a mobile station’s tunneled packets are
received by its foreign agent via a normal datagram socket,

when they are delivered to the foreign agent at the user
level, the packets have been automatically decapsulated in
the kernel. The foreign agent uses a raw socket to send the
received raw packets to the kernel, which then sends the
packets on a tunnel link that is directly connected to the
mobile station. Our implementations for the home and
foreign agents are simple. They contain only about 20 lines
of C code for intercepting, encapsulating, tunneling, and
decapsulating traffic. This would be hard to achieve if we
would use a traditional simulator for this task.
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1.1.1.1

tun1

tun2

packets

network

(a) Packets destined for the mobile station are
transmitted on tun2 link when the mobile station
is in its home network.

HA: home agent
MS: mobile station
FA: foreign agent

(b) When the mobile station is away from its home
network, packets are forwarded along tun_redirect.
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Figure 5: By changing a routing entry on node 3 from
[1.1.1.3 -> tun2] to [1.1.1.3 -> tun_redirect]. the home
agent can easily intercept packets destined for the mobile
station. It then reads these raw packets from tun_redirect
and sends them to the foreign agent via a normal data-
gram socket.



5. Extension, Resource Requirements, and
Performance

5.1. Support of a Variety of Scheduling and
Queueing Disciplines

Sometimes in a network to be simulated, output links
may use a variety of packet scheduling methods (e.g., FIFO,
WFQ and CBQ) and/or queueing disciplines (e.g., drop-tail
and RED). But normally a BSD UNIX kernel supports only
FIFO and drop-tail. Thus a TCP/IP network simulator
constructed using BSD UNIX and based on our method-
ology can not simulate this kind of network. To solve this
problem, the simulator can use the ALTQ tool [13], which
allows a network interface to use a different packet sched-
uling method and/or queueing discipline in a UNIX kernel.

5.2. Memory Requirement

Since application programs running in our IP network
simulation system are all real independent programs in BSD
UNIX environments, the simulation host system’s memory
requirement is proportional to the number of application
programs running on the system. Although, at first glance,
this requirement may seem severe and may greatly limit the
maximum number of application programs that can simulta-
neously run on a BSD UNIX environment, we have found
that the virtual memory mechanism provided in BSD UNIX
environments together with the “working set” property of a
running program greatly alleviate the problem. The reason
is that, when an application program is running, only a
small portion of its code related to network processing will
be present in the physical memory. For example, on a PC
with 256 MB physical memory and 300 MB disk swap
space, we can support up to 500 TCP connections with
1,000 ftp and ftpd programs without any page in and page
out activities.

5.3. Performance

Often a simulator becomes slower and slower when
simulating more and more nodes, links, and traffic genera-
tors. In order to report comparable performance, we
normalize our IP simulator’s speed with respect to the
number of nodes it needs to simulate. On a 200 MHZ
PentiumPro PC, our kernel-version IP network simulator
can simulate a node faster than a real node in a network
composed of 10 Mbps links. For example, when simulating
a network with 40 nodes, 82 10Mbps links and 288 ftp-ftpd
pair TCP traffic generators, our IP simulator is 3 times
slower than the real network. This means that it can simu-
late a node 40/3 times faster than a real node. When
comparing our IP simulator’s speed with that of ns [6], our

IP simulator is about 20 times slower than ns for the same
configuration. Our IP network simulator is slower than ns
because almost everything our simulator runs is real, and
therefore it needs to execute every instruction in the real
programs and in the real-life TCP/IP stack.

Although our IP simulator cannot run simulations as
fast as ns, in studying TCP/IP network performance,
network researchers usually need only simulate 5 to 10
minutes of the real network in order to gather stable perfor-
mance data (e.g., in [14, 15]). Generally speaking, a total
simulation time, in real time, on the order of a few hours is
still acceptable.

Since our simulator approach can offer some unique
advantages that are difficult for other simulator approaches
to achieve (see the application examples presented in
Section 4), our approach could serve as an alternative for
those who need these unique advantages but for whom
simulation speed is not their most important or sole concern.

6. Comparison with Other Approaches

Among other approaches, Dummynet [16] most resem-
bles our simulator. Both Dummynet and our simulator use
the native TCP/IP code on the simulation host. However,
there are some fundamental differences. Dummynet uses
the real time, rather than the simulated network's virtual
time. Thus the simulated link bandwidth is a function of the
simulation speed, and the total load on the simulation host.
As the number of simulated links increases, the highest link
bandwidth that can be simulated decreases. Moreover, in
Dummynet, routing tables are associated with incoming
links rather than nodes. Thus, the simulator will not know
how to route packets generated by a router, as they do not
come from any link

OPNET [1], REAL [10], and ns [6] represent tradi-
tional network simulation approaches in which the thread-
supporting event scheduler, application programs, host
protocol implementation, and a network simulator (to simu-
late routers and links) are all compiled together to form a
single complex program. Due to this enormous complexity,
such a simulator tends to be difficult to develop, debug,
verify, validate, and extend. The lack of API support
between the simulator and application programs also limits
its usage.

The simulator that we reported in [17] was developed
to simulate an ATM network. It used the opaque network
cloud simulation model because IP processing on the
internal ATM switches is not required.



7. Conclusions

We have described a simple methodology for
constructing a TCP/IP network simulator with minimal time
and effort. The constructed simulator performs high-fidelity
simulations of IP networks by executing real-life BSD TCP/
IP code on the simulation host. It is extensible because any
existing or future application program can be developed and
run on any node in a simulated network without the need to
recompile the simulator. Furthermore, because each node
provides the standard UNIX API to the application
programs, these programs’ simulation implementations can
be the same as their real implementations on a UNIX
machine, and therefore the real system can reuse these
programs’ simulation implementations. Because of its
extensibility, the simulator is able to study application-level
performances of distributed systems such as “active
network,” “intelligent mobile agents,” “mobile IP,” and
“virtual private network.”
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