
Abstract

This paper presents simulation results on the behavior
of TCP connections when they compete on a packet-
switched ring. These results were generated by the Harvard
TCP/IP network simulator, which uses real-life TCP code to
support high-fidelity simulation. There are two parts to the
paper. The first part is a high-level description of the meth-
odology for constructing the Harvard TCP/IP network
simulator. The second part describes an application of the
simulator in studying the behavior of competing TCP
connections on a packet-switched ring. Simulation results
show that TCP connections achieve various degrees of fair-
ness under different packet scheduling methods used in the
nodes of the ring. Under the FIFO scheduling, the connec-
tions exhibit serious unfairness. Under per-source
queueing, per-source-destination-pair queueing, and 2-level
queueing, the connections exhibit improved levels of fair-
ness.
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uation, ring network

1 Introduction

Network simulators implemented in software are flex-
ible tools for researchers to develop, test and diagnose a
variety of network protocols. It is well-known, however, that
network simulators also have limitations. Developing a
complete network simulator, including associated applica-
tion programs and network tools, is a large effort. Due to
limited development resources, typical network simulators
have the following drawbacks:

¥ Simulation results are usually not as convincing as those
produced by real hardware and software equipment.

¥ These simulators are not extensible. They lack the appli-
cation programming interface (API) that allows applica-
tion programs to be developed and run on nodes in a
simulated network.

This paper proposes a simple simulation methodology
for alleviating these drawbacks. It simulates a packetÕs
traversing multiple network nodes by letting it re-enter the
UNIX kernel of the simulation host multiple times. Based
on this methodology, we have developed the Harvard TCP/
IP network simulator [1] that simulates a network of BSD
UNIX hosts and routers. This network simulator has two
good properties: 1) It makes direct use of the real-life BSD
UNIX TCP/IP protocol code, existing network application
programs, and existing network tools. Thus, while being
able to use existing software, it is a high fidelity simulator in
the sense that it generates more accurate simulation results
than a traditional TCP/IP network simulator that may
abstract a lot away from real-life TCP/IP implementations.
2) It provides the BSD UNIX systemÕs API (i.e., the stan-
dard UNIX system call interface) on every node in a simu-
lated network and allows application programs to be
developed and run on any node in a simulated network.
Since a developed application program is a real UNIX
program, our simulator has an important advantage that a
programÕs simulation implementation can also be its real
implementation on a UNIX machine. Thus, when the simu-
lation study is finished, we can quickly implement the real
system by reusing the simulation implementations.

We used the Harvard TCP/IP network simulator to
study the behavior of competing TCP connections on a
packet-switched ring. We chose to study the ring topology
because it is widely used by SONET rings as transport
networks. A packet-switched ring is composed of layer-3
routers as ring nodes. We studied the behavior of TCP
connections when they compete with each other on a
packet-switched ring for available bandwidth under
different traffic configuration patterns and packet sched-
uling methods. In this paper, we report on observed perfor-
mance of these connections, and performance effects of
using different packet scheduling algorithms.

Sections 2 and 3 present the methodology for
constructing the Harvard TCP/IP network simulator.
Section 4 reports on the observed behavior of competing
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TCP connections on a packet-switched ring. Section 5
concludes the paper.

2 Simulator Architecture Overview

The architecture of the Harvard TCP/IP network simu-
lator differs from traditional ones in the way they integrate
the various component programs that implement the
following functions:

1. Links with various delays and bandwidths

2. Routers that forward IP packets

3. Hosts that use TCP/IP protocol to send and receive
packets

4. Application programs that generate network traffic

Unlike traditional approaches such as ns [2], our simu-
lator architecture does not combine these four parts together
to form a single monolithic program. Instead, it has separate
and independent parts for 1, 2, 3 and 4. When these parts
run concurrently in a BSD UNIX environment, together
their executions simulate a network and generate network
traffic.

In the rest of this section, we describe the key ideas and
techniques that have made our simulator architecture
feasible.

2.1 Simulating Single-Hop Networks

Tunnel network interface, available in most BSD UNIX
environments, is a pseudo network interface that does not
have a real physical network attached to it. The functions of
a tunnel network interface, from the kernelÕs point of view,
are no different from those of a normal Ethernet or FDDI
network interface. A network application program can send
out its packets to its destination host through a tunnel
network interface or receive packets from a tunnel network
interface, just as if these packets were sent to or received
from a normal Ethernet interface.

As depicted in Figure 1, we can simulate a network
configuration in which two hosts are connected together by
two one-way links of any bandwidth, delay and other char-
acteristics (e.g., packet corruption, packet dropping, re-
ordering, and duplication). This can be done simply by
writing an application program (we call it Òvirtual linkÓ
object) that plays the role of a link. This application would
open a tunnel network interfaceÕs special file in /dev and
then execute a loop in which it reads a packet from the
special file, waits the linkÕs propagation delay time plus the
packetÕs transmission time on the link, and then writes this
packet to the special file. The application continues this
loop forever.

2.2 Simulating Multi-Hop Networks

The single simulation host will act as both hosts and
routers when simulating a multi-hop network. Using the
network of Figure 2 (a) as an example, we illustrate the
operation of the simulation host when sending a packet
across the network from node 1 to node 2. As depicted in
Figure 3, it involves a sequence of leaving and entering the
kernel operations. That is, to forward a packet along the
path from the TCP_sender to the TCP_receiver in Figure 2
(a), the packet will leave the kernel along link 1 and then re-
enter it, leave the kernel along link 3 and then re-enter it,
and finally, leave the kernel along link 5 and then re-enter it.

For routing packets, the simulation host needs to main-
tain a routing table. Since the simulation host simulates all
the routers and hosts in a simulated network, using the
union of the routing tables in all the nodes it should be able
to route packets correctly. However, together these routing
tables contain conflicting information. For example, in the
network of Figure 2 (a), when forwarding a packet destined
to host 2, host 1 will choose link 1 as its next hop, router 1
will choose link 3, and router 2 will choose link 5. If all
these conflicting pairs (destination IP address, next hop) are
stored in the single simulation hostÕs routing table, the
kernel will be confused and will not be able to choose the
correct next hop for forwarding a packet.

Our solution is to use special address-remapping and
route-setup schemes. The basic idea is that, by remapping
the destination IP address of a packet before it arrives at and

Figure 1: A network (a) is simulated using tunnel network
interface (b).
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is forwarded by a router, a single routing table can be used
in the simulation host without the conflicting problem.
Because traffic may be bidirectional (e.g., TCP traffic),
address-remapping needs to be applied to both the source
and destination addresses of a packet. We call the mapped
version of an IP address on node i as this IP addressÕsÒAs-
Seen-By-Node(i)Óaddress. Since before a packet arrives at
a router it is transmitted along a link, it is natural that in our
simulator the virtual link objects implement the address
remapping. Figure 2 (b) illustrates the address-remapping
idea.

3 Required Supports from Kernel and
Applications

3.1 Kernel Modifications

Disabling IP and UDP/TCP Checksum Tests.
Because in simulation the source and destination IP
addresses of a packet will change every hop (see Section
2.2). the checksums in the IP and UDP/TCP headers of the
packet are incorrect, and should not be checked.

Each Node Has Its Own Virtual Clock. In the real
world, each machineÕs clock may be different from othersÕ
due to clock drift. We simulate this phenomenon to avoid

multiple TCP connections to drop packets, time out, and
Òslow-startÓ in a lock-step manner. In our simulator, we
maintain a virtual clock for each node in the simulated
network, and TCP slow and fast timers are triggered based
on the virtual time of the simulated network rather than the
real time.

3.2 Application Modifications

Associate the ApplicationÕs TCP Sockets with the ID
of the Node Where the Application Will Run. The TCP
socketÕs retransmit timer should be triggered based on the
virtual clock of the node on which the application is
running.

Convert the Destination Address to the ÒAs-Seen-
By-Node(i)Ó Address. The application normally would
need to convert its packetsÕ addresses before they are deliv-
ered to and routed by the kernel. The conversion can be
avoided if the destination address provided to the applica-
tion program is already the ÒAs-Seen-By-Node(i)Ó address
of a packetÕs destination address (assuming that the applica-
tion is running on node i).

Use Simulated NetworkÕs Virtual Time. When an
application program reports data related to time, it should
use the simulated networkÕs virtual time, rather than the real
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(a) An example multi-hop network to be simulated
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Figure 2: Simulation of a multi-hop network, and IP address remapping. The original destination IP address in the packet
destined to node 2 is 1.1.6.2.



time. Examples include Òping,Ó which reports a packetÔs
round-trip time, and Òftp,Ó which reports the throughput of a
file transfer.

3.3 SimulatorÕs Event Scheduler

Our system has only one object type to simulate, i.e.,
virtual link objects that simulate links. Hosts and routers are
ÒsimulatedÓ or ÒrunÓ by the BSD UNIX kernel of the simu-
lation host. Therefore, we do not need to create corre-
sponding objects for them in the simulation system. The
simulator is a discrete-event dynamic system. The unit of its
virtual time can be set to any value as small as we would
like (e.g., nanosecond) to simulate high speed links. All
events can thus be precisely scheduled and triggered based
on the virtual time in the simulated network. For this reason,
simulation results are not affected by other activities on the
simulation host (e.g., disk I/O and network I/O).

4 Behavior of Competing TCP Connections
on a Packet-Switched Ring

Taking advantage of its high fidelity property, we have
used the Harvard TCP/IP network simulator to perform
detailed study of packet scheduling methods on a packet-
switched ring. In particular, we study their effects on the
behavior of competing TCP connections. The scheduling
methods we have considered include FIFO, per-source
queueing (PSQ), per-source-destination-pair queueing
(PSPDQ), and two-level queueing (2LQ).

Under a separate effort, we have also constructed in our
lab testbed networks to study TCP behavior on a ring. Our
experimental results obtained from the testbed networks are
consistent with the simulations result reported in this paper.

4.1 Simulation Configuration

The simulated topology is a 16-node uni- or bi-direc-
tional ring. For presentation clarity, only an 8-node ring is
shown in Figures 4 and 5. The simulated traffic patterns
include one-to-many, many-to-one and many-to-many as
depicted in Figure 4. The buffer size in each node is 100
packets. The link between any pair of adjacent ring nodes is
100 Mbps, and has a delay of 5 ms. The performance
metrics which we focus on are the link utilization on the
ring and the fairness of achieved bandwidths of competing
TCP connections on the ring.

4.2 FIFO Scheduling

We report on two cases when FIFO scheduling is used
at the ring nodes. The first case concerns a many-to-many
traffic pattern on a bi-directional ring. For a ring of N nodes,
the many-to-many pattern is the union of N copies of the
one-to-many pattern of Figure 4, each with a different
source node. The second case concerns a many-to-one
traffic pattern on a uni-directional ring as depicted in Figure
5.

The overall findings about FIFO scheduling are that a
high link utilization can be achieved by having a sufficiently
large buffer at each ring node, and sufficiently many TCP
connections on the ring. However, fairness can be a
problem. For example, the ratio of the maximum achieved
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bandwidth to the minimum achieved bandwidth can be as
high as 10 among competing TCP connections.

Case 1:

As shown in Figure 6, the more congested nodes a TCP
connection needs to traverse, the less bandwidth it can
achieve. Note that since the traffic pattern on the ring is
many-to-many and each TCP connection is greedy, each
node on the ring is fully loaded and is a bottleneck router.
The simulation shows that each node on the ring has almost
the same packet drop rate. The reason for the reported
uneven bandwidth distribution of Figure 6 is that, the more
bottleneck nodes a TCP connectionÕs packets need to go
through, the higher packet drop rate they will experience
before they arrive at their destination node. As a result,
TCPÕs fast retransmit mechanism or time-out will be trig-
gered more often, which greatly reduces the maximum
bandwidth a TCP connection can achieve.

Although the performance results of Figure 6 may also
suggest that the longer a TCP connection is (or the larger a
TCP connectionÕs round-trip time is), the less bandwidth it
can achieve, it turns out that this is not the main reason for
the unfairness phenomenon. We have confirmed this by
simulation. That is, when we purposely set the delays of the
links on the ring to a negligible value so that each TCP
connectionÕs RTT is almost the same, the unfairness
phenomenon still exists.

Case 2:

As shown in Figure 7, a TCP connection which needs
to compete with a larger group of other TCP connections
achieves less bandwidth. This phenomenon is caused by a
property which we call the Òsmall-large unfairnessÓ of TCP
traffic. In the rest of this section, we will first discuss the
Òsmall-large unfairnessÓ in detail, and then explain why it
causes unfairness problems for the ring network.

4.2.1 ÒSmall-Large UnfairnessÓ of TCP Traffic

The Òsmall-large unfairnessÓ of TCP traffic refers to the
fact that a small group of TCP connections is ÒdominatedÓ
by a large group of TCP connections when contending for
shared bandwidth. This means that the TCP connections in
the small group tend to time-out often and, consequently,
the small group cannot achieve its fair share of the band-
width.

Depicted in Figure 8 is a simulation study which
demonstrates the Òsmall-large unfairnessÓ property. The
router has two input ports and one output port. A group of
C1 TCP connections enters the router from the top input
port and another group of C2 TCP connections enters the
router from the bottom input port. In total, C1 + C2 TCP
connections together contend for the output portÕs link
bandwidth and its buffer space. While fixing C1 + C2 to be
40, we varied the ratio of C1 to C2 and measured the
resulting ratio of the achieved aggregate bandwidth of the
top group to that of the bottom group. The simulation result
shows that when 3C1 = C2 = 30, the top group only
achieves an aggregate bandwidth of 9% and the bottom
group achieves 91%. In contrast, however, the ideal band-
widths for the top and the bottom group should be 25% and
75%, respectively, as TCP generally can achieve per-flow
level fairness. These results show that the small group of
TCP connections are dominated by the large group of TCP
connections, and cannot achieve its fair share of the band-
width. The same unfairness problem happens when we
reversed the ratio of C1 to C2 from 1:3 to 3:1.

We can explain the reason for the Òsmall-large unfair-
nessÓ of TCP traffic as follows: when the output portÕs
buffer is full and when there are two incoming packets
entering the router at the same time to contend for the last
buffer slot, one of them will be randomly selected to be
dropped. Hence the number of dropped packets arriving
from the top input port is roughly the same as that arriving
from the bottom input port. Note that, in a large group of
TCP connections, the number of TCP connections which
happen to escape packet dropping is higher than that in a
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Figure 6: Normalized achieved bandwidths for case 1 of
FIFO scheduling. Each bar represents the achieved band-
width of a TCP connection.
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small group of TCP connections. The large group thus will
have more TCP connections ÒaliveÓ than the small group
after the competition. These live TCP connections will keep
using the bottleneck link, while the other TCP connections
are timed out or slowed down.

4.2.2 ÒSmall-Large UnfairnessÓ on the Ring

The Òsmall-large unfairnessÓ property shown in
Figure 8 can readily explain the uneven bandwidths
achieved by the competing TCP connections on the ring,
that are reported in Figure 7.

Note that from Figure 5, each node on the ring, except
the one to the right of Dst, has exactly the same input-port
and output-port structure as that shown in Figure 8. That is,
they all have two input ports -- one from the upstream node
and the other from the host, and they all have one output
port -- the one going to the downstream node. Figure 9
shows this structure, and the measured packet drop rates
associated with links and TCP connections.

The fact that tcp1 in Figure 7 achieves the least band-
width can be explained by the fact that it experiences the
highest packet drop rate (3.01%) among all TCP connec-
tions on the ring. The reason why it experiences the highest
packet drop rate in turn can be explained by the Òsmall-large
unfairnessÓ property. Observe that tcp1 needs to compete

with a group of 15 other TCP connections coming from the
other input port. Tcp2 achieves the second least bandwidth
because it needs to compete with a group of 14 other TCP
connections. The numbers of other TCP connections to
compete for tcp3, tcp4, ... , are 13, 12, ... , respectively.
Thus, the Òsmall-large unfairnessÓ property explains why
the achieved bandwidths for tcp1, tcp2, tcp3, etc. decrease.

4.3 Per-Source-Destination-Pair Queueing
(PSDPQ)

To solve the unfairness problem of Figures 6 and 7, we
can use per-source-destination-pair queueing (PSDPQ).
That is, every node on the ring has a dedicated queue for
each pair of source and destination nodes and schedules
packets for transmission using the round-robin method over
the queues. The overall finding about PSDPQ is that the
utilization of links on the ring can be high, and per-source-
destination-pair (PSDP) fairness can be achieved.

However, the resulting PSDP fairness may not be
appropriate for transport networks which require per-source
node fairness. (Consider, e.g., the situation when each
source node pays the same subscription fee to an ISP for the
same bandwidth.) Figure 10 shows a scenario under PSDPQ
in which source1 achieves four times more bandwidth than
source2, just because source1 happens to have four PSDPs
on the bottleneck link while source2 has only one.

4.4 Per-Source Queueing (PSQ)

The overall finding about per-source queueing (PSQ)
on the ring is that (1) the utilization of links on the ring can
be high, and (2) it can achieve per-source fairness (not per-
flow or per-source-destination-pair fairness). Also, it does
not exhibit the unfairness problem of FIFO scheduling.
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Figure 8: A small
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Figure 9: A uni-directional ring is composed of a series of
routers shown in Figure 8. The numbers at the top are the
measured packet drop rates of the associated links on the
ring. The numbers at the bottom are the measured packet
drop rates of the associated TCP connections.
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When an outgoing link from the ring to a host is a
bottleneck, we need to implement PSQ on the outgoing link
as well. Otherwise the FIFO scheduling used on the
outgoing link will play an undesirable role of allocating
bandwidth. The results in Figure 11 show the difference
between using and not using PSQ on the outgoing link when
it is a bottleneck link.

Note that while PSQ can achieve per-source fairness, it
cannot control the bandwidth allocation among flows which
originate from the same source node but are destined to
different destination nodes. Figure 12 shows a scenario
exhibiting this unfairness problem.

4.5 Two-Level Queueing (2LQ)

In two-level queueing (2LQ), per-destination queueing
is implemented on top of per-source queueing at each ring
node. This avoids the PSDP problem described in the end of
Section 4.3, and also solves PSQÕs problem that it may not
be fair between destinations with different numbers of
terminating flows. Figure 13 shows that under 2LQ this
PSQ problem is basically solved. The utilization of links on
the ring are generally high when 2LQ is used.

5 Conclusions

In this paper, we first present the methodology used to
develop the Harvard TCP/IP network simulator. The
Harvard TCP/IP network simulator is both extensible and
high-fidelity [1]. We have used it to study many problems,
including the behavior of competing TCP connections on a
packet-switched ring.

In the second part of this paper, we report on simulation
results of the behavior of competing TCP connections on a
packet-switched ring. We have identified the Òsmall-large
unfairnessÓ property of TCP traffic under FIFO scheduling,
and used it to explain the unfair bandwidth allocation
among competing TCP connections on a uni-directional
ring. We have also studied the effects of other scheduling
methods, including PSPDQ, PSQ and 2LQ. The simulation
results show that 2LQ can fairly allocate a ringÕs band-
width among competing source nodes. At the same time it
can also fairly allocate a source nodeÕs achieved bandwidth
among flows destined to different destination nodes regard-
less of their numbers of TCP connections.
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