MotusNet: A Content Network

H. T. Kung, Pai-Hsiang Hsiao, Adon Hwang, Conrad Nobili, Michael Vernal, Dario Vlah,
Salimah Addetia, Cy Chan, Arvin Chang, David Chen, James Chen, Chen-Mou Cheng,
Chris Cho, Matthew Clark, Anthony Delvecchio, Alexandra Fedorova, Mohammed Hakky,
Nithin Iyengar, Bryan Kim, Denise Kim, Khawla Konyna, Molly Krause, Jason LeeKeenan,
Kitty Leung, Hsin-Ting Liu, Qing Liu, Josiah Madigan, Georgi Matev, Jay Moorthi,

Jared Morgenstern, Dan Myung, Adriana Rincon, Eben Scanlon, Adam Scheuer,
Marcin Strojwas, Octavian Timaru, Dafina Toncheva, Eric Tulla, David Tuttle, Ami Vora, and
Zhiyu Yang

Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138, U.S.A.

Abstract — MotusNet is a content network in which the addressable objects, contents, are
decoupled from the physical nodes that carry them. The content names in MotusNet are hierarchical,
so that they can be aggregated in the routing tables to support a larger number of contents. Further,
the process of content replication improves availability, performance, and defends against denial of
service attacks by localizing their effect. Additionally, using content migration, similar contents can be
placed closer together in order to improve the degree of aggregation. A networking class at Harvard

University has built a prototype of MotusNet.

1 Introduction

A content network is a network in which the addressing and routing of content is based on content
description rather than location. Thus, in a content network, content is free to move around and be replicated
while it remains accessible. In addition, since content location is arbitrary and need not necessarily be
associated with a particular host, content can be anonymous. The content network is based upon the
assumption that in the future, spacious servers and high bandwidth connections between nodes on the
network will be commonplace, so that frequent content replication and migration are feasible. A content
network is a form of peer-to-peer computing, as nodes along the network communicate with their peers using

peer or content identities, not their locations [17] [18].

The motivation for building a content network stems from multiple sources. IP networks, while they
have been extremely useful, as seen by the tremendous growth of the Internet in the past few years, have
certain functional limitations that are not easily fixed. The content network is designed to address some of
the limitations found in current IP networks. For instance, the lack of location addresses on a content network
means less vulnerability to denial of service attacks. The content network is also designed to be capable of
easily supporting new types of client applications that require flexible addressing or no addressing at all, such
as peer-to-peer or mobile computing. In addition, content networks are designed to better utilize the
impending increase in bandwidth and large-scale storage capacity suggested, by current hardware
developments, to make content more available, to deliver it more quickly, and distribute it more efficiently.
The content network is thus designed to simplify and reduce the network’s administrative overhead currently
required to implement certain types of features such as high availability and defense from attacks, and
making content available across administrative domains.

Section 2 lists the goals and constraints of the project. Section 3 describes the architecture of our content
network. Section 4 provides some of the highlights of the implementation, starting from the bottom of the
protocol stack and working up. Section 5 provides an assessment of the systems implemented and suggests
some topics for future work. Section 6 gives a quantitative analysis of some aspects of network performance.

Section 7 lists work related to our content network implementation.
2 Project Requirements, Goals, and Constraints

The content network we describe above was designed and implemented by the course staff and the
students of the CS 244 class at Harvard University, during the spring semester of 2001. The 36 students in
the class (mainly Computer Science undergraduates) were divided into 14 groups of two or three people
each. These groups worked to create a testbed platform with which the basic ideas and viability of a content
network could be explored. Each group was given responsibility for a component of the content network
project. The course instructor and teaching fellows (mostly Computer Science graduate students) defined
objectives, supervised the work, conducted weekly meetings with groups, and coordinated dependencies
between the various groups’ components. The course staff was also responsible for integrating the

implemented components into a functional system. The work was split into two parts, Phase I and Phase II,

2

with the first phase concerned with building a functional content network testbed, and the second phase
designed to extend network capabilities in directions deemed interesting by the course staff and students.

The requirements of the project were to build a working content network system; to address design
challenges such as header layout and routing methods, understand the design tradeoffs that need to be made
when building a large system supporting massive amounts of contents, and to use Internet content tools such
as Web browsers. Beyond these requirements, the project organization had the following educational goals.
First, the project was intended to expose students with varying levels of software engineering experience to
the process of developing a reasonably complex software system, from initial conception, through
specification, detailed design, testing, integration, and documentation. Second, the division of tasks among
the groups was targeted at allowing components to be developed in parallel. This meant that the students
gained valuable experience at not only working in groups, but also in coordinating their own groups with
those of others.

One constraint to the project was the strict one-semester timetable. Within this time period, we were
able to cover relevant literature, architectural designs and projects, in addition to working on our own design

and implementation.

3 Content Network Architecture

There are three basic types of nodes in the content network: a content source, which has some type of
content it makes available to the rest of the network; a content requestor, which is looking for a piece of
content; and a router, which passes messages between the previous two types of nodes as well as other
routers. These types of nodes can be co-located on a single physical host. All messages are exchanged
without requiring either party to have a network address.

Instead of flat addresses, the content network uses hierarchical descriptors, consisting of sequences of
increasingly general categories. For example, a content about a Red Sox baseball game may be described by
the sequence (“Today’s Game”, “Red Sox”, “Baseball”, “Sports”).

Traffic across the network consists of three types of messages: registrations (REG), requests (REQ), and
deliveries (DLV), as depicted in Figure 1. When a content source wishes to advertise some content, it sends

an REG message containing the content descriptor for that content. Similarly, a content requestor sends out

3

Content ——> (Content Network |<—= Content
Requestors Sources

1 Registration {REG)
PR
2. Request (REQ)

3, Delivery (OW)

Figure 1. REG, REQ, DLV messages in the Content Network.
an REQ to request a content with a particular content descriptor. The routers then forward this REQ toward
the closest content source with the requested content. The REQ may however be dropped if it reaches a
router that cannot forward the message, or its Hops-to-live field decreases to zero. When a content source
receives a REQ for content it provides, it responds with a DLV. This DLV contains the requested content and
is forwarded back through the network to the requestor using a trail set up by the request.

The Phase I design is content over IP, while Phase II is content over both IP, which is more general, and
directly over Ethernet, which is more efficient (see Figure 2). In order to simplify the implementation of the
protocol stack, for the Phase II design we emulated connectivity among nodes at a connectivity server made
to switch all traffic. The connectivity server proved to be a convenient way to simulate large, arbitrary
network topologies with hundreds of nodes and also to gather traffic statistics, such as average hop count for

content access.
4 Design Highlights
In this section, we examine the major components of the content network. We discuss the functionality
of each component, along with interesting design and implementation decisions we have made.
4.1 Topic Directory

A network whose nodes are denoted by flat addresses does not scale well if routing tables are to list

Internet Content/IP Content/Ethernet
Network Layer 1P Content Content
Link Layer MAC IP MAC

Figure 2. Protocol stacks for the Internet, content over IP, and content over Ethernet.
Corresponding layers are shown in the same row.

every available node. Traditional IP networks take advantage of hierarchy in host addresses by aggregating
routing table entries, thus avoiding enumeration of every Internet host [21]. Analogously, hierarchically
named contents can let content networks scale to a large degree.

In order to provide a large test set of hierarchically named contents, we constructed a topic directory (see
Figure 3) mapping URLs of existing Internet content to hierarchical content descriptors. We populated the
topic directory using part of the taxonomy from the Open Directory Project [16]; however, any content

classification would have worked.
4.2 Message Headers

The goal of the content message header (see Figure 4) is to strike a balance between expressiveness and
efficiency. The header needs to allow for arbitrarily long content descriptors, which describe any possible
content. At the same time, it must also allow routers to route packets quickly, as in IP networks. To achieve
this balance, the message header is divided into two parts: a fixed-length section for efficient routing,
followed by a variable-length section for storing the content descriptor. This resembles the design of the
IPv6 header, which too consists of fixed- and variable-length sections.

The fixed-length section of the message header contains standard fields such as version number, header
length, and checksum. Instead of a destination address field, the content message header contains a
summarized content descriptor field with cumulatively hashed values of multiple elements of the descriptor
(see Figure 5). However, only a fixed-size segment of the content descriptor resides in this field at once; the
level field denotes the first element of that segment. Using this summary, packets can be forwarded quickly

without examining the variable-length section of the header. The manner in which elements are occasionally

()
Sports News Arts
Golf Tennis
/ Sports / Tennis / www.racquets.com

(a) (b)

Figure 3. (a) A sample topic directory. The leaf, www.racquets.com, is a content. (b) The associated
content descriptor, which consists of nodes on the path to the root of the tree.

Version Mesg. Type 8-bit Hops to Live 16-bit Classification
16-bit Header Length 8-bit Level 8-bit Reserved
32-bit Total Length (in bytes)
32-bit Header Checksum
128-bit Message Identification Number

Fixed-length section

256-bit Summarized Content Descriptor for Routing
Variable-length section

Figure 4. Content Message Header

swapped into the fixed-length section is described in Section 4.3, and resembles header processing for loose
source routing [20] in IPv4 networks.

The variable-length section contains the full content descriptor in XML [12]. We chose XML for the
encoding because of its inherent extensibility. Using XML to encode the entire content descriptor, the
variable-length section of the message header may become quite large. However, routers do not need to
parse this section too frequently because the fixed-length part of the header is usually sufficient to make a
forwarding decision. To provide additional flexibility in routing, content descriptors encoded in XML could

be chained together using Boolean logic operators. Our system does not yet implement this functionality.
4.3 Forwarding

As stated earlier, a unique feature of the content network is that message forwarding is based on content
descriptors instead of node addresses. Therefore, a routing table entry consists of a content descriptor prefix
and an associated next hop router. The routing table is looked up with the summarized content descriptor

field—thus, the lookup has access only to a fixed-size portion of the full content descriptor. The lookup

Content Descriptor
/ Computer / Networking / Motus / CS244 / Testbed

. 7
. " Y '}
- ' Y)
.... Y...
v A 4 oA e, b
h(Computer) | h(Networking+ h(Motus+ h(CS244+
h(Computer)) h(Networking+ h(Motus+
h(Computer))) h(Networking+
h(Computer))))

Summarized Content Descriptor

Figure 5. Summarizing the content descriptor by cumulative hashing. h(x) denotes a hash function.
6

returns a next-hop router if a match is found, and a flag to indicate whether more specific entries exist. In
order to guarantee a longest prefix match on the full descriptor, if this flag is turned on, the summary of a
more specific portion of the descriptor is computed and the lookup repeated until the returned flag is off.
The summary that resulted in the longest match remains in the fixed-length section, and the packet is
forwarded to the next hop. Figure 6 describes this process with an example.

In order to facilitate the forwarding of DLV messages, a trail table is maintained. When a router receives
an REQ, it records the globally unique 128-bit message ID and the previous hop in the trail table. Thus,
when a DLV with the same message ID arrives, it can be forwarded on the correct path to the source. Trail

table entries are associated with a time-to-live value, and deleted after they expire.
4.4 Route Aggregation

The routes in our content network are disseminated using a distance vector routing protocol. The
protocol takes advantage of content locality by performing aggregation of routing table entries. In many
possible applications of a content network, it is likely that similar contents will be close together.
Aggregation of routing table entries does not affect routing far away from the content source, and can
significantly reduce the number of entries. For example, suppose that content that is specific to Boston, such
as the Red Sox web pages, tends to be clustered near Boston. A far away router only needs to store one

routing entry for all such Boston content (see Figure 7).

Routing table: A/B/C/D/E - Node2

Packet: Summary: h(A) h(AB) h(ABC) h(ABCD) Summary: h(A..E) h(A.F) h(A.G)
Content Content
Descriptor: A/B/C/D/E/F/G Descriptor: A/B/C/D/E/E/G

Route lookups:
First lookup = (no match, more)

Second lookup = (Node 2, done)

Figure 6. Illustration of incremental lookup. A packet with first four elements of the descriptor
in its summary field arrives at Node 1. The first lookup finds no match; however, the result
indicates existence of longer entries, so the next three elements are hashed and placed into the
summary field. The second lookup now returns the longest prefix match. The resulting packet,
with the updated summary field, is shown at Node 2.

Texas Routing Table

Without Aggregation
/Boston/Red Sox |2
/Boston/Bruins 2 - -
fBoston/Celtics 2 rd) Bruins
— / N
’ . \ . Red Sox -‘
N . i
Texas 1 o T ; i
. - \
~ s . :
- \ I
With Aggregation ~ 7
T -
.
Boston

Figure 7. Routing table aggregation

4.5 Transport Layer and API

The transport layer interfaces directly with an API, whose interface is based on transaction identifiers, or
sockets, and is analogous to the BSD Socket API. While transport layer design scope usually includes flow
control, packetization, retransmission, and congestion control, we chose to implement only packetization for

simplicity.
4.6 Applications

We have developed several applications to work on top the content network in order to demonstrate the
convenience and power it can provide to application developers. In particular, peer-to-peer applications are
easy to create, due to the fact that most of the needed functionality is already provided at the network layer.

A proxy server has been designed to enable interfacing between content on the Internet and our content
network. The proxy server translates a request in the form of an ordinary URL, made by a standard Web
browser, into a content request. The proxy server caches content internally and uses a simple FIFO scheme to
expire cached material.

In order to use content on the Internet, data from the content network returning to a browser is bundled
into a content container. Since the content network deals with contents and not specific files, the container
allows related files to appear as a single content. In a container, the files reside within far archives, each in

its own directory, and are accessed through a programming interface that allows reading and writing. For

instance, a container may consist of multiple HTML files, CGI scripts, and image files from a single Web
page.

We have an Internet-to-content-network gateway that directly transmits web pages through the content
network and a proxy server, to the end user’s browser. Given pre-configured URLSs from the topic directory,
each content-network gateway router REGisters the URLs as available to the content network. They then
translate content network REQuests into HTTP requests, acting as WWW proxy servers from the point of
view of WWW servers in the Internet. The HTTP replies are packaged into content containers as described
above. While pages with frames are obtained by recursively downloading referenced HTML files, parsing

JavaScript proved too difficult, so media loaded by JavaScript are ignored.
5 System Assessment

Section 5.1 discusses the basic infrastructure and functionality we implemented in Phase 1. Section 5.2
describes the more ambitious and advanced functionality we started in Phase II. Section 5.3 addresses areas

we considered but did not implement due to time constraints, and which are planned in future work.
5.1 Phase I Implementation

The basic functionality implemented in Phase I includes content routing, allowing access both to content
on the web from the content network, and content in the content network from a normal web browser.

Even with the basic implementation, we were able to see potential advantages over current networks.
One of the content network’s major features is the fact that its messages are routed by content and not by
location. This makes management of content extremely easy. For example, a content provider can easily
improve the availability and performance of a particular content by placing multiple copies in the network
(see analysis in Section 6). Since the content network already routes by content, no further alteration is
necessary to have requests automatically routed to the closest copy. This type of adaptive functionality is also
possible on an IP network, but generally requires a great deal of manual management to maintain, whereas
the content network is directly suited for this.

In addition to the ease of content management, the content network may allow for easier defense against

disruptions such as distributed denial of service attacks. Content can be duplicated and placed in several

locations in the network, and the burden of the attack is diffused among the several copies. When a particular
content is requested, the request is routed to the nearest content source automatically. Unlike in an IP
network, there is no need for a load-balancing gateway or a complex manual redirection mechanism, both of
which requires explicit management and could possibly introduce either new security vulnerabilities that

might be exploited or new points of attack.
5.2 Phase II Implementation

In the last few weeks of the class we augmented the basic content network with more advanced
functionality. In particular, we began implementing migration and content-clustering based routing.

The content network can be augmented to allow content migration in order to improve performance and
network efficiency. There are two possible forms of content migration: request-based and clustering-based.
Request-based migration moves content in the direction of high frequency requests to decrease the average
latency of content delivery [11]. This type of migration is under the assumption that storage space is limited,
so that choosing where to place the single copy of the content becomes important.

We have studied two content placement approaches for reducing the size of routing tables in routers.
The first approach places contents based on their paths. That is, contents that have the same initial portions
of their paths are placed in the same region so that these contents can be reached via the same external
network-layer connections for the region. Consider, for example, Figure 7. Contents related to the sports
teams in Boston, such as the Bruins, Celtics and Red Sox, are all placed in the same region so that they can
be reached via the same external links connected to node 2. Thus, for nodes outside the region, such as node
1 of Figure 7, to forward content messages related to these teams, their route tables need only have one entry
corresponding to the path "Boston/sports teams", rather than separate entries for each team. We have
investigated methods of dynamically migrating contents sharing the same initial paths to the same region, in
order to reduce the size of routing tables.

The second approach places contents based on their semantics, as described in [11]. Using content
clustering analysis, a content search tree is built for a class of contents of interest. By searching over the tree
from the root, any given content will end up at one of the tree leaves. The content is then placed at the leaf,

or a node known to the leaf. Routing a request for a content follows the same search process over the content

10

search tree. A node need only have one routing entry for each of the cluster centroids in the layer below.
Since a centroid represents all semantically near contents under some metric, a node will just need to track a
small number of them. For example, for the content cluster of Figure 8, each node needs to track no more
than two centroids. Thus its routing table has no more than two entries.

The basic mechanisms of our content network, such as the content protocol stack, can support both
approaches. Since nodes of the current implementation forward content messages based on content paths, it
supports the first approach naturally. To support the second approach, routing tables need to be loaded with

the content search tree, and the route lookup will involve content classification.
5.3 Future Work

In addition to the issues explored and covered in our two phases of implementation, there are a variety of
issues that we have not yet addressed sufficiently due to time constraints, and still need to be dealt with in the
future. In particular, there are several important security concerns to consider in the content network.

For instance, while content-based addressing is convenient because individual content sources cannot be
easily targeted for attack, there is also a potential downfall. The anonymity of the network can be exploited if
a content source spoofs content, since this false content cannot be bypassed easily in the network, even when
detected. Therefore, some type of authentication scheme should be developed and added to system,
preferably one that does not have a single point of failure.

In addition, malicious sources can flood routing tables with invalid entries. Likewise, content requestors
can overload the system by sending large amounts of requests. Deregistration of content and privatization of
routing tables [22] could be possible solution to these problems, but have yet to be explored in depth. It may

Jack Fg
Fop .y
Helen F,

P, P,
LA NEA NY

Figure 8. Content clustering

11

be possible to build a trust management system into the network to help control some of these security

issues.
6 System Analysis

Two simulations were conducted to analyze the availability of content on a content network and the
benefits of migrations. These simulations were performed separately from our content network testbed.

The content network makes “mirroring” content very easy. Mirroring increases content availability—the
fraction of nodes, which can reach any copy of a given content. The purpose of the first simulation was to
determine the availability of content in a mobile ad hoc network. Multiple copies of the same content were
placed randomly in a 1000m x 1000m field with n nodes, each with a radio range of 250 m. As expected,
availability improved as either the number of copies of the content, or the node density increased (see Figure
9). For example, in a 20-node topology with a single copy of the content in our network, approximately 50%
of the nodes have access to the content, whereas with 15 copies of the content, approximately 94% have
access to the particular piece of content. In a somewhat denser network of 35 nodes, just two copies of the
content were sufficient to provide 95% of the nodes with access to the content network.

The second simulation evaluates the benefits of migration with a simple network of n nodes, arranged in
a ring topology. We assume each node has space to store two pieces of content—one to store its original
copy, and one as temporary space for contents being migrated. The ring topology allows all migration to
move in the same direction to avoid deadlock. In addition to being content sources, nodes act as requestors of

content. The content requests are modeled using a Zipf distribution, which has been shown to model the

10% A
0% ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90 100

Number of nodes in field

£ 100% -

S 90% —a— 15 copies
o o/ |

S 80% —— 10 copies
S 70% ,

2 60% —a— 5 copies
8 50% - —e— 3 copies
I 40% - .

£= —%— 2 copies
@ 30% P

8 20% —*— 1 copy
kS

2

Figure 9. Availability of contents vs. node density

12

frequency of requests to web pages and other contents [2] [5].

The Zipf distribution is a heavy-tailed distribution, where even as items become less popular, they still
occur with significant probability. Therefore, we assume that caches with small, fixed storage space end up
thrashing—in such a system migration becomes a better alternative. The more negative the slope of the Zipf
distribution, the less heavy the tail—which means that the requests exhibit more locality (see Figure 10).

We compared the number of hops to deliver the content from random locations versus from optimal
locations. As expected, when contents are placed randomly, the results are not affected by the request
distribution (see Figure 11). In addition, the number of hops increases as the number of nodes increases.
However, the number of hops in optimal placement is lower for requests exhibiting greater locality (see
Figure 12). For distributions with extremely high locality such as the Zipf distribution with a slope of -3, the

average number of hops is nearly independent of the size of the network topology.

7 Related Work

Gritter and Cheriton [8] recently proposed an architecture for content routing support in the Internet,
where the key idea is to route DNS requests, instead of performing recursive lookups using the current out-
of-band DNS hierarchy. To do this, they propose a domain name lookup protocol to run alongside IP routing
protocols. In order to allow scalability, content names are bundled into volumes called aggregates. The
membership of aggregates is determined by administrative relationships, such as when all content providers,
belonging to a certain ISP, advertise their content in the same aggregate. The idea of routing on content
names is similar to what is presented in this paper; here, our key distinction is the hierarchical naming for

contents, which lets arbitrary levels of aggregation happen automatically. Beyond that, we discuss content

100%

3

3 90%

o = -

S 0% slope =-3
[}

o E égzo slope = -2

_3 5 50% —@— slope =-1

B E % —&—slope =-0.5

£ %

@ 3 20%

5 10%

2

Content ID

Figure 10. Request Model Based on Zipf Distribution (Node 4 in 9-node network)

13

30

Average Number of Hops from

1 g 30
g 1 —— Zipf (slope =-0.5) 25"
Q 2 . T S
% —&— Zipf (slope =-1) 5 O
e . 5 S
5 15 —&— Zipf (slope = -2) é 5 1
B 1o / Zipf (slope = -3) S8
> > O
g 5 1= é 5
o "o S s
0 é 0 1
0 20 40 60 80 100 0 20 40 60 80 100
Number of Nodes Number of Nodes
Figure 11. Latency of content Figure 12. Latency of content
requests (random placement) requests (optimal placement)

migration and clustering techniques, enabled by the contents' independence of location.

In general, P2P systems decouple content from location, emphasize anonymity, only grant information to
nodes about their peers, and allow duplication of content or some other form of redundancy to increase
content availability. The Gnutella [6] and Freenet [4] are examples of projects in peer-to-peer computing.
Freenet maintains routing tables of hashed content-identifiers—an approach that is functionally similar to our
hash-based content routing. Gnutella, on the other hand, uses an application broadcast protocol that floods
the network with requests for content. Our use of content routing does not suffer from traffic scalability
problems seen in Gnutella networks. Gnutella does not address content availability, making it vulnerable to
denial of service (DoS) attacks, like host-addressed networks (i.e., IP) [15]. Freenet performs a hybrid of
caching and migration (similar to our scheme) to manage demand and can thus withstand DoS attacks.

These systems are all built at the application level and build approximations to content-addressing on top
of host-based routing with a great deal of effort. Our architecture brings content routing to the network layer,
making the features of these systems easier to implement, while providing a framework for building more
advanced applications such as protection of DoS attacks or content migration.

Distributed data storage systems are still targets of conceptual research and preliminary implementations.
One example of such a system is the OceanStore project [10], which describes a redundancy and scattering
system similar to Mojo Nation, caching and migration similar to Freenet, and elaborates on many other
storage and consistency concerns. A great deal of research is currently pending in the areas of distributed

caching [3] [13] and cache update propagation [1].

14

IP Anycast routing [9] [19] presents semantics that are similar to our high-level content routing
mechanism. IP Anycast is a service for transmitting messages to any host within a group of equivalent hosts,
called an anycast group. When an REQ is sent using our content network, it reaches exactly one host—the
closest host carrying the content specified in the REQ. This differs from IP Anycast in that the addresses
target contents, and not physical hosts.

Many design features of P2P and distributed data systems are intended to avoid DoS attacks. The
majority of these systems nonetheless suffer from other security and/or usability concerns, such as the
inauthenticity of data and the possibility of publishing content under inaccurate descriptors. These concerns
either belong to the application scope or are limitations of the protocols being used. Our content network
architecture can alleviate the damage caused by some of these vulnerabilities by allowing dynamic routing to

localize access to malicious content.

8 Conclusion

Our content network has several advantages over traditional networks, including scaling flexibility,
resistance to denial of service attacks, and ease of implementation of peer-to-peer applications. However, we
have also pointed out several areas deserving further investigation, particularly security. We have given
demonstrations of content network usage, and suggested future areas in which it might be improved.

Technical contributions of this paper include a novel content routing network layer with three primitive
message types: REQ, REG, and DLV. The addressable objects in this network layer were contents whose
hierarchical names were assigned from an existing taxonomy, or derived from content descriptions. Further,
we proposed to take advantage of the contents’ location independence by actively migrating them. In one
application of migration, access times were reduced when requests exhibited some degree of locality. Lastly,
we described a routing framework where messages were forwarded hop-by-hop, using longest prefix
matching to compute next hops. Content descriptor prefixes were disseminated and shortest paths computed
by means of a distance vector routing algorithm. We also discussed an alternative design where the

classification hierarchy is explicitly embedded into the network topology.

15

9 References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]
[12]
[13]

Almeida, J., Broder, A., Cao, P., and Fan, L., “Summary Cache: A Scalable Wide-Area Web Cache Sharing
Protocol,” in Proceedings of ACM SIGCOMM 1998, Vancouver, Canada, September 1998

Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S., “Web Caching and Zipf-like Distributions: Evidence
and Implications,” in Proceedings of IEEE INFOCOM 1999, New York, NY, USA, March 1999

Cao, P., and Irani, S., “Cost-Aware WWW Proxy Caching Algorithms,” in Proceedings of the USENIX
Symposium on Internet Technologies and Systems, pp. 193--206, Monterey, CA, USA, December 1997
Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W., “Freenet: A Distributed Anonymous Information Storage
and Retrieval System,” in ICSI Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA,
USA, July 2000

Cunha, C. A., Bestavros, A., and Crovella, M. E., “Characteristics of WWW Client-based Traces,” Technical
Report TR-95-010, Boston University, Department of Computer Science, Boston, MA, USA, April 1995

“The Gnutella Protocol 1.0 Specification,” http://dss.clip2.com/GnutellaProtocol04.pdf

“Gnutella: To the Bandwidth Barrier and Beyond,” http://dss.clip2.com/gnutella.html

Gritter, M., and Cheriton, D. R., “An Architecture for Content Routing Support in the Internet,” in Proceedings
of the 3rd USENIX Symposium on Internet Technologies and Systems (USITS'01), March 2001, San
Francisco, CA, USA

Katabi, D., and Wroclawski, J., “A Framework for Global IP-Anycast (GIA),” In Proceedings of ACM
SIGCOMM 2000, Stockholm, Sweden, August 2000

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B., “OceanStore: An Architecture for Global-Scale
Persistent Storage,” in Proceeedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000), Cambridge, MA, USA, November 2000
Kung, H., and Wu, C., “Hierarchical Peer-to-Peer Networks,” April 2001 (submitted for publication)

Markup Languages and Ontologies Homepage, http://www.semanticweb.org/knowmarkup.html

Michel, S., Nguyen, K., Rosenstein, A., and Zhang, L., “Adaptive Web Caching: Toward a New Global
Caching Architecture,” in 3rd International Web Caching Workshop, Manchester, England, June 1998

Mojo Nation Homepage, http://www.mojonation.net/

Needham, R. M., “Denial of service: an example,” Communications of the ACM, November 1994, pp. 42-46
Open Directory Project Homepage, http://dmoz.org/

Oram, A., ed., Peer-to-Peer: Harnessing the Power of Disruptive Technologies, Sebastopol, CA: O’Reilly &
Associates, March 2001

The O’Reilly Peer-to-Peer Conference Homepage, http://conferences.oreilly.com/p2p/

Partridge, C., Mendez, T., and Milliken, W., “Host Anycasting Service,” IETF RFC 1546, November 1993
Postel, J., “Internet Protocol,” IETF RFC 791, September, 1981

Rekhter, Y. and Li, T., “An Architecture for IP Address Allocation with CIDR,” IETF RFC 1518, September
1993

Turner, R. M., “The Tragedy of the Commons and Distributed AI Systems,” in Proceedings of the 12th
International Workshop on Distributed Artificial Intelligence, Hidden Valley, PA, USA, 1993

Waldvogel, M., Varghese, G., Turner, J., and Plattner, B., “Scalable High Speed IP Routing Table Lookups,”
in Proceedings of ACM SIGCOMM '97, Cannes, September 1997

16

