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Abstract -- Active Delay Control is a novel extension for TCP,
where TCP endpoints impose delays on the transmission of pack-
ets to improve performance. The amount of delay can be calcu-
lated by routers from the level of congestions, or by endpoints
from the received congestion signals. In particular, when there
are many TCP flows competing for the bandwidth of a link, they
can reduce their transmission rates to arbitrary degrees by
increasing delays, without experiencing TCP time-outs. Active
Delay Control is therefore useful for those long-lived TCP-based
applications that can not tolerate time-outs. Examples of such
applications are video streaming and storage networks. It is also
useful for short-lived flows that require short transfer time.
Examples of such applications are HTTP transactions. We
present the concept and motivation behind Active Delay Control,
and evaluate them by simulations.

I. INTRODUCTION

TCP is widely used in Internet applications. There have been
a great deal of research results on TCP in the literature [7].
However, a problem related to the many-flow case remains
[12]. When the number of TCP flows sharing the link is suffi-
ciently large, some of these flows will become “fragile” in the
sense that they will be subject to frequent TCP time-outs.
These time-outs will significantly degrade the performance
perceived by end users.

We elaborate the challenge of devising solutions for this
many-flow TCP problem. Our objective is that when N TCP
flows compete on the same bottleneck link, each will get 1/N
of the link bandwidth over averaging intervals. It is important
to use small averaging intervals, which need to be as small as
few seconds, to reflect the responsiveness required by the
interactive applications and to provide the steady throughput
required by streaming applications. This means that these TCP
flows must not experience TCP time-outs, as they could last
seconds or longer. That is, after having passed the slow start
phase, these flows will need to be kept in their congestion
avoidance phase until the end of the connections [9].

During the congestion avoidance phase the rate of a TCP
flow is determined by CWND/RTT, where CWND is the con-
gestion window size and RTT is the round-trip time. Thus,

when the number N of competing TCP flows increases, each
flow must either decreases its CWND or increases its RTT to
reduce the rate. Recall that CWND cannot be smaller than one
packet. In fact, to avoid TCP time-outs, CWND needs to be
larger than five or six packets to allow TCP fast retransmit and
fast recovery to work [16]. To be truly “non-fragile”, i.e., resil-
ient to TCP time-outs, CWND needs to be a few packets more
than five or six packets [10]. Several modifications have been
proposed to reduce the required congestion window size, such
as ECN [15] and Limited Transmit [1].

We suggest a new solution, Active Delay Control, to this
problem. The routers notify endpoints when packets need to be
delayed at endpoints during congestion, and endpoints delay
either the transmission of data packets at the sender, or the
generation of ACK packets at the receiver. This added delay
increases the RTT of the flow, thereby allowing larger CWND
to reduce time-outs. Since it is undesirable to reduce CWND
below a certain limit as stated above, increasing RTT becomes
necessary when N is sufficiently large.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the concepts and mechanisms of Active
Delay Control. Then Section III evaluates the effectiveness of
delay control with simulations using a sender-based delay con-
trol mechanism. We review related work in Section IV and
conclude in Section V.

II. ACTIVE DELAY CONTROL

When it is expected that many flows will share a congested
link, we propose Active Delay Control to avoid frequent time-
outs. In this section, we introduce the concepts of Active Delay
Control and some mechanisms for its implementation.

A. Concepts

A solution to cut down frequent time-outs is to keep CWND
large enough, e.g., more than eight packets. It is possible to
keep CWND large by increasing the buffer size of the router.
However, this approach is undesirable and not scalable. With a
larger buffer size, the buffer occupancy can grow higher dur-
ing congestion, resulting in a larger queueing delay. This is
undesirable because packets from all flows going through the
shared buffer would suffer from the queueing delay. This
approach is also not scalable because the size of the buffer
must be determined by the number of active flows traveled
through the router, which can be very large.
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Instead of using large buffer in the router, under Active
Delay Control the transmission of packets are delayed in the
endpoints to achieve the same effect.

Suppose there is a router with infinite buffer space, so the
queueing delay can be arbitrarily large such that every flow
passing through it can have a large enough CWND. The goal of
Active Delay Control is to delay the packet at an endpoint for
the same amount of time as the queueing delay the packet
would experience when traveling through such a router. Thus,
without relying on queueing delay in the router, the RTT can be
increased to allow large CWND.

B. Mechanisms

There are two ways to implement delay control in endpoints.
We briefly describe some mechanisms we have investigated
and their issues.

The delay can be imposed at the receiver. That is, after
receiving a data packet, the receiver will forward the received
data immediately to the application, but defer the generation of
the ACK packet until the required amount of delay has
elapsed. The delay can also be imposed at the sender. In this
case, after receiving the ACK packet, the sender does not pro-
cess it until the amount of delay has elapsed. Out-of-order
packet delivery and duplicate ACKs are handled as in tradi-
tional TCP.

We have investigated two receiver-based delay control
mechanisms. The first one is called “Exact Receiver-based
Delay Control (RDC)”, and the second one is called “1-bit
RDC”. Both mechanisms are covered in [8] with detailed
descriptions, so we only summarize them briefly in this sec-
tion. Under Exact RDC, routers are responsible for computing
necessary delays based on the congestion level. A rate-based
queue management scheme is used to compute the exact
amount of delay that the packet would experience when travel-
ing through a traditional FIFO router. The amount of delay
then be appended to the packet as delay notification. The
receiver delays the ACKing by the amount of delay specified
in the delay notification. With this mechanism, the receiver
will delay the generation of the ACK by the same amount as
that the packet would experience in a router with a large buffer.
However, this mechanism requires new features in the router
such as delay calculation.

In contrast, under 1-bit RDC, the receiver approximates the
delay based on congestion signal generated by routers. A
router uses active queue management algorithms (AQM) [2],
such as RED [5], to generate congestion signal, and sends it to
the receiver via ECN’s Congestion Experience (CE) bit.

The receiver maintains a value as the amount of time to
delay the ACKing of each packet. This value will increase
when congestion signals are received from the network, and
will decrease when no congestion signal is received. The value
is increased multiplicatively and decreased additively so the
resulting rate follows the principle of “Additive Increase and

Multiplicative Decrease” (AIMD) [3] of TCP’s congestion
control algorithm [9]. This mechanism does not require addi-
tional features from routers beyond those required by ECN. A
major drawback of 1-bit RDC is that for the precise update of
the delay, it requires dynamic estimation of CWND and RTT.

We have also devised a sender-based delay control (SDC)
mechanism. Similar to 1-bit RDC, SDC uses ECN CE bit to
approximate the delay value; however, this is now done at the
sender rather than the receiver. Since the sender maintains
CWND and measures RTT, it can use these values to update the
delay so that the rate change in SDC approximates that of tra-
ditional TCP. To allow large congestion window the sender
will not halve its size when receiving CE; instead, the sender
will increase the delay. When the congestion window is suffi-
ciently large, e.g., above eight packets, the sender will disable
delay control and resume window-based congestion control as
in normal TCP. For the simulations in next section, we use this
SDC mechanism for the delay control.

III. EVALUATION OF UNDERLYING CONCEPT

In the section, we evaluate the concept of delay control
using simulations performed in ns-2 [17]. We compare three
approaches of increasing the congestion window size in order
to reduce the time-out frequency. We show that SDC can
reduce time-outs without introducing network delays to appli-
cations.

Theoretically, we could increase the congestion window size
by extending the RTT of TCP flows with one of the following
three methods: increasing the propagation delay of links,
queue size of routers, or delay of packets at endpoints. Accord-
ingly, in our simulation, we first show that increasing propaga-
tion delay of links helps reduce time-outs. Then, we show
similar results by increasing queue size of the router. However,
neither increasing propagation delay nor enlarging queue size
of routers is desirable. We show, finally, that SDC can reduce
time-outs even when queue size of the router is very small. In
particular, we demonstrate that SDC is superior to traditional
TCP and a couple of TCP’s recent modifications.

A. Simulation Environment

All of the simulations in the paper were performed on a sim-
ple configuration depicted in Figure 1. In this configuration,
there are N TCP flows merging at the router G0, and router G0
connects to router G1 via the bottleneck link L. In general, the
simulations are intended to study the situation where the net-
work path only allows few in-flight packets for each flow and
thus, frequent time-outs is expected [12]. The default parame-
ters of the simulations are summarized in Table 1.

In addition, we make the following assumptions about the
protocols and the active queue management algorithms used in
routers, unless otherwise is stated explicitly:

• Senders run the TCP NewReno algorithm that only halves
the congestion window at most once per RTT [6]. More-



over, senders start with an initial CWND of two packets.
• Senders enable Limited Transmit. That is, if allowed by

the congestion window and advertised window, a sender
will transmit a new segment after receiving only two
duplicate ACKs.

• All routers and TCP endpoints are ECN-Capable. Also,
routers employ RED to perform the ECN marking.

B. Number of Time-outs as a Function of Propagation Delay

In this set of simulations, we vary RTTs of flows by chang-
ing propagation delays. The propagation delays between links
from Si to G0 and between G1 and Ri are set so that the RTT of
each flow varies in the range between 100 ms and 500 ms in
increments of 100 ms. We use 50 bulky TCP flows, which are
all randomly started in the first second and the queue size of
router G0 is set to be 100 packets (b equals to 100).

When RTT is 100 ms, the network allows a total of 118 in-
flight packets. Thus, on average, each flow only has less than
three in-flight packets. When the RTT is 500 ms, the network
allows a total of 193 in-flight packets, so on average, each flow
has about four in-flight packets.

As depicted in Figure 2, the average congestion window size
increases as RTT grows. With a larger RTT, more in-flight

packets are allowed for each flow so the average congestion
window size is increased. Figure 3 shows the total number of
time-outs decreases as the average congestion window size
increases.

We note here that a congestion window size of four packets,
rather than five or six packets or more, is sufficient to make
flows non-fragile. This is due to our use of ECN and Limited
Transmit. When the congestion window is able to grow to four
or more packets, most time-outs happen as the flows first
started.

C. Number of Time-outs as a Function of Router Queue Size

In this set of simulations, we change the queue size of the
router to increase RTT and thus CWND. This works because a
larger queue size leads to a larger queueing delay and thus a
larger RTT. We vary the queue size b of router G0 in the range
from 100 to 1500 packets with steps of 100 packets.

There are 40 long-lived bulky TCP flows randomly started
in the first second and 10 short-lived TCP flows started after
30 seconds. Each of the short-lived flows transfers 20 packets,
terminates, then restarts. We measure the transfer time of
short-lived flows as an indication of application delay caused
by protocols.

Corresponding to Figure 2, Figure 4 shows that the average
congestion window size for the 40 long-lived flows grows with
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Figure 1: Simulation configuration. Originating from Si, the i-th TCP
flow travels over link Li to router G0, link L to router G1, and link Ki to
reach Ri. The link L between G0 and G1 is a bottleneck link. All links are
symmetric and full-duplex.

TABLE 1 SUMMARY OF SIMULATION PARAMETERS

Parameter Value

packet size 1000 bytes

bandwidth of link L 1.5 Mb/s

propagation delay between G0 and G1 40 ms

bandwidth of link Li 10 Mbps

propagation delay between Si and G0 5 ms

propagation delay between G1 and Ri 5 ms

queue size of router G0 b packets

RED min thresh b / 6

RED max thresh b / 2

RED wq 0.002

RED maxp 0.1

RED gentle_ true

simulation time 100 seconds
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Figure 2: For TCP, average congestion window size grows as RTT
increases. This is due to a larger RTT allows more in-flight packets for
each flow.
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Figure 3: For TCP, the total number of time-outs decreases as the aver-
age congestion window size increases. When CWND is less than four
packets, fast retransmit and fast recovery can not work and time-outs
are frequent.



the queue size. Note that when the queue size is larger than 400
packets, the average congestion window size grows to exceed
four packets.

Figure 5 shows that increasing the queue size of router will
decrease the total number of time-outs. Three versions of TCP
are considered: TCP Reno, TCP Reno with ECN, as well as
TCP NewReno with ECN and Limited Transmit.

For TCP Reno, the number of time-outs does not go below
200 until the queue size reaches 800 packets, when the path on
average can hold more than five packets for each flow. After
the queue size reaches 1200 packets, when the path can hold

about seven packets for each flow, the performance is close to
the other two versions of TCP. This means that the congestion
window size of TCP Reno needs to be a few packets more than
four to avoid frequent time-outs. We note that due to the RED
algorithm used in the router, the queue is not fully occupied,
and as a result, the average occupancy is much lower than
queue size.

For TCP Reno with ECN, the total number of time-outs is
significantly reduced only when the router has a moderate
queue size, that is, 300 or more packets. The performance is
not much better than TCP Reno for smaller queue sizes.
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Figure 4: For TCP, the average CWND grows as queue size increases.
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Figure 5: For three versions of TCP, the total number of time-outs
decreases as queue size increases.
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Figure 6: For TCP, the median transfer time increases as queue size
increases. If the queue size is less than 400 packets, the median transfer
time for short-lived TCP is larger due to frequent time-outs.
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Figure 7: For SDC, the average congestion window size grows as maxi-
mum delay increases. With a maximum delay of 0.2 seconds, it is enough
to increase the average congestion window from less than 3 (in Figure 4)
to above 4.
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Figure 8: For SDC, only a smaller queue size is needed to avoid frequent
time-outs, compared to the TCP case of Figure 5.
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Figure 9: For SDC, short-lived flows on average have shorter transfer
times for small queue sizes, compared with TCP flows of Figure 6.



For TCP NewReno with ECN and Limited Transmit, it has
fewer time-outs than TCP Reno with ECN for queue sizes
smaller than 300 packets, and has similar numbers of time-outs
for larger queue sizes. This is because for small queue sizes,
Limited Transmit helps lower the total number of time-outs.
For both versions of TCP, when the queue size is larger than
400 packets, the total number of time-outs stays flat. This is
due to the fact that, in this case, the average CWND is already
larger than four packets.

To measure the delay the protocols may cause toward the
applications, we compute the transfer time of the short-lived
20-packet flows. Figure 6 shows that as the queue size
increases the median transfer time for the 10 concurrent short-
lived flows will increase. However, the median transfer time is
larger when queue size is smaller than 400 packets, because in
this case, the CWND is not large enough to avoid frequent
time-outs. Note that frequent time-outs slows down the trans-
fer more than the speed-up gained by shortened queueing
delays.

On the other hand, for the case when the queue size is larger
than 400 packets, the median transfer time increases linearly
with the queue size. In this case, the queueing delay dominates
the transfer time.

D. Performance Improvement of Delay Control at Endpoints

We use SDC to demonstrate the advantages of delaying
packets at endpoints. In particular, we show that SDC has
superior performance to TCP.

Under SDC, the sender can increase RTT by imposing
delays to packet transmission. As depicted in Figure 7, the
average congestion window size increases with the maximum
delay at the sender, using the simulation configuration of Sec-
tion III.C with queue size of router being 100 packets. Observe
that when the maximum delay equals 0.2 seconds, SDC can
increase the average congestion window size from less than
three (in Figure 4) to more than four packets. When the maxi-
mum delay equals 2 seconds, the average congestion window
size grows to seven packets.

Using the simulation configuration of the previous section,
Figure 8 presents the total number of time-outs of SDC with
the maximum delay of 2 seconds, as a function of queue size.
The figure shows that while achieving the same level of time-
out frequency as TCP, delaying packets at senders allows
smaller queue size at router. This implies that SDC will intro-
duce smaller queueing delay to applications.

In Figure 9, we show the median transfer times of SDC
flows as a function of queue size. Note that SDC has shorter
median transfer time than TCP, when the queue size is small.
This is because delaying packets at the sender allows CWND
to grow larger to avoid frequent time-outs, and consequently
shorten transfer time. When the queue size is larger than 400
packets, SDC and TCP have similar numbers of time-outs, and
thus have similar transfer time.

IV. RELATED WORK

TCP congestion control has been extensively studied in the
literature. An important issue in this area is TCP performance
in terms of the time-out frequency when there are many com-
peting flows [12][14]. However, not much work has been
devoted to improve the performance for the many-flow case,
where each flow does not have large enough congestion win-
dow to make fast retransmit and fast recovery work.

In [12], two approaches are proposed to address the frequent
time-outs problem of TCP in the many-flow situation. The first
one is based on provision of buffer space at router that is pro-
portional to the total number of active flows. Both FRED [11]
and FPQ [13] use this approach. In FRED, the router requires
to have at least two packets for each active flow, so that flows
run the Net Reno TCP [10] algorithm can avoid frequent time-
outs. In FPQ, the router requires to have at least five packets
for each active flow to avoid the same problem, without
changing the congestion control algorithm. Both FRED and
FPQ recognize the need of limiting queueing delays, by limit-
ing queue occupancy of every active flow. But the total occu-
pancy can still be large.

The second approach is to make TCP adapt better, when the
number of flows is large and congestion window size is small,
by modifying TCP’s congestion control algorithm. An exam-
ple of this approach is SubTCP [4]. However, it uses a multi-
plicative increase and multiplicative decrease algorithm, a
scheme that is well known not able to converge [3].

V. CONCLUDING REMARKS

We have described the motivation and approach of Active
Delay Control for TCP, as well as evaluated its concept using
simulations. Simulation results show that Active Delay Con-
trol is effective in addressing the many-flow scenario of TCP.
That is, it can reduce the frequency of time-outs when a large
number of TCP flows are sharing a congestion link with small
buffer space. Simulations also demonstrate that both long-
lived and short-lived TCP flows benefit from the use of Active
Delay Control. Other approaches, such as increasing the queue
size of router or per-flow buffer provisioning, will introduce
delays to applications and are not scalable.

The concept of Active Delay Control is to delay the trans-
mission of packets or the ACKing of packets at the endpoints.
For congestion control purposes, this endpoint delay has the
same effect as the router queueing delay, but without introduc-
ing delays to applications.

The endpoint delay can be implemented at the TCP sender
or receiver, as we have described in the paper. The method we
used for the simulation is a sender-based delay control (SDC)
mechanism, where the sender approximates the delay using
congestion signal, the CE bit, sent by routers. This mechanism
does not require additional features from routers beyond those
required by ECN.
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