
Wireless Networks 7 (2001) 221{236 221

Use of TCP Decoupling in Improving TCP Performance over

Wireless Networks

S.Y. Wang a;� and H.T. Kung b;��

a Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan

E-mail: shieyuan@csie.nctu.edu.tw
b Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

E-mail: kung@harvard.edu

We propose using the TCP decoupling approach to improve a TCP connection's goodput over wireless networks.

The performance improvement can be analytically shown to be proportional to
p
MTU=HP Sz, where MTU is the

maximum transmission unit of participating wireless links and HP Sz is the size of a packet containing only a TCP/IP

header. For example, on a WaveLAN [33] wireless network, where MTU is 1500 bytes and HP Sz is 40 bytes, the achieved

goodput improvement is about 350%. We present experimental results demonstrating that TCP decoupling outperforms

TCP reno and TCP SACK. These results con�rm the analysis of
p
MTU=HP Sz performance improvement.

Keywords: TCP, wireless networks, performance

1. Introduction

TCP [18] is the most widely used protocol for provid-

ing reliable and in-sequence transport service between

two hosts over the Internet. Recently, wireless networks

have grown signi�cantly, and as a result, studying and

improving TCP's performance over wireless networks

has become an active area of research.

The current TCP congestion control design does not

allow TCP to perform well over unreliable wireless links.

When one packet of a TCP connection is lost, the send-

ing rate of the TCP connection must be reduced by at

least 50%. (The rate reduction for TCP reno and TCP

SACK is 50%. For TCP tahoe, it can be much higher

than 50%. This paper assumes that TCP reno is used.)

When multiple packets in a TCP's congestion window

are lost, the TCP connection is very likely to time-out

for more than one second. This congestion control de-

sign works well to prevent congestion in a network in

which links (such as �ber optics) have very small bit-

error-rates (BERs) (e.g., 10�12). In such an environ-

ment, packet losses mostly result from packet dropping

due to router bu�er overow during congestion. How-

� This work is based on the author's Ph.D. thesis [30] at Harvard

University.
�� The �rst author's Ph.D. thesis advisor.

ever, in a network in which links (such as wireless links)

have large BERs (e.g., 10�6) and therefore packet losses

may result from both packet dropping due to congestion

and packet corruption due to link errors, TCP's conges-

tion control design will mistakenly and unnecessarily re-

duce a TCP connection's sending rate when its packets

get corrupted and lost due to link errors. The result

of these wrong control decisions is that the achievable

throughput of a TCP connection over wireless networks

with large BERs can be very poor.

To achieve improved throughput and at the same

time implement congestion control in a lossy wireless

network, a TCP connection needs to distinguish packet

losses caused by congestion from those caused by cor-

ruption. For packet losses caused by congestion, the

TCP congestion control should reduce the TCP connec-

tion's sending rate to help remove the current conges-

tion. For packet losses caused by corruption, the TCP

congestion control should not be invoked. That is, the

lost packets should be retransmitted but the current

sending rate should not be reduced. Recall that TCP's

congestion control uses an additive-increase (when there

is no congestion loss) and multiplicative decrease (when

there is a congestion loss) algorithm [7,31] to control a

TCP connection's sending rate. When a packet is cor-

rupted and lost, the sending rate of the TCP connection

222 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

should still keep increasing, rather than being reduced,

until one of its packet is lost due to congestion.

However, to distinguish packet losses caused by con-

gestion from those caused by corruption is challenging.

Many approaches have been proposed aiming at improv-

ing TCP performance over wireless networks. Section 2

will briey review these approaches.

This paper proposes the TCP decoupling approach

to improve TCP's performance over lossy wireless net-

works. Instead of attempting to distinguish packet

losses caused by congestion from those caused by cor-

ruption, this approach uses tiny (40 bytes) TCP/IP

header packets to implement TCP congestion control

for a stream of large data packets, which are responsi-

ble for carrying the user application's data. Since the

packet-error-rate (PER) is proportional to the packet

size [5,10] and the packet size of these tiny header pack-

ets is small, the chance that a tiny header packet gets

corrupted and therefore TCP's congestion control gets

wrongly triggered becomes small as well. As a result,

TCP's goodput improves in the TCP decoupling ap-

proach, and the performance improvement can be ana-

lytically shown to be proportional to
p
MTU=HP Sz,

where MTU is the maximum transmission unit of par-

ticipating wireless links and HP Sz is the size of a packet

containing only a TCP/IP header.

The rest of this paper is organized as follows. Sec-

tion 2 surveys previous work. Section 3 analyzes how

a non zero BER limits the maximum throughput that

a TCP connection can possibly achieve. Section 4 de-

scribes the design and implementation of our TCP de-

coupling approach. Section 5 presents the reliable de-

coupling socket approach, which is a direct applica-

tion of the TCP decoupling approach for improving

TCP performance over lossy wireless networks. Sec-

tion 6 discusses the strategies that are currently used

in the error control of the reliable decoupling socket ap-

proach. Section 7 explains why the reliable decoupling

socket approach can achieve a signi�cant improvement

on TCP's goodput. Section 8 presents experimental

results and shows that the TCP decoupling approach

outperforms TCP reno and TCP SACK. Section 9 com-

pares the TCP decoupling approach to other approaches

and points out its advantages over them. Section 10 dis-

cusses some future work that can further improve the

performance of the TCP decoupling approach . Finally,

Section 11 concludes this paper.

2. Related work

This section briey summarizes some approaches

that have been proposed to improve TCP performance

over wireless networks.

Link-Layer Schemes (e.g., [5,11]) Forward error cor-

rection (FEC) schemes can be used to reduce the

e�ective BER of a wireless link at the expense of

reduced bandwidth and a requirement for high pro-

cessing power to encode and decode packets. Au-

tomatic Request-Repeat (ARQ) can be used to au-

tomatically retransmit lost packets at the link layer

to hide packet loss from the sender of a TCP con-

nection at the expense of increased delay and delay

variations, and introduced packet reordering. These

two schemes can be combined to improve the quality

of a wireless link.

Snooping Protocol (e.g., [15]) If only the last hop

to a mobile host is a wireless link, a TCP-aware agent

can be run on the base station to snoop passing TCP

packets and do some local control. For example, by

caching recently transmitted TCP packets sent to

a mobile host and monitoring the acknowledgment

packets returning to the sender of a TCP connection,

the snooping agent can quickly resend a cached copy

of a lost packet to the mobile host if it observes that

more than three duplicate acknowledgment packets

are sent back to the sender of a TCP connection.

Snooping protocols of this kind have some draw-

backs. First, the agent must be TCP-aware. As a

result, this scheme is protocol dependent and can not

work for other existing protocols or future protocols

when they become available. Second, the snooping

performance overhead is high. Third, although a lost

packet can be retransmitted locally by the base sta-

tion, the generated three duplicate acknowledgment

packets still reach the sender of the TCP connec-

tion and cause the sender to unnecessarily reduce its

sending rate by 50%.

Split Connection (e.g., [1]) If only the last hop to a

mobile host is a wireless link, a TCP connection to

a mobile host can be split into two connections. The

�rst one starts at the sender of the TCP connection

and ends at the base station. The second one starts

at the base station and ends at the mobile host. Since

the second TCP connection is explicitly used for the

wireless link where packet losses are solely due to

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 223

corruption, not congestion, it can be �ne tuned to

improve TCP performance on the wireless link. A

shortcoming of this kind of schemes is that the end-

to-end semantic of TCP is violated. For example,

this will cause connection re-establishment problems

when the mobile host switches to other base stations

during a TCP connection's life time.

Explicit Loss Noti�cation (e.g.,[16,24]) Like the

snooping protocols described earlier, a TCP-aware

agent is run on the base station to watch passing

TCP packets to deduce that there may be a packet

lost due to corruption. It then sets a special bit in

the returning acknowledgment packets to notify the

sender of a TCP connection that the recent packet

loss may be a result of corruption, not congestion.

When detecting this bit, the sender will not reduce

its sending rate by 50%. This scheme is an improved

version of snooping protocols but still has some draw-

backs. First, the agent must be TCP-aware and, as

pointed out above, this scheme is protocol dependent

and can not work for other existing protocols or fu-

ture protocols. Second, the snooping performance

overhead is high. Third, the TCP congestion con-

trol at the sender of a TCP connection needs to be

modi�ed and becomes more complicated.

Modi�cations to TCP (e.g., [22]) TCP SACK can

be used to recover from multiple packet losses in a

window without timing-out. The same TCP conges-

tion control algorithms, but with di�erent parame-

ters, can be used to transmit data more aggressively.

For example, at the TCP receiver, \ack every other

packet" can be changed to \ack every packet" to in-

crease a TCP connection's ramp up speed. A draw-

back of this approach is that these modi�cations to

TCP may result in a TCP protocol that is too ag-

gressive and thus harmful to congestion control in a

network.

3. E�ect E�ects of Bit-Error-Rate on a TCP

Connection's Maximum Achievable

Throughput

This section analyzes the e�ects of a non-zero BER

on the maximum bandwidth an idealized TCP connec-

tion can possibly achieve. An idealized TCP connection

is de�ned as a TCP connection whose fast retransmit

and recovery mechanism always works on packet losses

and never times-out.

Consider a typical BER value of 3�10�5 for a wireless

link [3]. Assume that, just for this analysis, the packet

size PS is a typical MTU of 576 bytes, and that bit

errors are uniformly distributed in packets [3]. Then

the Packet Error Rate is approximated as:

PER = BER � PS = 3 � 10�5 � 576 � 8 = 0:14 (1)

This means that on average one corrupted packet is

expected to occur in every 1/PER = 7.2 packets.

We calculate the Maximum Allowable Window (W)

in packets and the Maximum Allowable Throughput

(MAT) in bits per second assuming that there is no

TCP time out. That is, this analysis assumes that a

corrupted packet can always be recovered by the fast

retransmit and recovery mechanism. When a packet

is corrupted and lost, TCP's congestion control will

cut its current congestion window size W to W/2, and

then increase the congestion window size by one packet

every round-trip time (RTT) until one packet is cor-

rupted and lost again. Since bit errors are uniformly

distributed over the stream of TCP packets, the num-

ber of transmitted packets between two packet corrup-

tions (called a "cycle" in the following discussion) is

roughly the same. Then, there exists a W such that,

in each cycle, the TCP connection's window size will

grow from W/2, (W/2)+1, . . . , to (W/2 + W/2), then

drop back to W/2. In each cycle, the total number

of packets transmitted between two packet corruptions

(losses) is thus W=2+(W=2+1)+ � � �+(W=2+W=2) =

(3=8)W �W + 3W=4.

Therefore,

1=PER (2)

=W=2 + (W=2 + 1) + � � �+ (W=2 +W=2)

= (3=8)W �W + 3W=4

Based on Equation 2, given a PER value, W can be

solved. For example, when PER is 0.14, W is about 4.

Note that the congestion window grows by one packet

per RTT. Thus a total of (3=8)W �W + 3W=4 packets

are sent over (W=2)�RTT time as depicted in Figure 1.

This implies that:

MAT (3)

= ((3=8)W �W + 3W=4) � PS � 8=((W=2) �RTT)

= (3=4) �W � PS � 8=RTT + (3=2) � PS � 8=RTT

224 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

W

W/2

window size

time
RTT*(W/2)

(3/8)W*W+(3/4)W packets transmitted

Figure 1. TCP's saw-tooth window growing and shrinking.

where RTT is the round-trip-time, in seconds, for the

TCP connection.

Based on Equation 3, for example, when W = 4,

RTT = 0.540 and PS = 576,

MAT = 26kbps (4)

Using a retransmission packet loss detection algo-

rithm, Samaraweera and Fairhurst [24] reported that

their method can achieve an optimal throughput of

about 26 kbps under similar assumptions about BER,

packet size and RTT. Their empirical results are con-

sistent with Equation 4 of our analysis.

The MAT value of Equation 3 results from link er-

rors rather than network congestion. Thus, the MAT

value will hold even when there is no congestion in the

network and the link bandwidth is in�nitely large. The

severity of the problem increases when RTT is large,

as in the case of satellite communications [19,22]. This

poor TCP throughput presented in the analysis is a con-

sequence of incorrectly applying TCP congestion con-

trol algorithms to a situation where packet losses are

due to link errors, rather than congestion.

4. The TCP Decoupling Approach

In the TCP decoupling ([17,30]), TCP congestion

control is applied to a data packet stream without actu-

ally transporting data packets over a TCP connection.

A TCP connection using the same network path as the

data packet stream is set up separately and the trans-

mission rate of the data packet stream is then associated

with that of the TCP packets. Since the transmission

rate of these TCP packets is under TCP congestion con-

trol, so is that of the data packet stream. Because the

data packet stream is not transported on a TCP con-

nection, the regulated data packet stream needs not be

subject to properties caused by TCP error control such

as automatically retransmitting lost packets at the TCP

sender and delaying already arrived out-of-order pack-

ets in the TCP receiver's assembly queue. These prop-

erties may not be desirable for all data packet streams.

Because the TCP decoupling approach decouples

TCP congestion control from TCP error control and

allows them to be separately and independently per-

formed, this approach has several important applica-

tions [30]. The �rst application is to provide TCP

trunking service [17] for MPLS label-switched paths [27]

and ATM virtual circuits [6]. The second is to provide a

100% TCP-friendly congestion control scheme for mul-

timedia streaming applications. The third is to improve

TCP performance over wireless networks as described

in this paper.

The TCP decoupling approach has been imple-

mented on FreeBSD 2.2.8. Extensive experimental re-

sults have been collected on a network testbed consist-

ing of up to sixteen 400 MHZ Pentium PCs at Harvard

University.

This paper focuses on the application of the TCP de-

coupling approach in improving TCP performance over

wireless networks. This section presents the design and

implementation of the TCP decoupling approach in de-

tail.

4.1. Notation and Terminology

This section de�nes some notations and terminolo-

gies which will be used throughout the paper.

Circuit A routing path over which a stream of data

packets will be transmitted. Data packets to enter

a circuit will be emitted into the circuit at certain

rates by the sending node of the circuit. Once a data

packet is emitted into the circuit, it will be forwarded

by intermediate routers on the circuit path as soon

as they can.

TCP Circuit A circuit whose sending node uses TCP

congestion control to control the emission rate of

data packets into the circuit.

Sender and Receiver of a TCP Circuit The

sender of a TCP circuit is composed of a GMB sender

(Section 4.5.2) and one or more senders of control

TCP(s) set up for the TCP circuit. The receiver of

a TCP circuit is composed of one or more receivers

of control TCP(s) set up for the TCP circuit.

Control TCP A control TCP is a TCP connection

set up between the sending and receiving node of

a TCP circuit to regulate the emission rate of a data

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 225

packet stream owing into the circuit. The version

of control TCP used in the current implementation

of TCP decoupling is TCP reno. It can be any other

version (e.g., TCP SACK [21]).

Sender and Receiver of a Control TCP The

sender of a control TCP is the TCP processing mod-

ule at the sending node of the control TCP. The re-

ceiver of a control TCP is the TCP processing mod-

ule at the receiving node of the control TCP.

Header Packet A header packet is generated and sent

by the sender of a control TCP to the receiver of

the control TCP. A header packet contains only a

TCP/IP header, and has no data payload.

Control Packet A control packet is either a header

packet or an acknowledgment packet generated and

sent back by the receiver of the control TCP to the

sender of the control TCP.

Data Packet (User Packet) A data packet is

a packet in a network which is not a control packet.

Since a data packet is normally generated by a user

application program, it is also called a \user" packet

in the paper.

GMB Guaranteed Minimum Bandwidth, in bytes per

unit time.

VMSS \Virtual maximum segment size" in bytes. It

is a con�gurable parameter.

HP Sz Header packet size in bytes. This paper as-

sumes HP Sz = 52 because typically a header packet

contains a 40-byte TCP/IP header and a 12-byte

TCP timestamp option.

4.2. Overview of the TCP Decoupling Approach

The TCP decoupling is an approach to implement

a TCP circuit. Figure 2(a) depicts a TCP circuit. A

TCP circuit can be used as an edge-to-edge TCP trunk

[17] or an end-to-end connection for wireless communi-

cation and multimedia streaming application [30]. The

sending node and receiving node of a TCP circuit thus

can be a router or a host.

Figure 2(b) shows how a TCP circuit is internally im-

plemented by the TCP decoupling approach. A TCP

circuit is composed of a GMB sender at its sending node

and one or multiple control TCPs between its sending

and receiving nodes. Data packets owing into the TCP

circuit are �rst directed to and stored in the tunnel

queue at the sending node. The GMB sender is used

when a TCP circuit is allocated a certain GMB along

its path. The GMB sender unconditionally sends data

packets in the tunnel queue into the TCP circuit at the

GMB rate. In Figure 2(b), one control TCP connec-

tion is set up between the sending node and the receiv-

ing node of the TCP circuit to probe for the available

bandwidth for the data packet stream beyond the TCP

circuit's allocated GMB.

Each control TCP sends out its header packets un-

der TCP congestion control algorithms when there are

data packets in the tunnel queue. These header pack-

ets each contain only a TCP/IP header and no data

payload. They only need to contain a TCP/IP header

because, in order to implement and use TCP congestion

control, the control information exchanged and carried

by the packets of a TCP connection actually is all con-

tained in the TCP headers of these packets, and the

content of the TCP data payloads of these packets are

totally irrelevant and can be empty. For each trans-

mitted header packet, the control TCP on the sending

node emits data packets in the tunnel queue into the

TCP circuit totaling up to VMSS bytes. The send-

ing rate of the data packet stream thus is proportional

to the sending rate of the header packets. Since data

packets traverse the same routing path as header pack-

ets (this assumption is discussed in Section 4.3 later),

they will experience the same congestion level at the

same place at the same time. Suppose that congestion

occurs and bu�er eventually overows in a router on the

path, which results in dropping of header packets, the

sender of the control TCP will reduce the sending rate

of its header packets, which also results in a propor-

tional reduction in the sending rate of the data packet

stream. By this method, the TCP decoupling approach

achieves the goal of using TCP's congestion control to

regulate the transmission rate of a data packet stream

for utilizing available bandwidth.

In contrast with the traditional TCP approach in

which data packets need to be carried (encapsulated) by

TCP packets and thus be coupled with TCP/IP head-

ers, in the TCP decoupling approach, data packets are

transmitted as independent packets from header pack-

ets and their packet format and packet content remain

unchanged. The data packet stream does not su�er

from the properties caused by TCP's error control as

TCP's error control is applied to the header packets

only, not to the data packets.

226 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

VMSS VMSS
Control

TCP

Sender

GMB

Sender

Control

TCP

Receiver

A TCP circuit
TCP circuit
sender

TCP circuit
receiver

(a) A TCP circuit

(b) The TCP decoupling implementation for a TCP circuit

Data (user) packets Header packets acknowledgment packets

Sending node Receiving nodeA TCP circuit

Tunnel
Queue

header
data payload

Figure 2. The TCP decoupling approach for implementing a TCP circuit.

4.3. Assumption of the TCP Decoupling Approach

One assumption required by the TCP decoupling ap-

proach is that the routing path taken by the data pack-

ets should be the same as the routing path taken by

the header packets which control them. Obviously, if

header packets take a di�erent path than data packets,

header and data packets will not experience the same

congestion level at the same place at the same time in a

network and, as a result, the TCP decoupling approach

may fail.

However, in the current Internet, we can argue that

when the TCP decoupling approach is used for end-to-

end applications, the problem of using di�erent routing

paths for header and data packets is not likely to hap-

pen, and when the TCP decoupling approach is used

for edge-to-edge applications, there exist solutions for

it. The reasons are presented as follows.

First, for end-to-end applications such as wireless

communication and multimedia streaming applications,

data and header packets have the same IP destination

addresses. When routing tables change, a header packet

may take a di�erent routing path than its associated

data packet(s). Although this problem may happen, it

a�ects only one pair of a header and its associated data

packets totaling up to only VMSS bytes. The route

change problem is expected to happen infrequently as

the Internet routing protocol OSPF [4,25] only updates

routing tables every 30 seconds or so to avoid route

apping. Another concern is about multi-path rout-

ing, which splits the load of a packet stream onto mul-

tiple routing paths for load-balancing purposes. This

problem should be minimum as network researchers

now understand that the minimum granularity of load-

balancing should be a ow { a packet stream with the

same source and destination IP addresses, otherwise a

TCP connection's throughput [2] and the quality of a

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 227

UDP audio/video stream will su�er due to excessive

packet reordering. (For applications using TCP, packet

reordering causes duplicate acknowledgment packets,

which unnecessarily trigger TCP's fast retransmit al-

gorithm, which in turn unnecessarily reduces the send-

ing rate of a TCP connection. For multimedia appli-

cations using UDP, packet reordering increases the re-

quired bu�er size to store and rearrange out-of-order

packets before they can be played back at the receiving

host, which also adds unnecessary delays to the play-

back time and degrades the quality of real-time appli-

cations such as IP phone).

Second, consider the edge-to-edge application such

as TCP trunking where the data packet stream is an

aggregate stream composed of many ows each with its

own di�erent IP source and destination addresses. A

TCP trunk can be associated with a layer-2 ATM [6]

or Frame Relay [14] virtual circuit, or an MPLS label-

switched path [8,27] to make sure that its header and

data packets all take the same routing path. These TCP

trunks are intended to be used in the backbone networks

[17], where ATM and Frame Relay virtual circuits and

MPLS label-switched paths are provided for engineering

tra�c. Running a TCP trunk on top of such a virtual

circuit or label-switched path is feasible and well-suited.

4.4. Design Goals (or Properties) of the TCP

Decoupling Approach

The design goals of the TCP decoupling approach

are listed as follows:

1. Arrivals of data packets at the sending node of

a TCP circuit trigger transmissions of control

(header) packets

2. Do not automatically retransmit lost data packets

3. Do not introduce packet reordering to a data packet

stream

4. Do not introduce extra transmission delay to a data

packet other than that caused by TCP's congestion

control

5. Do not modify the content of a data packet

6. Do not increase the length of a data packet

7. Low bandwidth overhead for control packets

8. Simple and e�cient implementation (for high through-

put)

9. Easy to set up, con�gure, and use

Goal (1) is desirable because generating and sending

control packets when there are no data packets to send

unnecessarily waste network bandwidth. Goal (2) is de-

sirable because di�erent applications have di�erent reli-

ability requirements for their packet transfer (e.g., FTP

requires reliable data transfer but video-conferencing

can tolerate unreliable transfer), retransmitting data

packets, if required, should be handled by the appli-

cation program or some reliable protocol at the sending

host. Goals (3) and (4) were discussed earlier. Goal

(5) is desirable because modifying a data packet's con-

tent needs several read/write operations and a recom-

putation of the IP checksum, which will slow down the

forwarding throughput. Goal (6) is desirable because

increasing a packet's length may cause packet frag-

mentation when the resulting length exceeds the MTU

(maximum transmission unit) of some link on which

the packet need to traverse. Goal (7) means that con-

trol packets should not consume too much bandwidth.

Goal (8) is desirable because a simple implementation

leads to a low-cost and robust implementation, and

an e�cient implementation can provide high forward-

ing throughput on high-speed links such as OC-192 (10

Gbps) links.

The design and implementation of the TCP decou-

pling approach meet all of these goals. Therefore, these

listed design goals are also the general properties of the

TCP decoupling approach. In addition, the TCP decou-

pling approach can allocate bandwidth among compet-

ing TCP circuits in a �ne-grain way by using di�erent

values for the VMSS of competing TCP circuits. This

property will be discussed in Section 4.8.1.

4.5. The TCP Decoupling Mechanism on the Sending

Node of a TCP Circuit

Figure 3 depicts the architecture of the sending node

of a TCP circuit in the TCP decoupling approach. Each

component will be presented in detail in the following

sections.

Data packets that are to be sent into a TCP circuit

are �rst redirected to and enqueued in a tunnel network

interface queue. Later on, from the tunnel queue these

packets will be dequeued and forwarded by either the

GMB sender or a control TCP sender. A tunnel net-

work interface is a pseudo network interface that does

228 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

Tunnel Queue

VMSSControl
TCP
Sender

VMSSControl
TCP
Sender

GMB
Sender

Figure 3. The architecture of the sending node of a TCP circuit

implemented in the TCP decoupling approach.

tunnel Q Ethernet interface

original patharriving packets outgoing packets

packets generated by the sending node itself

packets
forwarded
in by the
upstream
router

redirected path

or

Figure 4. Redirection of arriving packets to a tunnel network in-

terface queue, from which they will be sent out through a physical

network interface (e.g., an Ethernet interface) later.

not have a real physical network attached to it [12]. Its

functions, however, from the kernel's point of view, are

no di�erent from those of a normal Ethernet network

interface. The tunnel interface queue serves as an input

queue for temporarily holding data packets not yet for-

warded out. Although using any software queue in the

kernel also works for serving as an input queue, using a

tunnel network interface queue has an advantage. The

advantage is that, since from the kernel's point of view

a tunnel network interface is like a physical network

interface, redirecting arriving data packets to a tunnel

interface queue can be done simply by changing just

one routing entry in the sending node's routing table.

When allowed by the GMB rate or TCP congestion con-

trol, the GMB sender or a control TCP sender dequeues

the �rst redirected data packet and calls the kernel's IP

packet forward function (ip forward()) to forward it out.

Figure 4 depicts the data packet redirection scenario.

4.5.1. Control TCP Sender

The control TCP sender is the sender of a TCP con-

nection set up between the sending and receiving nodes

of a TCP circuit. In contrast with the normal usage,

the control TCP sender is not an active process run-

ning at the user-level. Instead, it is the socket which

represents the sending endpoint of the TCP connec-

tion and the TCP processing functions, both of which

are passive and reside in the kernel. The control TCP

sender generates and transmits header packets, trans-

mits data packets, and receives acknowledgment pack-

ets. All of these operations are automatically performed

by the TCP processing functions, which are called by

the network interrupt service routine, which in turn is

invoked when a packet arrives. Since every operation is

performed inside the kernel without context switching

overhead between the kernel and user space, the con-

trol TCP sender operates e�ciently and supports high

speed forwarding.

To set up a control TCP connection between the

sending and receiving nodes, like the normal usage, a

user-level process at the sending and receiving nodes is

run up. These two processes use the standard socket

system calls such as connect() and accept() to conduct

TCP's 3-way handshaking connection set up procedure.

After the TCP connection is set up, the process on the

sending node becomes idle and is not involved in sending

header and data packets and receiving acknowledgment

packets from the receiving node. Similarly, the process

on the receiving node also becomes idle.

The socket send bu�er [13], which is automatically al-

located to the control TCP sender by the UNIX system

as in the normal TCP usage, is not used in the TCP de-

coupling approach. This is because in the TCP decou-

pling approach, there is no physical data for the control

TCP sender to send. Instead of working on and trans-

porting a data byte stream formed by application data

when they are written into a TCP socket send bu�er

as in the normal TCP usage, the control TCP sender

works on and transports a \virtual data byte stream,"

which does not physically exist. Each packet transmit-

ted by the control TCP sender thus is a packet consist-

ing of only the TCP/IP header and contains no physical

TCP data payload. They are thus called \header pack-

ets" in this paper. These header packets, together with

the acknowledgment packets sent back by the control

TCP receiver, are called \control packets" as their exis-

tence are solely for congestion control purposes, rather

than for data-carrying. The information carried in the

TCP header of a header packet thus identi�es some con-

tiguous bytes of the virtual data byte stream that the

header packet is supposed to carry, although physically

they are not carried in the header packets.

The operations on the virtual byte stream closely

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 229

correspond to the operations on the byte stream formed

by the data packets entering the tunnel queue. When

VMSS contiguous bytes of the virtual data byte stream

has just been \transported" by the control TCP sender

under its TCP congestion control, the corresponding

VMSS bytes of the data packet stream can now be phys-

ically forwarded. Since data packets in the tunnel queue

may have many di�erent sizes, forwarding VMSS bytes

of the data packet stream actually translates to the for-

warding of as many data packet as until these VMSS

byte credits are exhausted. (Note that since each packet

should be transmitted atomically and cannot be cut ar-

bitrarily for transmission, sometimes credits may be left

or overused by a little amount. These left credits or deb-

its will be carried over to the next time when another

VMSS bytes credits are gained again.)

One exception to the correspondence between the

virtual byte stream and the byte stream formed by the

data packets entering the tunnel queue is that, in case

of a header packet loss, to keep TCP congestion control

algorithms going, the control TCP sender must retrans-

mit the lost \virtual" data until it is �nally received by

the receiving node (actually it is the lost header packet

that matters). However, this retransmission operation

does not result in a retransmission of the corresponding

data of the data packet stream. Instead, using these

new VMSS credits, more data packets totaling up to

VMSS bytes are dequeued and forwarded out from the

tunnel queue. This design is both desirable and sim-

ple. This design is desirable because of no automatic

retransmission of lost data packets, as explained in Sec-

tion 4.4. This design is simple in the sense that, now

since data packets need not be retransmitted, the bu�er

space occupied by them can be released as soon as they

are dequeued from the tunnel queue and forwarded out.

There is no need to keep them in the tunnel queue as is

the case for a normal TCP socket send bu�er. This de-

sign therefore allows for a simple �rst-in-�rst-out bu�er

system for the tunnel queue.

For each header packet sent by the control TCP

sender, the \CONTROL" bit is set in the Type-Of-

Service (TOS) �eld of its IP header to allow the routers

on the TCP circuit's path to distinguish header pack-

ets from data packets and thus be able to give them

di�erent treatments. Section 4.7 discusses the useful

\lossless" property enabled by the use of this bit.

To meet the design goal of \arrivals of data packets

trigger transmissions of control packets" as explained

in Section 4.4, the generation and sending of header

packets are enabled only when there are data packets

in the tunnel queue and the control TCP's congestion

control allows.

The sender of the control TCP uses the di�erence be-

tween its current congestion window size and the num-

ber of its current outstanding (not acknowledged yet)

virtual bytes in the network as the credit to decide when

it can forward more data packets and send them to the

network. When the credit is decreased to zero or be-

low zero, no more data packets can be forwarded and

sent to the network. Following the normal TCP design,

when a control TCP is initially set up or when it times-

out, the control TCP's congestion window size is set

or reset to VMSS bytes. As a result, the control TCP

sender always has VMSS bytes credits to transmit up

to VMSS bytes data packets when it initially starts or

restarts. For every VMSS bytes worth of data packets

which have been forwarded and sent to the network,

the control TCP sender sends out a header packet as if

the header packet were coupled with these data pack-

ets as is performed in traditional TCP. The transmis-

sions of these data packets precede the transmission of

their associated header packet to meet the design goal

of \data packets triggers control packets." The con-

trol information carried in the TCP headers of these

header packets are exactly the same as the control in-

formation that would have been generated and carried

if each header packet physically carries a VMSS-byte

TCP data payload from a physical byte stream. The

outcomes of these header packets, either successfully

received and acknowledged or lost in the network, will

cause the control TCP sender to adjust its congestion

window size.

Multiple control TCPs can be set up between the

sending and the receiving nodes of a TCP circuit to

work together on the same data packet stream ow-

ing into the TCP circuit. The senders of these control

TCPs dequeue and forward packets from the same tun-

nel queue as soon as their TCP congestion controls allow

them to send more data into the network. Using mul-

tiple control TCP connections is for two di�erent pur-

poses. First, using multiple control TCPs can smooth

the achieved bandwidth usage of the TCP circuit (thus

the data packet stream owing in it). If only one con-

trol TCP is used, since TCP reduces its sending rate

230 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

by 50% when any of its packets gets lost, the trans-

mission rate of the data packet stream, which is regu-

lated by the control TCP, will also undergo a similar

rate reduction. Suppose that there are now M control

TCPs. Then a 50% bandwidth reduction from any of

them will only result in a reduction of the total band-

width of the data stream by a factor of (1/2)/M. This

smoother bandwidth change is important for the TCP

trunking [17] application for which it is desirable that,

in the backbone network, a trunk's achieved bandwidth

not vary too much and too quickly for stability con-

cerns. Second, using multiple TCP connections is a

way of allocating available bandwidth. It is well known

that, under ideal situations (e.g., when all TCP connec-

tions have the same RTT), TCP exhibits per-ow fair-

ness property [20,29]. That is, when there are N greedy

TCP ows with about the same RTT contending for

available bandwidth, each one will roughly achieve 1/N

of the available bandwidth. Using this property, a data

packet stream regulated by N control TCPs can roughly

achieve N times bandwidth of a data packet stream reg-

ulated by only one control TCP. Experimental results

presented in Section 4.8.2 demonstrate this property.

The architecture of the sending node of a TCP cir-

cuit, as shown in Figure 3, has several useful properties.

First, despite that multiple senders (one GMB sender

plus one or multiple control TCP senders) can dequeue

and forward data packets from the tunnel queue, the

design maintains the packet order of the data packet

stream when it ows through the sending node. That

is, data packets in the tunnel queue are forwarded out in

exactly the same order as they enter the tunnel queue.

This in-sequence forwarding is achieved by the design

that when a control TCP sender decides to dequeue

and forward a data packet from the tunnel queue, the

control TCP sender must already have gained at least

VMSS \credits" to forward a data packet. In case when

a control TCP sender wants to dequeue a data packet

and its current number of credits is less than the size of

the �rst packet in the tunnel queue (this situation may

happen when VMSS is con�gured to be smaller than

the MTU of links), the control TCP sender simply re-

turns and waits for more credits. No data packets will

be queued in a control TCP sender as there is no need

to queue data packets and there is no queue in a control

TCP sender. A data packet thus is sent to a network in-

terface as soon as it is dequeued from the tunnel queue.

Second, all operations (e.g., enqueueing data packets,

dequeueing data packets, sending header packets, and

receiving acknowledgment packets) are triggered and

performed automatically in the kernel when packets ar-

rive. This all-in-kernel design and implementation re-

sult in a high throughput system. Third, the format

and content of data packets remain untouched and un-

changed when they ow through the sending node.

4.5.2. GMB (Guaranteed Minimum Bandwidth)

Sender

Consider the case when a data packet stream requires

a guaranteed minimum bandwidth (GMB) of X bytes

per millisecond. Assume that via bandwidth provision

and connection admission control, the network guar-

antees to deliver this required bandwidth for the data

packet stream over its routing path. This section de-

scribes how the sender of a TCP circuit sends data pack-

ets at the GMB rate while being able to send additional

data packets under TCP congestion control when extra

bandwidth is available.

A TCP circuit has a GMB sender at the sending

node of the TCP circuit. The GMB sender is equipped

with a timer and unconditionally sends some number

of data packets from the tunnel queue each time the

timer expires. (In the current TCP decoupling imple-

mentation, the timer is set to be 1 millisecond.) When

sending out data packets, the GMB sender need not

send out header packets as a control TCP sender does.

Since the data packet stream has been allocated a cer-

tain bandwidth as its GMB, there is no need for the

GMB sender to send out header packets to probe for

available bandwidth. When the timer expires, if there

are data packets in the tunnel queue, the GMB sender

will send some of them under the control of a leaky

bucket algorithm. The objective here is that, for any

time interval of Y milliseconds, if there is a su�cient

number of bytes to be sent from the tunnel queue, the

total number of bytes actually sent by the GMB sender

will approach the target of X*Y.

For each expiration of the GMB timer, the GMB

sender will try to send all the data packets it is supposed

to send. If there are still some data packets left in the

tunnel queue, they will be sent out under the congestion

control of the control TCP sender(s). In this manner,

the data packet stream will always receive its GMB un-

der the control of the GMB sender, and at the same

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 231

VMSS
Control
TCP
Receiver

VMSS
Control
TCP
Receiver

Figure 5. The architecture of the receiving node of a TCP circuit

implemented in the TCP decoupling approach.

time dynamically acquire additional bandwidth under

the congestion control of the control TCP(s).

4.6. The TCP Decoupling Mechanism on the Receiving

Node of a TCP Circuit

Figure 5 depicts the architecture of the receiving

node of a TCP circuit implemented in the TCP decou-

pling approach. A control TCP receiver is the receiver

of a TCP connection set up between the sending and

receiving nodes of a TCP circuit. In contrast with the

normal usage, the control TCP receiver is not an ac-

tive process running at the user-level. Instead, it is

the socket which represents the receiving endpoint of

the TCP connection and the TCP processing functions,

both of which are passive and reside in the kernel. The

control TCP receiver receives header packets sent by

its corresponding control TCP sender, and for each re-

ceived header packet, the control TCP receiver views it

as a TCP packet carrying VMSS-byte data payload, al-

though physically there is no data payload coupled with

the header packet. The control TCP receiver processes

received header packets and acknowledges their receipt

by sending out acknowledgment packets using the nor-

mal TCP cumulative acknowledgment scheme. Since

there is no real data payload carried in these received

header packets, the control TCP receiver need not do a

checksum test on the data payload, nor does it need to

insert any data to its socket receive bu�er. Receiving

header packets and sending back acknowledgment pack-

ets are automatically performed by the TCP processing

functions, which are called by the network interrupt

service routine, which in turn is invoked when a packet

arrives. Since every operation is performed inside the

kernel without context switching overhead between the

kernel and user space, the control TCP receiver oper-

ates e�ciently and supports high speed forwarding.

To set up a control TCP connection between the

sending and receiving nodes, like the normal usage, a

user-level process at the receiving node is run up. This

user-level process works with the user-level process at

the sending node to conduct TCP's 3-way handshaking

connection set up procedure. After the TCP connection

is set up, the user-level process at the receiving node be-

comes idle and is not involved in receiving header and

data packets and sending acknowledgment packets to

the sending node.

Multiple control TCP receivers can be used (as de-

picted in Figure 5), each corresponding to a control

TCP sender at the sending node, to achieve the proper-

ties enabled by using multiple control TCP connections

described in Section 4.5.1.

The design of the architecture of the receiving node

of a TCP circuit has many useful properties. First,

arriving data packets, either sent under the control of

the GMB sender or the control TCP sender(s) at the

sending node, are forwarded automatically by the ker-

nel based on the IP destination addresses contained in

their own TCP/IP headers. These data packets are

forwarded in exactly the same way they would be for-

warded in a normal router. No further processing on

these data packets is needed. The control TCP receiver

are not involved in the forwarding of these arriving data

packets. (Actually the control TCP receiver does not

even know when a data packet will arrive, nor does

it know when a data packet has been forwarded out.)

This design makes forwarding a data packet as fast as

when the TCP decoupling approach is not used and

results in a low-latency and high-throughput system.

Second, the design maintains the packet order of a data

packet stream when it ows through the receiving node.

Since data packets arrive in a sequential order and, as

described above, each one can be forwarded out im-

mediately, data packets thus will be forwarded out in

exactly the same order as they arrive. Third, the con-

tent and format of data packets remain untouched and

unchanged by the control TCP receiver when they ow

through the receiving node.

4.7. Router Bu�er Management Scheme for the TCP

Decoupling Approach

In the TCP decoupling approach, the requirement

for a router's bu�er system can be as simple as a single

232 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

FIFO queue

VMSSVMSSVMSS

VMSS

HP_Sz

Occupancy of
data packets

Occupancy of
header packets

Figure 6. A FIFO bu�er in a router occupied by both data and

header packets.

FIFO queue shared by both data and header packets.

A single FIFO queue allows for a simple and low-cost

bu�er system and preserves the order of arriving pack-

ets. The TCP decoupling approach can o�er a unique

and useful property which we call the \lossless" prop-

erty. This property prevents data packets from being

dropped during congestion and can be achieved when

the bu�er management system of every router employs

a special packet dropping method that drops header

packets �rst before dropping data packets when conges-

tion occurs. If the \lossless" property is not required or

there are problems with deploying special packet drop-

ping methods in routers, the common FIFO or RED [28]

packet dropping method can be used in the routers.

The \lossless" property is useful in a wired network

(e.g., an optical network) with very small BERs such

as 10�12. The reason is that as long as we can prevent

data (user) packets from being dropped inside routers

due to congestion, they can be guaranteed with a high

probability for their successful arrivals at their desti-

nations. The \lossless" property, however, is not very

useful in a lossy wireless network with large BERs such

as 10�5 because even though data packets can be pre-

vented from being dropped due to congestion, they can

still be dropped due to link errors. For this reason,

when the TCP decoupling approach is applied to im-

prove TCP performance over wireless networks, routers

can just use the common FIFO or RED packet dropping

methods.

For completeness, in this paper, we will present the

special packet dropping method. However, this method

will only be briey presented. A more detailed presen-

tation can be found in [17,30].

4.7.1. The Special Packet Dropping Method

To prevent data packets from being dropped inside a

router when congestion occurs, the router's bu�er man-

agement system uses the following two principles:

� When the FIFO queue buildup occurs, drop some

incoming header packets early enough so that their

control TCP senders can reduce their rates of send-

ing data packets in time.

� Allocate su�cient bu�er space for data packets to

accommodate temporary bu�er usage uctuation

caused by the control delay and possible arrival of

new ows.

Figure 6 depicts the router bu�er architecture which

uses a single FIFO queue. It shows that, when there

is no GMB tra�c (the data packets sent under the

control of GMB senders), the bu�er space occupied by

data packets is proportional (VMSS/HP Sz times) to

that occupied by header packets. Because of this prop-

erty, controlling the maximum number of bytes of data

packets in the FIFO can be achieved by limiting the

maximum number of header packets in the FIFO (be-

cause the size of each header packet is the same, instead

of limiting the maximum number of bytes occupied by

header packets, we can simply limit the maximum num-

ber of header packets in the FIFO). Thus, by properly

controlling the maximum number of header packets so

that the total bu�er usage of the header and data pack-

ets is always below the provisioned bu�er size, the TCP

decoupling approach can achieve the \lossless" property

for data packets.

The maximum number of header packets in the FIFO

is controlled by dropping them when the number ex-

ceeds a certain threshold. Since header packets are gen-

erated by control TCP(s), dropping header packets will

cause the senders of their corresponding control TCPs

to reduce their sending rates. As a result, the bu�er oc-

cupancy of header packets will drop below the threshold

again and thus be maintained near the threshold.

4.8. Discussions about the TCP Decoupling Approach

4.8.1. Allocating Di�erent Bandwidths to TCP

Circuits by Con�guring VMSS

Control TCPs can use di�erent VMSS values so that

the data streams they control can share the available

bandwidth in di�erent proportions. Due to the fact

that, in the TCP decoupling approach, when congestion

occurs routers will drop header packets before dropping

data packets, each competing control TCP will receive

the same bandwidth for their header packets regard-

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 233

Control TCP
sender 1

Control TCP
sender 2

Data stream 1

Data stream 2

VMSS1 VMSS1 VMSS1

VMSS2 VMSS2VMSS2

Figure 7. Although control TCP sender 1 and sender 2 achieve

the same bandwidth for their header packets, the ratio of the

achieved bandwidth for data stream 1 to that of data stream 2 is

VMSS1/VMSS2.

less of its VMSS (the number of bytes of data packet

associated with a header packet). As depicted in Fig-

ure 7, suppose that the VMSS values of control TCP

sender 1 and control TCP sender 2 are VMSS1 and

VMSS2, respectively. Then the ratio of the achieved

bandwidth for data stream 1 to that of data stream 2

will be VMSS1/VMSS2. Because of this property, by

con�guring di�erent VMSS values for di�erent control

TCPs, one can allocate available bandwidth to the com-

peting data streams in di�erent proportions.

4.8.2. Routers Using the FIFO or RED Packet

Dropping Method

This section presents experimental results showing

that even when routers do not use the special packet

dropping method presented in Section 4.7.1 (and, as a

result, both header and data packets may be dropped

during congestion), TCP circuits can still compete fairly

with each other and achieve their fair shares of available

bandwidth. This property is desirable and important

because, as we point out in Section 4.7, in lossy wireless

networks the \lossless" property is not critical. It would

be useful that routers can just use the common FIFO or

RED packet dropping methods so that TCP decoupling

approach can be widely applied.

In the experiments, we let two TCP connections

(TCP 1 and TCP 2) compete for the bandwidth of a

shared 10 Mbps link. The router where the tra�c of

TCP 1 and TCP 2 merge uses the FIFO packet drop-

ping method and has a bu�er size of 50 packets. The

RTTs of TCP 1 and TCP 2 are about 1 ms. Each ex-

periment lasts 5 minutes. These TCP connections may

be traditional TCP connections or TCP circuits with

di�erent VMSS values and di�erent number of control

TCPs. We present four experimental cases. The values

of (X, Y) presented below are for TCP 1 and TCP 2,

respectively.

case 1 Normal TCP connections. Bandwidths achieved

are (645 KB/sec, 582 KB/sec).

case 2 TCP circuits. GMBs are (0 KB/sec, 0 KB/sec).

VMSSs are (1500, 1500). Number of control TCPs

per TCP circuit are (1, 1). Bandwidths achieved are

(621 KB/sec, 567 KB/sec).

case 3 TCP circuits. GMBs are (0 KB/sec, 0 KB/sec).

VMSSs are (1500, 1500). Number of control TCPs

per TCP circuit are (2, 1). Bandwidths achieved are

(773 KB/sec, 399 KB/sec).

case 4 TCP circuits. GMBs are (0 KB/sec, 0 KB/sec).

VMSSs are (3000, 1500). Number of control TCPs

per TCP circuit are (1, 1). Bandwidths achieved are

(750 KB/sec, 454 KB/sec).

By comparing case 1 to case 2, we see that even un-

der the common FIFO packet dropping method, TCP

circuits still fairly compete with each other. By com-

paring case 2 to case 3 and comparing case 2 to case

4, we see that using di�erent values of VMSS and us-

ing di�erent number of control TCPs for a TCP circuit

are still e�ective in allocating bandwidth even under

the common FIFO packet dropping method. To save

space, similar experimental results under RED packet

dropping method are not shown here.

4.8.3. Control Packet Overhead

Header packets, sent by a control TCP sender, are

regarded as bandwidth overhead in the TCP decoupling

approach because they do not carry data payloads and

their existence is solely for congestion control purposes.

The control TCP sender sends one header packet per

VMSS-byte worth of data packets. Assume a typical sit-

uation where each header packet has HP Sz = 52 bytes

(40 bytes for the TCP/IP headers and 12 bytes for the

TCP timestamp option) and VMSS is 1500 bytes (Eth-

ernet and WaveLAN's MTU). Then the header packet

overhead ratio for data packets sent by the control TCP

sender is HP Sz/VMSS = 52/1500, which is about 3.4%.

In the reverse direction, acknowledgment packets sent

by the control TCP receiver to the control TCP sender

is also regarded as bandwidth overhead. Because in the

TCP decoupling design (and also in the normal TCP

design), a control TCP receiver sends back an acknowl-

edgment packet for every other header packet, the ac-

knowledgment packet overhead ratio is about (3.4%/2),

234 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

which is 1.7%. In total, the control packet overhead is

5.1%. The ratio can be lowered by increasing VMSS to

a larger value.

VMSS can be larger than the path MTU without

risking the possibility of packet fragmentation because

the VMSS-byte worth of data packet(s) associated with

a header packet is not sent out as a single IP packet of

VMSS bytes. Instead, the data is sent as a sequence

of separate data packets that are already queued in

the tunnel queue at the sending side of a TCP circuit

(see Figures 2 and 3). Traditionally it is unfavorable

to use a large MSS (maximum segment size) to trans-

fer a big chunk of packet in a network because, during

its lengthy transmission, a packet with a higher pri-

ority such as voice cannot be transmitted. Also, in a

lossy wireless network, the PER of a large packet is

also higher than that of a small packet. In the TCP de-

coupling approach, using a large VMSS does not have

these problems. Since VMSS bytes of data is actually

sent as a sequence of separate data packets, not a single

VMSS-byte large packet, a high-priority packet can cut

in and be transmitted as soon as the ongoing transmis-

sion of a data packet is �nished. For the same reason,

the PER remains the same regardless of the value of

VMSS.

5. Reliable Decoupling Socket Approach for

Improving TCP Performance over Lossy

Wireless Networks

The reliable decoupling socket approach described in

this section is a direct application of the basic TCP

decoupling approach. In this approach, TCP conges-

tion control and TCP error control are independently

and separately applied to a stream of data packets. As

Figure 8 depicts, a TCP connection is set up as usual

between the sending and the receiving hosts to reli-

ably transport data from the sending host to the re-

ceiving host. It is called \data TCP connection", or

more briey, \data TCP." Its sole function is to trans-

port data. A TCP circuit is then set up between the

same sending and the receiving hosts. The data packet

stream generated by the sender of the data TCP is then

sent into the TCP circuit.

The sender and receiver of the data TCP handle only

error control. Their TCP congestion control is disabled

and the data packets generated by the sender of the data

TCP can be sent into the TCP circuit at the maximum

speed allowed by the TCP circuit (i.e., as long as the

tunnel queue of the TCP circuit is not full). The TCP

circuit uses TCP congestion control to probe for avail-

able bandwidth in networks via its tiny header packets.

The TCP circuit's congestion control is triggered only

when its tiny header packets are corrupted and lost. A

corrupted and lost data packet will not trigger the TCP

circuit's congestion control. Because the PER of these

tiny header packets is much smaller than that of full-size

packets carrying MTU data payload, the probability of

mistakenly triggering TCP congestion control to reduce

the sending rate upon packet corruption is signi�cantly

reduced. The reliable decoupling socket approach thus

provides a reliable and high throughput data transfer

over lossy wireless network while using TCP congestion

control to avoid network congestion.

The reliable decoupling socket on each of the send-

ing and receiving hosts is implemented internally as two

TCP sockets | one control and one data sockets. The

control socket is associated with the control TCP. The

data socket is associated with the data TCP, on which

user application's data is transmitted. Following the

decoupling principle, data packets will be sent at rates

under the control TCP's congestion control. The data

socket is provided to the application user for transmit-

ting the user's data whereas the control socket is hidden

and invisible to the user.

While the control TCP controls sending rates for

data packets, the data TCP is responsible for retrans-

mitting corrupted or lost application data. In our cur-

rent implementation, the data TCP makes direct use

of TCP's existing facilities such as sequence numbers

and triggering mechanisms for packet retransmission.

(This is not absolutely necessary. Other retransmis-

sioin schemes can also be used.) The data TCP does

not deal with congestion control. Its congestion window

size (cwnd) is always set to in�nite, except when a lost

packet needs to be retransmitted. When retransmit-

ting a lost packet, the data TCP will temporarily set

the congestion window size (cwnd) to one MSS so only

one packet is retransmitted. After retransmitting the

lost packet, the cwnd is reset to in�nite. At the sender

of the data TCP, outgoing data packets are redirected

and sent to the tunnel queue of the TCP circuit. The

sender can send its data packet to the tunnel queue

as fast as it can as long as the tunnel queue does not

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 235

Data

User space

Kernel space

VMSS VMSS

Control
TCP

tunnel queue

so
ck

et
 b

uf

so
ck

et
 b

uf

user data
data TCP header
data TCP ACK

control TCP header

control TCP ACK

TCP
Data
TCP

Sender Receiver

User space

Kernel space

a TCP circuit

Control
TCP

sending host receiving host

Sender Receiver

Figure 8. Implementation of the reliable decoupling socket.

overow.

6. Discussions on Data TCP's Error Control

Experimental results on testbed networks show that

it is important for the data TCP to be aggressive in

retransmitting lost data, as long as their sending is al-

lowed by the congestion window of the control TCP.

Otherwise, timeouts on the data TCP could happen

easily, and performance can degrade drastically. To

achieve the high goodputs reported in Section 8, the

data TCP in the current implementation has the fol-

lowing features:

F1 The receiver uses the SACK option [21] to report

to the sender up to three missing packets in an ac-

knowledgment packet.

F2 The sender retransmits the �rst unacknowledged

packet every time when some number X of additional

duplicate acknowledgment packets are received [9].

The number X is the current window size of the

control TCP. Thus the method will retransmit again

a previously retransmitted packet should it get cor-

rupted or lost. This method can minimize chances

of timeout.

F3 The sender uses a �ne-grain retransmission timer of

50ms, rather than the system default of 500 ms. The

timer's exponential backo� is disabled.

Features F1 and F2 greatly reduce possible timeouts

of the data TCP. Should timeouts still happen, F3 will

minimize the negative impacts of time-outs on perfor-

mance.

It is important to emphasize that the data TCP will

send applications data under these aggressive send fea-

tures, only when the sending is allowed by the con-

236 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

gestion window of the control TCP. In the reliable de-

coupling socket implementation, the control TCP uses

TCP reno, a normal congestion control algorithm, with

a default coarse-grain retransmit timer of 500 ms, ex-

ponential backo� enabled, and the normal 3-duplicate

acknowledgment packets trigger of fast retransmission.

That is, the control TCP does not employ any aggres-

sive feature such as F1, F2 and F3 at all. Since the

control TCP is not aggressive and it controls the send-

ing rate of the data TCP, the use of these aggressive re-

transmission features by the data TCP causes no harm

to other network users.

However, the data TCP should not be unnecessar-

ily aggressive. Otherwise, retransmission may become

excessive and will hurt the overall goodput of the data

TCP. For feature F2 above, the number X is linked to

the current window size of the control TCP to reduce

the chance of premature retransmission due to an un-

necessarily small X.

7. Why the Reliable Decoupling Socket

Approach Can Improve TCP Performance

Before presenting experimental results showing per-

formance improvements provided by the reliable decou-

pling socket approach, in this section, we explain why

the reliable decoupling socket approach improves TCP

performance over wireless networks.

In the reliable decoupling socket approach, as shown

in Figure 8, it is the control TCP that controls the

sending rate of the data TCP's packets. The data TCP

uses only TCP error control, but not TCP congestion

control, to retransmit lost data packets or to transmit

data packets as fast as the control TCP allows. Note

that the header packets, which are sent by the control

TCP, are now the only packets whose losses will trig-

ger TCP's congestion control to reduce the data TCP's

sending rate. Due to their small packet length of only

52 bytes, the chance of incorrectly triggering TCP con-

gestion control is signi�cantly reduced. As a result, the

overall negative impact caused by incorrectly triggering

TCP congestion control is also reduced. In [5,10], ex-

perimental results demonstrate that packet error rates

decrease with packet sizes.

An analysis for the TCP decoupling approach, which

is similar to that in Section 3 for a normal TCP connec-

tion, is presented here. Since it is the corrupted header

A

B

C D

E

F

TCP 1

TCP 2

Wireless

Figure 9. Testbed network.

packets rather than the data packets that will mistak-

enly cause TCP congestion window size to reduce, the

size of header packets, rather than the combined size

of both a header and data payload, should be used in

computing W. When using a packet size of 52, instead

of 576 used earlier, the computed W now becomes 14

instead of 4. Computing MAT using this new value of

W = 14 and the original packet size of 576 results in a

new MAT of 119 kbps rather than its old value of 26

kbps in Equation 4 | a speed up of 119/26 = 4.57!

In this case, the increase of W from 4 to 14 is more

signi�cant than just an increased MAT. A window size

around 4 packets is hardly su�cient for supporting the

fast retransmit and recovery mechanism because the

mechanism relies on receiving three duplicate acknowl-

edgment packets to trigger the fast retransmission of a

lost packet. If fast retransmit and recovery mechanism

is usually not triggered, the TCP connection will ex-

perience frequent timeouts. These TCP timeouts will

severely impair TCP's performance in throughput, de-

lay and fairness. An increase of the window size to a

su�ciently large value such as 14 eliminates this time-

out problem.

According to Equations 2 and 3, the TCP decoupling

approach achieves a performance improvement propor-

tional to
p
MTU=HP Sz over the normal TCP ap-

proach. It is obvious that if HP Sz can be further re-

duced, the TCP decoupling approach will achieve an

even higher performance improvement. Actually, it is

the e�ective PER of header packets that matters, as the

ultimate goal is to reduce the e�ective PER of header

packets to zero so that no congestion control will be

wrongly triggered. Section 10 will discuss some schemes

that can either physically reduce HP Sz or reduce the

e�ective PER of header packets.

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 237

8. Experimental Results

8.1. Descriptions of Experiments

On our testbed network described in Figure 9, there

are two user TCP connections (one from node A to E,

and the other from node B to F) contending for the

bandwidth of a wireless link between C and D, which

is simulated by a wired Ethernet. The experiments use

an Ethernet link to simulate a wireless link, rather than

directly using a real wireless link such as a WaveLAN

network [33]. This is because the experiments need to

precisely generate and control the desired BERs, and it

is hard to do so using a real wireless link. Besides,

WaveLAN implements IEEE 802.11 protocol [3] and

thus employs ARQ to automatically retransmit a cor-

rupted packet up to 4 times. Because the experiments

want to clearly identify and evaluate the TCP decou-

pling approach's performance without ARQ's interfer-

ence, the experiments did not use WaveLAN networks1.

As described in Section 5, each of these two com-

peting connections is internally implemented as a pair

of data and control TCPs. Both the control and data

TCPs use TCP reno and the data TCPs are enhanced

with features F1, F2 and F3 of Section 6. Performance

numbers on TCP SACK are obtained from hosts run-

ning Window 98, which has a built-in version of TCP

SACK. The experiments focus on the aggregate good-

puts (measured at the application layer) of these two

connections under varying BERs and RTTs on the sim-

ulated wireless link. In order to generate a given BER,

bit errors were randomly generated on the simulated

wireless link according to a given BER [3]. The size of

data packets is 1500 bytes (Ethernet and WaveLAN's

MTU) and the size of the header packets is 52 bytes

(40 bytes TCP/IP header + 12 bytes TCP timestamp

option).

8.2. Reliable Decoupling Socket Experiments Suite 1

The top curve in Figure 10 is a theoretical upper

bound on the goodput that any TCP scheme can pos-

sibly achieve over a 10 Mbps lossy link. This curve is

obtained by using goodput = maximum link goodput

* (1 - packet error rate). Since packet error rate, i.e.,

1 As of December 1, 1999, after having contacted many devel-

opment engineers in industry, the authors are still looking for

methods that can disable the ARQ of an IEEE 802.11 WaveLAN

card.

0

200

400

600

800

1000

1200

0 20 40 60 80 100

A
gg

re
ga

te
 A

pp
lic

at
io

n
Le

ve
l G

oo
dp

ut
 (

K
B

/s
ec

)

Bit-Error-Rate (unit=10^(-7))

Aggregate Application Level Goodput v.s. Bit-Error-Rate (RTT=10ms)

TCP decoupling’s theoretic goodput bound
TCP decoupling

TCP SACK
TCP reno

Figure 10. Performance improvements of TCP decoupling com-

pared to TCP reno and TCP SACK for various values of BER.

RTT = 10 ms.

PER, must increases as BER increases, the theoretical

goodput upper bound decreases as BER increases. No

TCP scheme can achieve a better goodput than this up-

per bound because this upper bound is derived on the

assumptions that packet retransmissions take no time

and packet retransmissions do not consume bandwidth.

We see that when BER increases to 20 � 10�7, TCP

reno's goodput already drops drastically to only about

250 KB/sec. The reason is that TCP reno generally

can not recover from multiple packet dropping or cor-

ruption in one sending window and, as a result, often

has to time-out. TCP SACK performs better than TCP

reno because generally it can tolerate more packet losses

in one sending window than TCP reno [26]. However,

as BER keeps increasing, TCP SACK's goodput also

rapidly goes down. The low goodput of TCP SACK

when BER is high is inevitable. This is because, in

TCP SACK, a tiny TCP/IP header is always coupled

with a large data payload, and as we explained in Sec-

tion 7, doing so unnecessarily increases the chance of

wrongly triggering TCP's congestion control. In con-

trast, due to the decoupling of a tiny TCP/IP header

from a large data payload, we see that TCP decoupling

outperforms TCP reno and TCP SACK on all BERs,

and the performance improvement is about the what

our analysis predicts | 350%.

There is a gap between the curve of the theoreti-

cal upper bound and that of TCP decoupling. This is

due to some unnecessary retransmissions in the current

TCP decoupling scheme, as discussed in the end of Sec-

tion 6. When BER is very small and near 1�10�7, TCP

reno's goodput is slightly higher than that of TCP de-

238 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

0

200

400

600

800

1000

1200

0 20 40 60 80 100

A
gg

re
ga

te
 A

pp
lic

at
io

n
Le

ve
l G

oo
dp

ut
 (

K
B

/s
ec

)

RTT (unit=ms)

Aggregate Application Level Goodput v.s. RTT (Bit-Error-Rate=2*10^(-6))

TCP decoupling’s theoretic goodput bound
TCP decoupling

TCP SACK
TCP reno

Figure 11. Performance improvements of TCP decoupling com-

pared to TCP reno and TCP SACK for various values of RTT.

BER is 2 � 10�6.

coupling. The di�erence is due to the approximately 3%

header packet overhead in this particular implementa-

tion of TCP decoupling.

8.3. Reliable Decoupling Socket Experiments Suite 2

This set of experiments is similar to that of Sec-

tion 8.2, but with varying RTTs. A �xed value of BER

= 2�10�6 is used in these experiments. Figure 11 shows

that TCP decoupling always outperforms TCP reno and

TCP SACK on all RTTs.

The top curve in Figure 11 gives a theoretical upper

bound on the goodput that any TCP scheme can pos-

sibly achieve for various values of RTT. The declining

trend of the upper bound as RTT increases, depicted

in Figure 11, is an inevitable consequence of BER >

0. Equations 1 and 2 show that W is a function of

BER and PS. (In fact, W is inversely proportional to

the square root of BER*PS.) For the experimental suite

2, since BER and PS are �xed, so is W. Equation 3

shows that for a �xed W, MAT must decrease linearly

as RTT increases. Figure 11 shows that the achieved

goodput of the TCP decoupling scheme approaches the

upper bound, although it does not match due to some

retransmission redundancy.

Figure 11 shows that the goodput of TCP decoupling

at RTT = 100 ms is approximately 560 KB/sec. This

goodput is close to the best possible performance under

the TCP decoupling approach. With BER = 2 � 10�6

and PS = 52 bytes for header packets, Equation 1 im-

plies PER = 0.0008. For this value of PER, solving

Equation 2 for W gives W = 56. With W = 56, PS =

1500 bytes for data packets, and RTT = 100 ms, Equa-

tion 3 gives MAT = 652,500 Bytes/sec. After account-

ing for the packet error rate of BER*1500*8 = 0.024 for

data packets, and the overhead of the 52-byte TCP/IP

header associated with each 1500-byte data packet, a

theoretical upper bound on the goodput of approxi-

mately 615 KB/sec is obtained. The achieved goodput

of 560 KB/sec is 9% lower than the upper bound.

9. Advantages over Other Approaches

The reliable decoupling socket approach is an end-

to-end approach because it does not need any special

support from the wireless network. Unlike many other

schemes presented in Section 2, it does not require a

special TCP-aware agent to run on the base station to

snoop passing TCP packets; it does not need to split a

TCP connection into two connections at the base sta-

tion, and it does not require the uses of FEC and ARQ

on wireless links. Because of this end-to-end property,

the reliable decoupling socket approach can be quickly

deployed in any kind of wireless network to realize thep
MTU=HP Sz performance improvement. On the

contrary, the other schemes mentioned in Section 2 have

special requirements for the wireless network. For ex-

ample, snooping and splitting schemes are not suitable

to a multi-hop all-wireless network because it is imprac-

tical to snoop the tra�c of a TCP connection or to split

a TCP connection multiple times on routers along the

TCP connection's path. The advantages o�ered by us-

ing FEC and ARQ can not be realized unless they are

employed on wireless links.

10. Future Improvements

Equation 2 shows that if we can reduce the PER for

those packets whose droppings will trigger TCP con-

gestion control, a larger W can be resulted and, as a

result, a higher TCP goodput can be achieved. The

TCP decoupling approach achieves this goal by using

tiny TCP/IP header packets to implement TCP conges-

tion control so that the chance of mistakenly treating a

packet dropping due to link corruptions as one due to

network congestion can be reduced. Currently, the size

of a header packet of 52 bytes has reached the minimum

for a packet to be a TCP/IP packet and also carry the

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 239

useful TCP timestamp option, which allows for a more

accurate estimate of a TCP connection's RTT.

Using the TCP header compression algorithm pro-

posed in [32] and the twice algorithm proposed in [23] on

wireless links, one can greatly reduce the size of header

packets (and thus their PERs) without the bad e�ects

on TCP's performance caused by dropping a header-

compressed packet [23]. The TCP header compres-

sion mechanism can compress the TCP/IP header of

a header packet from 40 bytes down to only 3 bytes,

resulting in a 3+12 (TCP timestamp option) = 15 byte

packet. (Note that the TCP header compression al-

gorithm does not attempt to compress TCP options.

However, the same method can be used to also com-

press the TCP timestamp option and result in a packet

size even smaller than 15 bytes.)

Twice algorithm works with the TCP header decom-

presser at the receiving end of a wireless link. If the de-

compresser detects state inconsistency (by noticing the

wrong computed TCP checksum) when decompressing

a header-compressed packet, twice �rst assumes that a

packet has been dropped and makes a guess of the con-

tent of the dropped packet's TCP/IP header based on

the past history of TCP header contents. It then ad-

vances its decompression state as if the lost packet had

been correctly received and decompressed, and then de-

compresses the newly arrived header-compressed packet

again. If the computed TCP checksum is correct, the

guess that one packet is dropped is correct and every

thing is back to the consistent state. Otherwise, twice

assumes that two packets are lost and the above proce-

dure repeats.

It is worth noting that TCP header compression and

twice are particularly well suited to the TCP decou-

pling approach. First, there is no data payload coupled

with a header packet. Second, the di�erence between

consecutive header packets is only in the sending se-

quence number �eld and the di�erence is always VMSS.

These two properties enable the TCP header compres-

sion to always compress a 40-byte header into a 3-byte

header and allow twice to easily make a correct guess

about the TCP header content of a missing (corrupted)

header packet. For twice, because the PER of the tiny

header packets is further reduced by TCP header com-

pression, the probability that more than one consecutive

header packets are dropped will be further signi�cantly

reduced. As a result, twice would easily succeed in its

�rst guess almost every time.

Another dimension of improvement is to apply FEC

and/or ARQ to only header packets to protect them

from corruption so that the e�ective PER of header

packets is reduced. Since the size of header packets is

small, the added redundancy overhead caused by ap-

plying FEC (or ARQ) to only these header packets is

also tiny compared to the added redundancy overhead

when FEC (or ARQ) is universally applied to both the

header and data payload of a 1500-byte TCP/IP packet

in the traditional approach.

One limitation with using TCP header compression

and twice or using FEC and ARQ is that these ap-

proaches can not be performed simply at the two end

hosts of a TCP connection. Instead, they must be per-

formed at the link layer (on a per hop basis) and, as a

result, require support from the wireless networks.

Another dimension of improvement is to use a larger

VMSS at the expense of possibly generating more

bursty tra�c in networks. (Note that in this case a

tra�c shaper can be used at the sender of a control

TCP to reduce the burstiness.) It is clear that due to

a non-zero PER of header packets, there must still be

a limit on the bandwidth achieved by header packets.

Since the achieved bandwidth of data packets is VMSS

times that of header packets (discussed in Section 4), if

the achieved bandwidth of data packets does not reach

the bandwidth of the wireless link, we can increase the

VMSS to achieve a higher link utilization.

11. Conclusions

The TCP decoupling approach proposed in this pa-

per is a new, general, and powerful approach. It applies

TCP's congestion control alone to a packet stream for

which TCP's error control is not desired or should be

performed separately from TCP's congestion control.

The TCP decoupling approach has several important

applications. This paper presents the application of the

TCP decoupling approach in improving TCP's perfor-

mance over lossy wireless networks.

The reliable decoupling socket approach, which is a

direct application of the general TCP decoupling ap-

proach, improves a TCP connection's goodput over a

lossy wireless network without any support from the

wireless network. It improves TCP performance by us-

ing tiny TCP/IP header packets to implement TCP

240 S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks

congestion control for a stream of large data pack-

ets. Because the large data payload is decoupled from

the tiny TCP/IP header, the chance that a corrupted

tiny header packet will wrongly trigger TCP's conges-

tion control on the stream of large data packets is

greatly reduced. The resulting performance improve-

ment can be analytically shown to be proportional top
MTU=HP Sz, where MTU is the maximum trans-

mission unit of the wireless link and HP Sz is the size

of a packet containing only a TCP/IP header. For ex-

ample, on a WaveLAN wireless network, where MTU is

1500 bytes and HP Sz is 40 bytes, the achieved goodput

improvement is about 350%. Experimental results com-

paring TCP decoupling, TCP reno and TCP SACK's

performance in various wireless network conditions con-

�rm the analysis.

Acknowledgements

This research was partially supported by Nortel,

Sprint, Air Force O�ce of Scienti�c Research Multidis-

ciplinary University Research Initiative Grant F49620-

97-1-0382, and National Science Foundation Grant

CDA-94-01024.

References

[1] A. V. Bakre and B.R. Badrinath, Implementation and Per-

formance Evaluation of Indirect TCP, IEEE Transaction on

Computers, 64 (3), pp. 260-278, 1997.

[2] Bennett, J., Partridge, C. and Shectman, N., Packet Re-

ordering Is Not Pathological Network Behavior: And It

Never Will Be Again, to appear in IEEE/ACM Transactions

on Networking, December 1999.

[3] Brian P. Crow, Indra Widjaja, Jeong Geun Kim, Prescott

T. Sakai, IEEE 802.11 Wireless Local Area Networks, IEEE

Communications Magazine, Vol. 35, No. 9, September 1997.

[4] Christian Huitema, Routing in the Internet, Prentice Hall,

New Jersey, 1995.

[5] David Eckhardt and Peter Steenkiste, Improving Wire-

less LAN Performance via Adaptive Local Error Control,

Sixth IEEE International Conference on Network Protocols

(ICNP'98), Austin, October 1998.

[6] David E. McDysan and Darren L. Spohn, ATM: Theory and

Application, McGraw-Hill, New York, 1995.

[7] D. M. Chiu and R. Jain, Analysis of the Increase and De-

crease Algorihms for Congestion Avoidance in Computer

Networks, Computer Networks and ISDN Systems, 17:1-14,

1989.

[8] Daniel O. Awduche, Joe Malcolm, Johnson Agogbua, Mike

O'Dell, Jim McManus, Requirements for Tra�c Engineering

Over MPLS, Internet draft (work in progress), June 1999.

[9] D. Lin and H.T. Kung, TCP Fast Recovery Strategies: Anal-

ysis and Improvements, IEEE INFOCOM'98, March 1998,

pp. 263-271.

[10] Duchamp, D. and Reynolds, N. F. Measured Performance of

a Wireless LAN, 17th conference on Local Computer Net-

works, IEEE 1992, pp. 494-499.

[11] E. Ayanoglu, S. Paul, T.F. Laportaa, K.K. Sabani and R.D.

Gitlin, AIRMAIL: A Link-Layer Protocol for Wireless Net-

works, ACM ACM/Baltzer Wireless Networks Journal, 1:47-

60, February 1995.

[12] FreeBSD web site,

[13] Gary R. Wright and W. Richard Stevens, TCP/IP Illus-

trated, Vol. 2, The Implementation, Addison-Wesley, 1995.

[14] Gilbert Held, Frame Relay Networking, John Wiley, 1999.

[15] H. Balakrishnan, S. Seshan, E. Amir, R.H. Katz, Improving

TCP/IP Performance over Wireless Networks, ACM MOBI-

COM'95.

[16] H. Balakrishnan and Randy H. Katz, Explicit Loss Noti�ca-

tion and Wireless Web Performance, IEEE Globecom Inter-

net Mini-Conference, Sydney, Australia, November 1998.

[17] H.T. Kung and S.Y. Wang, TCP Trunking: Design, Im-

plementation, and Performance, IEEE ICNP'99, November

1999.

[18] J. Postel, Transmission Control Protocol, RFC 793, Septem-

ber 1981.

[19] J. Touch, S. Ostermann, D. Glover, M. Allman, J. Heide-

mann, S. Dawkins, J. Semke, K. Scott, J. Griner, D. Tran,

T. Henderson, and H. Kruse, Ongoing TCP Research Re-

lated to Satellites, Internet draft, June 1999.

[20] K. Fall and S. Floyd, Simulation-based Comparisons of

Tahoe, Reno, and SACK TCP, ACM Computer Commu-

nication Review, 26(3), pp. 5-21, 1996.

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Se-

lective Acknowledgment Options, RFC 2018, October 1996.

[22] M. Allman, D. Glover, L. Sanchez, Enhancing TCP Over

Satellite Channels using Standard Mechanisms, RFC 2488,

January 1999.

[23] Mikael Degermark, Mathias Engan, B. Nordgren, and

Stephen Pink, Low Loss TCP/IP Header Compression for

Wireless Networks, ACM MOBICOM'96.

[24] N. Samaraweera and G. Fairhurst, Reinforcement of TCP/IP

Error Recovery for Wireless Communications, ACM Com-

puter Communications Review, 28 (2), 1998.

[25] Radia Perlman, Interconncetions: Bridges amd Routers,

Addison-Wesley, 1992.

[26] R. Bruyeron, B. Hemon, and L. Zhang, Experimentations

with TCP Selective Acknowledgment, Volume 28, Number

2, ACM Computer Communication Review, April 1998.

[27] R. Callon, N. Feldman, A. Fredette, G. Swallow, A.

Viswanathan, A Framework for Multiprotocol Label Switch-

ing, Internet draft (work in progress), June 1999.

[28] S. Floyd and V. Jacobson, Random Early Detection Gate-

ways for Congestion Avoidance, IEEE/ACM Transactions

on Networking, 1 (4), 1993, pp. 397-413.

S.Y. Wang, H.T. Kung / Use of TCP Decoupling in Improving TCP Performance over Wireless Networks 241

[29] S. Floyd, Connections with Multiple Congested Gateways

in Packet-Switched Networks Part 1: One-way tra�c, Com-

puter Communications Review, 21 (5), 1991.

[30] S.Y. Wang, Decoupling Control from Data for

TCP Congestion control, Ph.D. Thesis, Har-

vard University, September 1999. (available at

http://www.eecs.harvard.edu/networking/decoupling.html)

[31] V. Jacobson, Congestion Avoidance and Control, ACM SIG-

COMM'88, pp. 314-329, 1988.

[32] V. Jacobson, Compressing TCP/IP Headers for Low-Speed

Serial Links, RFC 1144.

[33] WaveLAN web site, http://www.wavelan.com.

