
Abstract Providing network infrastructure for authenti-
cation, authorization and accounting (AAA) functionalities
required by inter-enterprise business applications operat-
ing over the global Internet is a challenging problem. The
infrastructure needs to support large numbers of clients
and services, and also to provide secure resources sharing
between applications and across organizations.

This paper describes a scalable and secure network
infrastructure architecture for inter-enterprise AAA ser-
vices, called .TRUST. The architecture has two novel fea-
tures: (1) it uses a stateless design for improved security
and simplified system structures, and (2) it supports a
resource-sharing infrastructure while allowing decentral-
ized management. To illustrate the use of the .TRUST
architecture, the paper considers three application exam-
ples for which laboratory prototypes have been imple-
mented.

Keywords business network infrastructure, authentica-
tion, authorization, accounting, stateless systems, web ser-
vices

1. Introduction
New Internet standards such as XML (eXtensible

Markup Language), SOAP (Simple Object Access Proto-
col), UDDI (Universal Description, Discovery, and Inte-
gration) and WSDL (Web Services Description Language),
have enabled organizations to interoperate and share
resources across organizational boundaries. This means
that there is a need to support authentication, authorization
and accounting (AAA) functionalities between applica-
tions and across organizations. An authentication system is
used to verify the user's identity. Once the system knows
who the user is, an authorization system decides what the
user can do. Finally, an accounting system collects infor-
mation of the service usage for various purposes such as
usage monitoring, trend analysis and billing.

We postulate that an ideal network infrastructure for
inter-enterprise AAA operations will need to satisfy the
following properties:

First, the AAA infrastructure must provide a secure
way for organizations to share resources and provide ser-
vices across organizations. Today we often experience

inconvenience and inefficiency like this: an employee of
company A visiting company B is not allowed to use the
latter’s service even when there is an existing partnership
relationship between the two companies. The employee
will need to use an alternative service provider, pay for the
service himself and subsequently file an expense report at
company A for reimbursement. An AAA infrastructure
should provide functionalities to allow company B to pro-
vide the service to this employee, account for the usage,
and settle the expense with company A later. In the mean-
time, the system should respect privacy of users and pro-
tect resources from unauthorized use.

Second, the AAA infrastructure must be resilient in
defense against security attacks such as data-mining and
denial-of-service (DoS) attacks. Data-mining refers to
unauthorized gathering of information for improper use.
The threat of data-mining increases when services and data
are shared among organizations. DoS attacks are aimed at
depleting server or network resources that are necessary to
provide services. DoS attacks have become one of the most
serious threats to network-resident services in recent years.
It has been reported that nearly 4,000 DoS attacks are
launched each week in the year 2001 [6, 8]. To avoid
resources depletion, it is desirable that servers in the AAA
infrastructure do not keep any session state information
about ongoing interactions with clients. That is, it is desir-
able that all servers in the infrastructure are stateless.

Third, the AAA infrastructure must be convenient for
users to use. For example, as the number of Web services
continues to grow, managing login username and password
for each subscription service has become a significant bur-
den to many customers. It has been reported [13] that more
than 10 percent of customer-service interactions for over
one third of all Web service providers involve customers
who have forgotten their passwords. Thirty eight percent of
these service providers were de-emphasizing strategic
investments in authentication systems due to the cost, com-
plexity, and inflexibility of existing systems [13]. Thus, by
alleviating customers’ burden, the AAA infrastructure will
also reduce operating costs for service providers.

Fourth, due to the heterogeneous nature of enterprise
systems, the AAA infrastructure needs to be open to work
across platforms, security models and applications. In other

A Stateless Network Architecture
for Inter-enterprise Authentication,

Authorization and Accounting
H.T. Kung, F. Zhu and M. Iansiti

Harvard University
Cambridge, MA, U.S.A.

Proceedings of the Third International Conference on Web Services
(ICWS'03), June 2003, pp. 235-242

words, the AAA infrastructure should not mandate anyone
who wants to interoperate to deploy identical systems.

Traditional AAA infrastructures, such as the PPP
(point-to-point protocol) dialin system used by many ISPs
[3] for providing internet access services, are unable to
meet these objectives due to their centralized approach.
Figure 1 illustrates a typical structure of this kind, which is
adopted by most commercial Web systems today [3, 12].
Centralized approaches, in which a central server main-
tains clients’ profiles, keeps the states of their transactions
and implements all three AAA functions, are often specific
to the services provided and lack of a trust-based mecha-
nism that can work across organizations. Therefore, it is
difficult to extend their usages to multiple service provid-
ers.

Currently, many companies are working on software
products to support AAA functionalities across organiza-

tions [4, 9, 18]. Among these developments, the most nota-
ble ones are the Liberty infrastructure by the Liberty
Alliance [9] led by Sun Microsystems and Microsoft’s
TrustBridge [18].

For the rest of this paper, we first describe he
approaches used by Microsoft and the Liberty Alliance in
Section 2. Then in Section 3, we introduce a stateless AAA
network architecture, called .TRUST, for which we have
implemented a laboratory prototype at Harvard. Section 4
discusses the design principles and properties of this archi-
tecture, and compares it to the classical Kerberos authenti-
cation system [20]. In Section 5 we illustrate these
properties and their significance with three application
examples which we have implemented on our .TRUST
prototype. Section 6 concludes the paper.

2. The Liberty infrastructure and
Trustbridge

Both the Liberty infrastructure and TrustBridge are
designed to support cross-organizational resources sharing
using “federated identity”. Federated identity is the ability
to recognize and leverage user identities among trusted
organizations, without requiring users to re-enter their
names and passwords [14]. In both infrastructures, identity
federation is achieved by enlisting a trusted third party to
help users complete the authentication process with the ser-
vice providers.

We illustrate the overall Liberty architecture in Figure
2. Here, the identity provider serves as a trusted third party.
It maintains identity information for each user, which may
include information such as his home phone number,
address, entertainment preferences, education history, etc.
The identity provider and service providers form a circle of
trust. There are two scenarios on how a user can get his
identify to be federated at a number of Web sites. First,
when a user logs in at the identity provider, the identity
provider will notify the user of the possibility of federating

Figure 1. Traditional centralized AAA approach, where a
central Web server keeps the states of all clients’ transac-
tions and implements all AAA functions. 1. A client sends
his ID and password to the main server. 2. The main ser-
vice forwards (ID, password) pair to the authentication
server for verification. 3. The authentication server notifies
the main server of the result. 4. The main server forwards
the result to the client. 5. If authenticated, the client sends
service request to the main server. 6. The main server
sends the request and the client ID to the authorization
server. 7. The authorization server determines whether
the client is permitted to perform the requested tasks and
sends this information back. 8. If the client is authorized,
the main server provides it with the service requested. In
the meantime, the accounting server keeps a record of
service usage. The main server may acquire other
resources for providing the service.

Client Main Server

Authentication
Server

Authorization
Server

Accounting
Server

Other resources,
databases, etc.

(Service Provider)

A Typical E-commerce Web Server
(a conceptual view)

1

2

3

4

5

6

7

88

8

Figure 2. Overall Liberty architecture [9].

Identity
Provider

Service
Providers

Users

Liberty Infrastructure
Identity Federation

his local identity with service providers within the trusted
circle and will solicit permission to facilitate such a federa-
tion. Second, when a user logs in at one of the Liberty-
enabled Web sites, he will be asked whether to federate his
local identity with his identity at the identity provider. In
both cases, if the user chooses to federate his identity, his
authentication state is reciprocally honored between these
service providers and the identity provider. Subsequently,
the user will be transparently logged into the Web sites
with which he has established identity federation when he
hits these sites. The identity provider remembers the user’s
login status at each service provider at which he has estab-
lished identity federation. Therefore, when the user decides
to log out from all members in the trusted circle, the iden-
tity provider may act as a proxy to communicate a logout
request to each of these service providers.

With appropriate security schemes such as Kerberos
and X.509 certificate, the Liberty infrastructure will allow
employees from one organization to securely share
resources with other organizations within the same trusted
circle. Identity federation also enables employees from one
organization to log in either at an identity provider or a ser-
vice provider and prove their identity just once to gain
access to a variety of resources. Furthermore, as the Lib-
erty infrastructure is Web-based, it can interoperate with
any platforms with standard Web functionalities and work
with any Web-based applications. Therefore, the Liberty
infrastructure satisfies our first, third and fourth property
described in Section 1. The Liberty infrastructure fails to
satisfy the second property because once a user logs into
one of the Liberty-enabled servers, the identity provider
and each of the service providers with which the user
establishes identity federation will initiate a session state
for that user. This means, as we discussed earlier, that any
server in the Liberty infrastructure can be vulnerable to
DoS attacks.

The Liberty infrastructure has some additional short-
comings. For example, it does not allow users to have full
control over their private information. That is, users are not
given the opportunity to decide the kind of information to
share with individual service provider. Often service pro-
viders will receive more information than needed to com-
plete service requests. For example, a service provider in
the Liberty infrastructure can obtain a full set of informa-
tion about a user from an identity provider even if it only
needs to know his current employer to provide services
accordingly. It is also possible that a user decides to feder-
ate his identity at a number of Web services but later
chooses not to visit some of them. These Web services will
still have to maintain session states for that user until these
sessions expire or the user chooses to log out from the
trusted circle. In such cases, network resources are wasted.

Microsoft’s TrustBridge is also designed to achieve
cross-organizational resources sharing through identity
federation. It allows businesses that use Windows Active

Directory to recognize and share identities with other orga-
nizations running Windows, .NET Passport service, or
other Kerberos-based systems that support WS-Security
protocol [18]. Figure 3 illustrates a typical scenario of how
TrustBridge establishes cross-organizational resources
sharing. Here Windows Active Directory serves as the
identity provider for employees at each organization.
TrustBridge, which runs across organizations, performs
identity federation to authenticate employees of one orga-
nization to other organizations.

Similar to the Liberty infrastructure, TrustBridge
allows organizations share resources securely and also
requires employees to login just once to access various
resources. Therefore, it satisfies the first and third property.
In TrustBridge, Windows Active Directory uses Kerberos
authentication system to issue tickets to employees. The
Kerberos system is stateless as it keeps authentication sta-
tus in the tickets [19]. As a result, the Windows Active
Directory keeps no session states for employees. There-
fore, TrustBridge also satisfies the second property. How-
ever, TrustBridge does not satisfy our fourth property as
the infrastructure is not open to heterogeneous platforms.
In TrustBridge, organizations must run Windows Active

Figure 3. A typical scenario of using TrustBridge to achieve
cross-organizational resources sharing, where each orga-
nization uses its own Windows Active Directory. Consider
the case in which Organization A and B have some agree-
ment on sharing resources and an employee of Organiza-
tion A is trying to access some resources of Organization
B. That is, Organization B here is a service provider. 1. The
employee first authenticates himself at Organization A. 2.
The employee requests some resources at Organization B.
3. If the employee is authenticated at Organization A,
TrustBridge, which runs on both sides, performs identity
federation so that Organization B shares his identity. 4.
Permission is granted if the request is legal based on the
agreement between the two organizations. 5. The
employee can now use these resources. (Note that steps 3
and 4 require no actions from the employee.)

Windows

Organization B

TrustBridge

Organization A

Identity Federation

Employees

Active Directory
Windows

Active Directory

Resources

1
2

3

4

5

Directory in order to issue credentials. Such approach
imposes burdens to organizations that want to interoperate
with others.

In short, while the Liberty infrastructure and Trust-
Bridge provide solutions to resources sharing across orga-
nizations, both approaches have drawbacks. In the
following section, we introduce a new architecture, called
.TRUST, which satisfies all four properties.

3. An overview of the .TRUST architecture
Beyond meeting the four properties, the .TRUST

architecture is designed to provide some additional desir-
able features. For example, service providers are allowed
to focus on the services they provide, by leveraging the
AAA functionality provided by the .TRUST architecture.
Moreover, organizations are able to control their own pri-
vate information despite sharing specific data with other
parties. They will export information on a task-dependent
way, i.e., they only export information that is necessary to
complete the task at hand.

3.1. Subsystems
The .TRUST architecture consists of four subsystems.

These subsystems are client subsystem, business logic sub-
system, AAA subsystem and service subsystem, as shown
in Figure 4.

• Client subsystem. The client subsystem communicates
with authentication, business logic, authorization and
accounting servers in sequence to obtain enough cre-
dentials for its desired service. It then sends the cre-
dentials to the service unit to request for authorized

services. Upon receiving the request, the service sub-
system will deliver the service to the client.

• Business logic subsystem. The business logic sub-
system maintains all the contracts between companies
and services. It also provides support for companies to
subscribe or unsubscribe to available services.

• AAA subsystem. The AAA subsystem contains authen-
tication, authorization and accounting servers. The
authentication server verifies user ID and password
and also determines the attributes of the client. The
attributes may be demographic in nature such as a
human resources recruiter or a student enrolled in a
specific course of a college. The attributes of a given
identity may also change over time. Therefore, compa-
nies must keep the authentication server well
informed. The authorization server maintains
(attribute, service type) pairs for each company, and
determines whether a user with a set of attributes is
permitted to use certain services. The accounting
server keeps track of service usage of each company.

• Service subsystem. The service subsystem provides the
service to the client after verifying its request. It also
keeps track of service usage for billing.

3.2. Client protocols in .TRUST
Figure 4 illustrates the interactions between these six

units in the four subsystems. The .TRUST architecture is
entirely Web-based. All the communications are handled
by SOAP, an XML-based protocol. All services are speci-
fied by UDDI. Packet encryptions based on standards such
as IPSec and SSL are used to provide confidentiality and
integrity protection to communications among parties.

Figure 4. Overview of .TRUST protocols. Note that once an ID card is issued by the authenti-
cation server, its information will be included in future message passing.

(A) client subsystem, (B) business logic subsystem, (C) AAA subsystem and (D) service subsystem

Client

Business Logic

Web Service

Accounting Authorization Authentication

A

B

C

D

3. ID Card +
Service
request 4. Service

Plans

9. Admission
Ticket

1. Company
Name, Client
ID, Password

2. ID Card

5. Service
Plans6. Service

Ticket
7. Service

Ticket8. Admission
Ticket

Note that in practice, there are many exceptional cases
we may need to consider. For instance, a Web server may
impose limitation on the maximum number of concurrent
users from a single company. When the limit is reached,
the Web service will send a denial ticket to the client appli-
cation, and the client application will forward the ticket to
the accounting server to cancel the record accordingly.

3.3. Management protocols in .TRUST
We now describe management protocols (See Figure

5) that take place as background communications in the
architecture. These protocols can be classified into two
groups. The first group consists of the interactions before
each unit is ready for service (shown as solid lines in Fig-
ure 5). At this stage, each unit needs to acquire certain
information in order to provide the service. For instance,
the authentication server needs a list of (ID, password)
pairs for employees of each company and the business
logic server needs a list of service plans from each Web
service. The second group consists of the interactions after
some services have been provided (shown as dashed lines
in Figure 5). For instance, the company needs to pay for the
services used and if there is any dispute, the company and
the Web services provider will need to consult the account-
ing server to resolve it.

3.4. Mapping high-level business logic onto
architecture rules

It is necessary to facilitate translation of high-level
business policies into rules to be executed by the servers of

the architecture. For example, the .TRUST architecture
provides a method to translate group-based authorization
rules into individual-based rules. This supports companies
that use authorization polices expressed in terms of ser-
vices for departments or groups that are authorized to
receive. The authorization server and accounting server in
the architecture will implement these rules for individuals
based on their group membership.

3.5. Comparison with Kerberos
The .TRUST architecture resembles the Kerberos

authentication system [20]. In Kerberos, a client authenti-
cates itself to a trusted Key Distribution Center (KDC) and
obtains a ticket-granting ticket (TGT). The client system
uses this TGT to access ticket-granting service (TGS) and
obtains a service ticket. The client then presents this ser-
vice ticket to the requested network service. The service
ticket carries out mutual authentication. That is, it proves
both the user's identity to the service and the service's iden-
tity to the user. The network service provides services to
the client if the authentication is valid [20, 21].

In .TRUST, the authentication server acts as a KDC.
The ID card it issues is essentially a TGT. The client pre-
sents the ID card when requesting services at the business
logic server. Here, the combination of business logic
server, authorization server and accounting server serves as
a TGS in that an admission ticket is granted only if the ser-
vice has been subscribed, the client has been authorized to
access that service, and necessary record keeping has been

Figure 5. Management protocols of .TRUST.

Business Logic

ClientCompany

Web Services

Authorization

Accounting

(Service
Attribute)

Authentication

Type,

Resolve
Disputes

Subscribe to
Services

(Employee ID,
Password)

Provide ID and
Password

Submit Service Plans

Resolve
Disputes

Send Bills

Pay Bills

completed. The admission ticket carries out mutual authen-
tication between the client and the service provider.

The .TRUST architecture differs from Kerberos in that
it provides additional functionalities which include busi-
ness logic, authorization and accounting services. The
architecture facilitates service subscriptions through the
business logic subsystem, and also allows companies to
control service usages by imposing various policies at the
authorization server. In addition, the accounting server can
support arbitration functions to resolve possible payment
disputes.

Moreover, we note that in .TRUST each of the AAA
functionalities is implemented on a single server and each
server can be managed independently. In the next section,
we describe the rationales for such design in detail.

4. Design principles and properties

4.1. Design principles
We used three principles in the design of the .TRUST

architecture. First, each server in the architecture should
perform a well-defined, focused function, and its operation
can be managed independently as an individual business
unit.

Second, each server should minimize the amount of a
company's private information that it requires to complete
its duty. In addition, the server should be able to hide the
private information using, e.g., anonymous methods.

Third, each server should be stateless in the sense that
the architecture does not store state information related to
the transaction of each client. This will improve the reli-
ability of the architecture and ease its maintenance.

Based on these design principles, we have made some
design choices. The first one concerns whether we should
store the (service type, attribute) pairs for each company in
the business logic server or in the authorization server. If
the business logic server were allowed to contain such
information, it could decide the service type that the client
will receive based on the ID card transmitted. However,
such arrangement would require the business logic server
to know more information than necessary. This would be
against the principle that the duty of the business logic unit
should be solely to maintain the record of contracts
between companies, whereas that of the authorization
server should be to grant the service type based on the
attribute. For these reasons, we chose to store (service type,
attribute) pairs in the authorization server.

We also considered an alternative model where the cli-
ent does not communicate with the business logic server.
Instead, once the client is authenticated, it will contact the
authorization server with a service request. The authoriza-
tion server communicates directly with the business logic
server with the client's ID card and fetches the service
plans information in order to grant the level of services for

the client. This model adds unnecessary inter-dependence
between the business logic server and the authorization
server, and thus is not desirable according to our first
design principle.

4.2. Properties of .TRUST
By following these design principles, the .TRUST

architecture can achieve high security and simplified sys-
tem:

• Server Independence
Unlike the Liberty infrastructure in which the identity

provider and service providers have to interoperate with
each other to provide services, servers involved in .TRUST
have no direct communications with each other and thus
can be implemented and managed independently. They
interact with the client directly by receiving and sending
encrypted messages. Because of this independence, differ-
ent companies can own and manage their own servers.

• Lowered Security and Privacy Risks
The .TRUST architecture can be used to implement

task-dependent security and privacy systems. Companies
can maximize their control over their private information.
They only export information that is necessary to complete
the tasks. Furthermore, the separation of tasks ensures that
no server has the full knowledge of companies' private
information. Therefore, the .TRUST architecture imposes
lower risks than traditional approaches in which all private
information of a company is stored at centralized servers.

• Scalability and Reusability
Because of the stateless nature of the architecture, the

architecture can be scaled up to include multiple copies for
each server type to handle increased load. In addition, the
same architecture can be used for multiple purposes. For
instance, the same system can be used to allow companies
to update their authentication or authorization information
if we consider the authentication or authorization server
itself as a Web service. Figure 6 illustrates the process
when a company wants to update its authorization informa-
tion.

5. Application examples
To prove the concept, we have implemented some

simple applications on a laboratory prototype of .TRUST.
These applications exemplify some of typical business sce-
narios encountered today. In these three applications, we
assume the Web service provider is PDC, a package deliv-
ery company. We only give a full description for scenario 1
as the architecture works in a similar way in the other two
scenarios. Notice that although different Web services
could be implemented for each of these three scenarios, the
.TRUST architecture is general enough to handle all of
them.

5.1. Scenario 1
A professor at university X in the east coast is attend-

ing a conference at university Y in the west coast. While at
Y, he wants to send several packages back to his university
X. He then launches a client application to connect to the
authentication server. The authentication server checks his
login name and password and identifies him as a professor
at X. The server then sends him an electronic ID card. The
client application forwards the ID card with his service
request, in this case shipping packages, to the business
logic server. The business logic server checks the contracts
between university X and PDC. Suppose that X subscribes
to two service plans from PDC: a premiere plan which
allows overnight delivery service, and a regular plan which
allows 3 Day delivery service. The business logic server
sends these two service plans back. Then the client applica-
tion sends this information to the authorization server. The
authorization server maintains service type information for
different positions in each company. Assume in this case, it
finds out that a professor at X is eligible for the premiere
plan. It then sends a service ticket back that includes infor-
mation such as "University X, Premiere Plan." The profes-
sor then sends the service ticket to the accounting server.
The accounting server records the service usage and sends
an admission ticket to the client. The client then forwards
the ticket to the PDC server. The PDC server checks the
ticket and allows the professor to send a package using the
premiere plan, i.e., by overnight delivery. It also keeps a
copy of the ticket for billing purposes.

Note that authorization policies can be implemented
on the authorization server and the accounting server. For
example, a policy may restrict the number of packages
shipped by the premiere plan per day by the same person.
Thus after the authorization server determines that the pro-
fessor is eligible for the premiere plan, it will include the

rule in the service ticket. Once the accounting server
receives the service ticket, it will execute the rule based on
its record about service usages and decide whether to issue
the admission ticket.

5.2. Scenario 2
PDC would like to purchase new computers for its

employees. For obvious reasons, the choice of computer
types and configurations should be limited. PDC makes a
contract with a computer manufacturer, which consists of a
permitted range of computers. PDC then decides appropri-
ate computer models for each employee position and sub-
mits this information to authorization server. Employees of
PDC can simply order their computers online using the
.TRUST architecture. Because of its generality, the archi-
tecture could allow PDC to authorize its employees to pur-
chase bundled systems including computers and printers
from multiple vendors.

5.3. Scenario 3
PDC also provides same day delivery service for

urgent packages in certain regions. It is likely that by utiliz-
ing transportation services from other companies, particu-
larly these local companies, PDC may save both time and
money. The .TRUST architecture allows PDC to make use
of services from other companies more easily. As a result,
PDC may improve and expand its services and thus attract
more business.

6. Conclusion
In this paper we have described a stateless AAA archi-

tecture, called .TRUST, to achieve resources sharing
between organizations. We consider our system an
improvement over the two infrastructures designed by

Figure 6. The sequence of interactions for updating authorization information. In
this case, the authorization server is the Web service provider.

Company

Business Logic

Accounting Authorization Authentication

3. ID Card +
Service
request 4. Service

Plans

9. Admission
Ticket

1. Company
Name, Client
ID, Password

2. ID Card

5. Service
Plans

6. Service
Ticket7. Service

Ticket8. Admission
Ticket

Microsoft and the Liberty Alliance in that our architecture
satisfies all four properties outlined in Section 1 and pos-
sesses several other desirable features.

First, the .TRUST architecture allows organizations to
choose any appropriate security schemes to accomplish
secure resources sharing. Second, owing to its stateless
nature, the architecture can be scaled up easily to support a
large number of clients and services, and in the meantime,
stay resilient in defense again DoS attacks. Third, as the
AAA servers in .TRUST are separated from each individ-
ual service provider, a user only needs to remember one
(login name, password) pair in order to gain access to vari-
ous services. Fourth, .TRUST is entirely Web-based and
can work across any platforms with standard Web func-
tionalities. In addition, service providers in .TRUST are no
longer burdened by implementing and maintaining authen-
tication and authorization functionalities and can focus on
the services they are providing. Finally, .TRUST allows
organizations to control their own private information and
export information only if it is necessary to complete the
task.

We have also described three application examples to
illustrate how the .TRUST architecture can help exploit
trust-based relationships among businesses in a secure and
flexible way. These application examples have been imple-
mented on a laboratory prototype of .TRUST.

Acknowledgment
This work was supported in part by an E-Business

Research & Curriculum Laboratory Grant from Intel Cor-
poration and in part by DARPA through AFRL/IFKD
under contract F33615-01-C-1983.

References
[1] Lynch, C., A white paper on authentication and ac-

cess management issues incross-organizational use
of networked information resources, Coalition for
Networked Information, April 1998. http://
www.cni.org/projects/authentication/authentication-
wp.html

[2] Levijoki, S., Authentication, authorization and ac-
counting in ad hoc networks, May 2000. http://
www.tml.hut.fi/Opinnot/Tik-110.551/2000/papers/
authentication/aaa.htm

[3] Vollbrecht, J., et al., RFC 2905, "AAA authorization
application examples", August 2000. ftp://ftp.isi.edu/
in-notes/rfc2905.txt

[4] Novell simplifies, personalizes net experience with
Novell Portal Services, press release, March 19,
2001. http://www.novell.com/news/press/archive/
2001/03/pr01023.html

[5] Haught, D., Designing commercial Web services:
Part I - security and flexibility with the .NET frame-
work, http://www.aspnetpro.com/features/2002/01/

asp200201dh_f/asp200201dh_f.asp
[6] Costello, S., Researcher: DDoS attacks are growing

threats, IDG News Service, June 2001. http://
www.nwfusion.com/news/2001/0606ddos.html

[7] MacVittie, L., Microsoft keys in on the enterprise,
March 13, 2002. http://www.networkcomput-
ing.com/1310/1310buzz1.html

[8] Securing the broadband cable network, RSA e-secu-
rity Today, Vol. 2, No. 4, October 2001. http://
www.rsasecurity.com/newsletter/v2n4/broad-
band.html

[9] Liberty architecture overview version 1.1, January
15, 2003. http://www.projectliberty.org/specs/liber-
ty-architecture-overview-v1.1.pdf

[10] Westmacott, I., The stateful Web, Computer Publish-
ing Group, 1998. http://webserver.cpg.com/features/
cover/3.5/

[11] Cisco AAA case study overview. http://
www.cisco.com/univercd/cc/td/doc/cisintwk/
intsolns/secsols/aaasols/c262c1.htm - 2418

[12] System authentication plug-ins, Windows Media Ser-
vices. http://msdn.microsoft.com/library/de-
fault.asp?url=/library/en-us/wmsrvsdk/htm/
wmsauthenticationplugins.asp

[13] .NET Passport: Balanced authentication solutions,
Microsoft Corporation. http://www.microsoft.com/
net/downloads/net_passport.doc

[14] Microsoft's federated security and identity roadmap,
Microsoft Corporation, June 2002. http://msdn.mi-
crosoft.com/library/default.asp?url=/library/en-us/
dnwebsrv/html/wsfederate.asp

[15] Glass, B., Is Microsoft's "TrustBridge" really "Hack-
erBridge”?. http://www.extremetech.com/article2/
0,3973,55154,00.asp

[16] Kaneshige, T., Microsoft's TrustBridge reveals road-
map for Web-services security products; analyst won-
ders whether Microsoft can truly be 'trusted'. http://
www.line56.com/articles/default.asp?Arti-
cleID=3735

[17] Fontana, J., Microsoft touts tighter Web services se-
curity. http://www.nwfusion.com/news/2002/
0610microsoft.html

[18] Microsoft Windows "TrustBridge" to enable organi-
zations to share user identities across business
boundaries, June 6, 2002. http://www.microsoft.com/
presspass/press/2002/Jun02/06-06TrustbridgePR.asp

[19] Windows 2000 authentication. http://www.win-
dowsitlibrary.com/Content/617/06/2.html

[20] Kerberos: The Network Authentication Protocol. ht-
tp://web.mit.edu/kerberos/www/

[21] Kerberos V5 authentication. http://www.mi-
crosoft.com/technet/treeview/default.asp?url=/tech-
net/prodtechnol/windowsserver2003/proddocs/
standard/sag_SEconceptsUnAuthKerb.asp

