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SUMMARY Unicasting video streams over TCP connections is a chal-
lenging problem, because video sources cannot normally adapt to delay
and throughput variations of TCP connections. This paper describes a
method of extending TCP so that TCP connections can effectively carry
hierarchically-encoded layered video streams, while being friendly to other
competing connections. We call the method Receiver-based Delay Control
(RDC). Under RDC, a TCP connection can slow down its transmission rate
to avoid congestion by delaying ACK packet generation at the TCP receiver
based on congestion notifications from routers. We present the principle be-
hind RDC, argue that it is TCP-friendly, describe an implementation that
uses 1-bit congestion notification from routers, and demonstrate by simu-
lations its effectiveness in streaming hierarchically-encoded layered video.
key words: video streaming, layered video, TCP, retransmission timeout,
delay control

1. Introduction

TCP is a dominant transport layer protocol in current Inter-
net. It would be desirable if video and audio streams could
be carried over TCP connections to take advantage of TCP’s
congestion control capabilities. However, it is well recog-
nized that current TCP implementations are not suited for
this purpose because TCP connections could introduce sig-
nificant delay and throughput variations in the delivery of
data [1].

There have been many proposals on new transport pro-
tocols for the purpose of solving this video transport prob-
lem, see e.g. the work by Rejaie et. al [2]. These protocols
need to be TCP-friendly to ensure that they will not cause
network collapse [1][3][4]. However, proving a new trans-
port protocol to be TCP-friendly can be difficult, because the
dynamics of TCP congestion control is extremely complex
[5].

In this paper, we take a different approach: we extend
TCP to make it suitable for transporting video, without mod-
ifying the TCP congestion control algorithm. In particular,
we do not change the TCP sender code that governs TCP’s
behavior in the slow-start and congestion avoidance phases.
The only change we make is on the TCP receiver side. In
fact, our change is no more than extending the delayed ACK
feature [6] in current TCP implementations, so that a longer
delay can be imposed on ACKing (sending of ACK packets
for received data packets) to avoid network congestion. For
these reasons, we believe that our approach is, by design,
TCP-friendly. We call this method “Receiver-based Delay�
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Control” (RDC).
The three main contributions of this paper are summa-

rized as follows:� We propose RDC, which can slow down a TCP con-
nection by extending ACKing delay, rather than shrink-
ing its congestion window as in traditional TCP. As
we shall argue this slowing down method increases the
consistency of TCP performance.� We demonstrate that RDC connections can behave like
constant bit rate (CBR) pipes in the steady state. As a
result, RDC connection is well-suited for video stream-
ing.� We describe a method of controlling the add and drop
of video layers in streaming layered video over a TCP
connection based on the buffer occupancy level of the
TCP sending buffer. Our simulation results show im-
proved performance of this layered streaming method
when it is used together with RDC connections.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the concepts and properties of a pure
form of RDC (“exact RDC”) that uses exact delay notifica-
tion from routers in calculating ACKing delay, as well as an
approximate version of RDC that uses 1-bit congestion no-
tification from routers (“1-bit RDC”). Exact RDC is instruc-
tive in explaining the principle behind RDC, and serving as
an ideal design point for performance comparison purposes,
whereas 1-bit RDC represents a practical implementation of
RDC. In Section 3, we present simulation results which es-
tablish the basic properties of RDC. Then in Section 4, we
describe design and implementation of a source algorithm
for transporting layered video streams [7] over TCP. In Sec-
tion 5, we show our simulation results demonstrating the
performance of RDC with the source algorithm in transport-
ing layered video streams. In Section 6, we discuss some
related work. Finally, in Section 7, we summarize and con-
clude the paper.

2. RDC Concepts

We first introduce the basic concepts and properties of exact
RDC by comparing it with traditional TCP. We then describe
two useful properties of exact RDC. Finally, we present 1-
bit RDC that requires reduced network support similar to
that of Explicit Congestion Notification (ECN) [8].

Pai-Hsiang Hsiao
This is a preprint of an article to appear in IEICE Transcations on Communications (http://search.ieice.org/)

http://search.ieice.org/


2

2.1 Exact RDC

Consider a traditional FIFO-based router with incoming and
outgoing links. As depicted by Fig. 1(a), each outgoing link
has a FIFO buffer. Packets arriving on incoming links are
forwarded to the FIFO buffer of an outgoing link. Packets
are removed from that buffer and sent to its outgoing link at
the link rate. The buffer occupancy, the number of packets
that are currently stored in the FIFO buffer, increases when
the arrival rate exceeds the departure rate. In the congestion
avoidance phase of traditional TCP, a connection will grow
its sending rate gradually until the FIFO buffer is exhausted
and a packet is dropped.

In contrast, exact RDC depicted in Fig. 1(b) is able
to keep the occupancy of the FIFO buffer low. The router
will calculate a delay for each arriving packet using a token
bucket based mechanism, and append a delay notification to
the packet when it is forwarded to the next hop.

After receiving a data packet with a delay notification,
the TCP receiver will forward the payload of the packet to
the application immediately, but will impose a delay on the
ACKing according to the received delay notification. How-
ever, if a data packet arrives out of order, an ACK packet
will be sent immediately. Thus, duplicate ACK packets,
triggered by out-of-order packets, are not delayed. This is
essential for the proper working of fast retransmit and fast
recovery [9].

The router of Fig. 1(b) computes a delay for each ar-
riving packet using a token bucket. The objective is that the
computed delay for the packet should be the same as the de-
lay the packet would experience if it was delayed in a FIFO
buffer of a traditional router of Fig. 1(a). This ensures that
exact RDC has the property described in the paragraph be-
neath Eq. (2). For simplicity, in the rest of the section we
assume all packets in the FIFO buffer are of equal size, and
a token in the token bucket represents a packet in the FIFO
buffer. When packets are of different sizes, we may use a
token to represent a byte of the packet.

More precisely, for each packet arriving at the router,
not only it is forwarded to the outgoing FIFO buffer, a token
is also inserted into the token bucket. We use token bucket
level to represent the number of tokens that the token bucket
currently has. The token bucket drains tokens at a rate (in to-
kens per unit time) smaller than the rate (in packets per unit
time) that the outgoing link drains packets from the FIFO
buffer. The token bucket may still drain even thought when
the FIFO buffer is empty. The drain ratio � is defined as the
ratio of the token bucket’s drain rate over the link’s output
rate. The drain ratio � is always less than 1 for reasons to be
explained later.

For each packet arriving at the FIFO buffer of Fig. 1(b),
a delay ���
	����� is computed as follows:� ��	����������������������
� ���
	��"!$#&%'�)(+*,%'-/.�-/02143 (1)

where � ����4�������5�6���5	 � is the packet transmission time over
outgoing link, %7�)( is the token bucket level in tokens, and
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Fig. 1 Compare RDC with traditional TCP. (a) In traditional TCP, pack-
ets are delayed in the FIFO buffer in the router during congestion; (b) in
exact RDC, the router computes the delay of each arriving packet that it
would experience in traditional TCP, using a token bucket method, and no-
tifies the TCP receiver to impose the delay on the ACKing of the packet;
and (c) in 1-bit RDC, the FIFO buffer in the router sets the Congestion
Experienced bit (CE bit) with a marking probability determined by the cal-
culated delay.

%7-/.�-/0 is the FIFO buffer occupancy in packets.
Suppose that the arriving packet is already appended

with a delay notification � ���?��	 ���
�A@ . A new delay notifica-
tion �B	 CD�E@�	����A@ is calculated using�B	 CD�E@�	����A@ �GFBHJI�# �K������	������J@ 3 ����	���4� 143 (2)

and is appended to the packet before it departs from the
router.

After receiving a data packet with delay notification � ,
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the TCP receiver will delay the ACKing of the data packet
by � . A TCP connection under exact RDC behaves the
same as the traditional TCP connection when the router has
a large FIFO buffer and the outgoing link runs at a reduced
speed that is � times the original. The only difference is, in-
stead of delaying data packets in the FIFO buffer, the ACK
packets are delayed at the receiver. Exact RDC, therefore,
behaves like traditional TCP. Thus, it is TCP-friendly.

Token bucket level can grow without bounds, if the in-
put rate is higher than the output rate for a long period of
time. This could happen when the number of TCP flows is
expanding. To prevent the calculated delay from growing
unbounded, we limit the size of the token bucket to LNM�O?PJ�)( .
When the token bucket level exceeds LQM�ORPN�)( , the incoming
packet is dropped. We note that although the computed de-
lay may become large, it does not necessarily prevent RDC
from utilizing available bandwidth. Large delay results in
large round-trip time, in this case, by using a large conges-
tion window size the connection still can achieve a high rate.

When the drain ratio is set to be less than 100% of the
link rate, it helps to lower or even avoid the buffer occu-
pancy. To illustrate this, consider the case when packets ar-
rive at a rate that is higher than the drain rate but less than the
link rate. In this case the token bucket level will arise while
the buffer occupancy will not. Because of the raised token
bucket level, departing packets will be marked to signal the
TCP receiver to slow down the connection by extending the
ACKing delay. Thus the slowdown can be achieved even
without the associated increase in the buffer occupancy.

Choosing the � value is a matter of balancing between
link utilization and buffer occupancy. As we will show later
in the paper, when � is S?TRU , the FIFO buffer occupancy
under exact RDC can be kept below a few packets. How-
ever, because the utilization on the outgoing link is bounded
above by � times the bandwidth of the output link, we nor-
mally should not set � to be too low, e.g., below S?TRU . Al-
though, for our simulation results reported in this paper, �
is set to be S�TVU , we have observed that basically the same
performance level can also be obtained if � is set to be SRW?U .
Thus, when higher bandwidth utilization is required, we
should choose a � value higher than S?TRU .

2.2 Properties of Exact RDC

A RDC connection is suited for transporting video. First, it
can reduce the number of timeouts by allowing a larger con-
gestion window size, resulting from extending round-trip
time (RTT) by delaying ACKs. Second, it allows packets
to experience reduced queueing delays in routers.

2.2.1 Reduced Number of Timeouts

We note that during the congestion avoidance phase, the rate
of a TCP flow is determined by X4Y[Z/\ /RTT, where X�Y[Z/\ is
the congestion window size and RTT is the round-trip time.
Thus, when the number ] of TCP flows competing for the
same network link increases, each flow must either decrease

its X4Y[Z/\ or increase its RTT.
Recall that X4Y'Z/\ cannot be smaller than one packet.

To avoid TCP timeouts, X4Y[Z/\ needs to be larger than four
packets to allow TCP fast retransmit and fast recovery to
work [9][10]. In fact, to be “non-fragile,” that is, resilient to
retransmission timeouts, X4Y'Z/\ needs to be about six pack-
ets if Explicit Congestion Notification (ECN) is not used
[11][12].

Since it is undesirable to reduce X4Y'Z/\ below certain
limit, such as six packets, as noted above, increasing RTT
becomes necessary when the number ] of competing flows
is sufficiently large. The RDC approach provides a way
of extending RTT without introducing queueing delays in
routers. That is, RDC delays the ACKing of packets at the
TCP receiver instead.

2.2.2 Reduce Network Queueing Delays

As discussed above, under RDC a network does not build
up queueing delays, and average queueing delays in a router
can be kept below a few packets. This ensures low latency
of packet delivery and allows the network to be responsive
to congestion and flow control. Both of them are important
for streaming applications. Keeping network queueing de-
lay low is generally regarded as a good practice, as is often
pointed out in the literature [13]–[15].

2.3 1-bit RDC

To simplify the router requirements, we suggest that RDC
implementation use 1-bit Congestion Experienced (CE) no-
tifications from routers, rather than notifications containing
actual delays as in exact RDC described above. The CE bit
is placed in the header of an IP packet and is used by ECN
[8][16].

Recall that under exact RDC, the router calculates and
appends delay for each packet, so the receiver can delay the
ACK packet accordingly. As depicted in Fig. 1(b), the de-
lay is calculated by the router using a token bucket based
mechanism. An advantage of this approach is that the de-
lay calculated reflects exactly the current congestion level at
the router, so the receiver can quickly adjust to it. A dis-
advantage, however, is that there are no natural places in
the TCP/IP headers to include the multi-bit delay value. We
could use a header option field or the 16-bit ID field in the
IP header as discussed in [17] for this purpose, but these are
not standard methods.

As shown by 1-bit RDC of Fig. 1(c), RDC could be
implemented using the CE bit in the IP packet header. The
router could still employ a token bucket and update to-
ken bucket levels. But instead of appending each outgoing
packet with the calculated delay, it only sets the CE bit in
the IP packet header with a certain marking probability de-
termined by the difference between the token bucket level
and the FIFO buffer occupancy. That is, instead of using
Eq. (1) and (2) to calculate �K��	���4� and �B	�CD�E@�	 �
�A@ , the router
first calculates the difference to determine a marking prob-
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ability. Then, if the incoming packet does not have the CE
bit set, the router will set the bit with the marking proba-
bility. The marking probability increases linearly from 0 to
1, as the difference increases from 0 to a configured thresh-
old, ^ _a`APALb_a�)( . When the difference is larger than ^ _c`APbLb_d�)( ,
the CE bit is always set to the incoming packet. (As noted
in Section 7, the CE bit can also be set by RED-like [14]
algorithms without using the token bucket.)

The receiver will adjust the delay that is to be imposed
on ACKing based on the percentage of received packets that
have the CE bit set. The receiver estimates the round-trip
time and uses it as an observation period over which the
percentage is computed. That is, the observation period is
the round-trip time of the flow, including the delay imposed
to the ACK packet. We use two parameters, e and f , to
denote some high and low thresholds, respectively. These
thresholds will be used to determine whether to increase or
decrease delay. For example, for e � Tcg S and f � Tag
h , ifS�TVU or above of the packets received in a period of time are
set with the CE bit, the receiver will increase the delay for
every future ACK packet. On the other hand, if only hDTRU or
less of the packets received in the period of time are set with
the CE bit, the receiver will decrease the delay.

When adjusting the delay, the receivers retain the
same additive-increase and multiplicative-decrease (AIMD)
[18][19] congestion window control behavior of traditional
TCP. That is, during congestion avoidance phase, the TCP
sender increases its sending rate additively by growing its
window size additively (add one packet to the window size
per round trip time) if it does not receive congestion signal
during the round-trip time. It will reduce the window size by
half to decrease its sending rate by half if there is a conges-
tion signal. The AIMD behavior is important as it assures
that TCP connections can reach equilibrium when they are
in the congestion avoidance phase [18][20]. In RDC, the
receiver maintains a value as the amount of time to delay
the ACKing of each packet. This value will increase when
sufficient congestion signals are received from the network,
and will decrease when only few or no congestion signals
are received. To retain the same behavior as AIMD con-
gestion window control, we adjust the delay so that it is
increased multiplicatively and decreased additively. This
control method is thus additive-decrease and multiplicative-
increase.

We use � � to represent the amount of delay to be im-
posed on ACK packets in the Z th observation period. Ini-
tially, the receiver imposes no delay for ACK packets, that
is, ��i � T . When the observed percentage of packets with
CE bit set is higher than the threshold e , the delay will be set
to be the estimated round-trip time. Because ACKing to all
packets received in the next observation period are delayed
for this amount, it effectively doubles the round-trip time be-
tween the two end points. The length of the next observation
period is then updated to be this new length, sum of the esti-
mated round-trip time and the delay. The receiver continues
to observe received packets and calculates the percentage
for the next period of time. If the observed percentage is

higher than the threshold e , the delay will be doubled. That
is, � �Jjlkm�onK! � � , for � �qp T , where � �Jjlk and � � are
new and old delays, respectively. On the other hand, if the
observed percentage is lower than the threshold f , the delay
will be reduced according to the following equation:

� �Jjlk9� r X�Y[Z/\X4Y[Z/\msthdu ! � � (3)

As shown in Eq. (3), the decrease in the delay is in-
versely proportional to the congestion window size ( X4Y[Z/\ )
plus 1. Thus, our delay update follows AIMD [18] principle.

In 1-bit RDC the CE bit is used as a signal for the re-
ceiver to estimate the value of the proper delay that would
have been computed exactly in exact RDC. If the receiver
underestimates the required delay on the ACKing of pack-
ets, then the sender’s sending rate will still be higher than
that the network allows. This means that packets with the
CE bit marked will continue arriving at the receiver with
high probability. The receiver, when still receiving pack-
ets with high marking probability, will further increase the
amount of ACKing delay to decrease the sender’s sending
rate. On the other hand, when the sender’s sending rate be-
comes lower than that the network can support, the receiver
will not receive packets with high marking probability. The
receiver will then decrease the delay to increase the sender’s
sending rate. Thus 1-bit RDC achieves the delay control
effect that approximates that of exact RDC.

3. Simple Simulation for RDC

To study RDC, we have performed simulations for a sim-
ple network configuration in ZvL -2 [21]. Fig. 2 depicts the
configuration, which is based on one of the configurations
in [14]. Two flows, originating from two sources each with
a 100 Mbps link to the gateway and having the same end-
to-end round-trip delay of 42 ms, compete for the bottle-
neck link with a bandwidth of 45 Mb/s. The gateway has a
buffer of 140 packets. The packet size is 1,000 bytes. The
maximum window size of both flows is set to be 240 pack-
ets, which is slightly more than each flow’s bandwidth-delay
product (236.25 packets).

Note that if only one of the two flows is running, the
flow’s congestion window could reach the maximum win-
dow size of 240 packets. This is because some packets can

BA

GATEWAY

Sink

20ms 45Mbps

100Mbps1 ms

FTP SOURCES

Fig. 2 The configuration for a simple network used in the simulation.
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be queued at the gateway. There will be no loss of pack-
ets, since there is no buffer exhaustion. However, when the
second flow starts running and competing for the bottleneck
link, some packets will be dropped due to buffer exhaustion.

In the simulation, we start flow A at time zero and flow
B one second later. One second is long enough for flow A to
grow its congestion window to the maximum window size.
Thus the rate of flow A stabilizes before flow B starts.

We compare four systems: DropTail, ECN, exact RDC
and 1-bit RDC. We run simulations with their respective
queue management algorithms implemented in the gateway
and corresponding setups implemented in senders and re-
ceivers. For ECN, the parameters for RED in the gateway
are wxMyZ��)z = 40, w{eR|d�)z = 120, Y � Tag T�T n , w"eR|a} � Tcg�h and~ PNZ�^6�&P � ^�`b��P . Furthermore, senders and receivers pro-
cess CE bit following the proposal in [16]. For both exact
RDC and 1-bit RDC, LNM�O?P �)( is set to be 6400 packets, and
the drain ratio � equals to 0.9. For 1-bit RDC, the thresholdse and f are 0.9 and 0.1, respectively. The value of ^ _c`APALD_ �)(
is set to be 500.

For 1-bit RDC, we need to estimate both RTT andX4Y[Z/\ for each flow. For the RTT estimation, we use the in-
terval between the arrival times of the first two data packets
as an estimate. Other methods, such as the timestamp option
as mentioned in [22], could be used to provide a more accu-
rate RTT estimation. For the X4Y'Z/\ estimation, we use the
TCP sender’s maximum window size as an estimate. We
note that the use of maximum window size, instead of the
current window size, makes 1-bit RDC less aggressive due
to the reduced rate in decreasing delays based on Eq. (3).

Fig. 3 shows the number of packets sent by each flow
in 84 ms periods. (We note that 84 ms is twice of the 42
ms end-to-end round-trip delay.) Under DropTail and ECN,
both flows A and B continue exhibiting large throughput
fluctuations even after 10 seconds. In contrast, under ex-
act RDC and 1-bit RDC, the flows stabilize in less than 0.5
and 10 seconds, respectively.

The superior performance of RDC can be explained as
follows. DropTail and ECN rely on TCP senders to control
throughput by performing the AIMD control on X4Y'Z/\ . The
throughput fluctuates between available bandwidth and half
of the available bandwidth. In contrast, exact RDC continu-
ously adjusts the sending rate by controlling the delay to be
imposed on the ACKing of data packets. 1-bit RDC approx-
imates the behavior of exact RDC.

Moreover, as shown in the figure, flow B in DropTail,
ECN, and 1-bit RDC suffers from at least one timeout dur-
ing the slow-start phase. This is caused by the fact that the
router does not have a large enough buffer to absorb packet
bursts introduced by the slow-start process. Consequently,
some packets are dropped and it results in timeouts. Also
in ECN, due to its use of average queue occupancy in deter-
mining CE marking probability, packets from both flows are
dropped, and this results in the traffic phase effect [23]. Ex-
act RDC does not seem to exhibit the phase effect, although
1-bit RDC sometimes does.

From Fig. 3(c) and 3(d), we see that exact RDC and 1-

0

100

200

300

400

500

600

0 5 10 15 20 25 30

n
o

. o
f 

p
kt

s 
re

ce
iv

ed
/p

er
io

d

time (second)

flow A
flow B

(a) DropTail

0

100

200

300

400

500

600

0 5 10 15 20 25 30

n
o

. o
f 

p
kt

s 
re

ce
iv

ed
/p

er
io

d

time (second)

flow A
flow B

(b) ECN

0

100

200

300

400

500

600

0 5 10 15 20 25 30

n
o

. o
f 

p
kt

s 
re

ce
iv

ed
/p

er
io

d

time (second)

flow A
flow B

(c) Exact RDC

0

100

200

300

400

500

600

0 5 10 15 20 25 30

n
o

. o
f 

p
kt

s 
re

ce
iv

ed
/p

er
io

d

time (second)

flow A
flow B

(d) 1-bit RDC

Fig. 3 Number of packets received at the router in 84ms periods over
time for (a) DropTail, (b) ECN, (c) exact RDC, and (d) 1-bit RDC. (Simu-
lation of the configuration of Fig. 2)
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bit RDC can transport data with a relatively steady rate. In
addition, we expect that they will experience only few or no
timeouts, as discussed in Section 2.2.1. These properties are
desirable for transporting video streams.

4. Layered Video Streaming

In this section, we describe our video encoding model, as
well as the design and implementation of a streaming ap-
plication. Beyond providing maximum available bandwidth
for video delivery while remaining friendly to other flows,
our goals include minimizing the playback latency.

4.1 Hierarchically-encoded Layered Video

We use a simple model for hierarchically-encoded layered
video [24]–[26]. A video stream is hierarchically encoded
into several layers, with every layer requiring the same de-
livery bandwidth. Data of a layer can only be played by the
receiver when all data from its lower layers is received. The
playback quality increases when data from additional layers
is received. Streaming more layers delivers better quality
of video, but requires more network bandwidth. Videos are
encoded offline, with each layer stored separately.

4.2 Use of TCP as the Transport Protocol

An advantage of using TCP in transporting video is that the
transport will be friendly to other flows sharing the same
network and will not cause network collapse. However, it
is not appropriate to use traditional TCP as is for streaming
purposes, because it is designed for reliable data communi-
cation, not for real-time applications.

As discussed earlier, TCP connections may introduce
significant bandwidth and delay variations. In particular,
TCP connections may suffer retransmission timeouts. That
is, TCP will cease transmission and wait for a retransmission
timeout to expire, if sufficiently many packets are lost. Re-
transmission timeout can take seconds to expire, and this in
turn can stop video playback for seconds. The receiver could
buffer a large amount of data before it starts playback. How-
ever, this would increase the playback latency significantly.
When timeouts happen frequently, even a large amount of
buffering may not help. RDC addresses these obstacles as
discussed in the previous sections.

4.3 Video Source Streaming Algorithm

When streaming video over a RDC connection, the multi-
layer video source decides dynamically when to add or drop
a layer of encoded video. The decision will be based on
the observed occupancy of the TCP sending buffer. Because
network paths may experience different network conditions,
the source needs to determine the highest layer ] the net-
work will allow at any given time. We say a streaming is at
layer ] if the source decides it is appropriate to send ] lay-
ers of video to the receiver. Different streams may use differ-
ent values of ] at a given time, depending on their network

condition. For each streaming session, the video source will
monitor the TCP’s sending buffer to detect change in net-
work condition.

To support the monitoring required by our source appli-
cation, we have extended the TCP agent in ZvL to support two
additional variables: sending buffer size and sending buffer
occupancy. Sending buffer size is defined to be the sending
TCP agent’s maximum window size. The sending buffer oc-
cupancy may change whenever the application writes data to
the agent or the agent sends a data segment to the network.
The application can read both variables. At any given time,
the amount of data the application can write to the sending
buffer is bounded by the sending buffer size minus the oc-
cupancy.

The source application is implemented as follows. The
application is executed periodically when streaming video.
If the TCP maximum segment size is � bytes, and the band-
width requirement of each layer is � bytes/second, then the
period is set to be ���A� seconds. If a stream is currently at
layer ] , then the application will insert ] segments to the
buffer in each period, one from each of the ] layers. The
application monitors the buffer occupancy continuously to
decide whether a layer should be added or dropped. If all
the observed buffer occupancies over a predetermined inter-
val are lower than a threshold �l��4� , an additional layer will
be added to the stream. If an observed buffer occupancy is
higher than a threshold �v����	y} , a layer will be dropped from
the stream. Although the source algorithm has only been
performed in the simulator at present, we believe it could be
easily implemented in real-world systems. For example, on
BSD-derived systems we can implement via ioctl(2) so
the application can call and probe for the values of sending
buffer size and buffer occupancy.

Fig. 4 illustrates sending buffer occupancy over time.
The buffer occupancy decreases in the beginning, because
the network can provide higher bandwidth than the stream-
ing currently requires. At point 1, because all the observed
buffer occupancies are lower than the threshold � ��4� in the
period of � k , an additional layer is added to the stream. The
additional layer adds more data than the available bandwidth
of the network can transport, so the buffer occupancy starts
increasing. At point 2, the network is congested and pack-
ets are dropped, so sending data to the network is stopped
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Fig. 4 Sending buffer occupancy over time. The two horizontal dashed
lines are ����� � and �?�����y� . The solid line gives the buffer occupancy over
time.
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because of retransmission timeout. As a result, the buffer
occupancy increases rapidly. Later, at point 3, the buffer oc-
cupancy exceeds the threshold � ����	y} , so a layer is dropped
from the stream. However, since the stream is still waiting
for timeout to expire, some additional layers are dropped.
When the timeout eventually expires and the TCP connec-
tion’s congestion window opens up again, the TCP sender
resumes transmission, and the buffer occupancy decreases.
At point 4, three layers are added to the stream, one at a
time.

The number of layers for a stream can be as low as
zero, when the network is severely congested and no data
can be delivered in time. In other words, the application
can skip data for some streams during network congestion.
This is necessary because once data are inserted into TCP’s
sending buffer, the source cannot cancel its delivery.

Note that our algorithm drops a layer immediately af-
ter one observation of high buffer occupancy, rather than
several observations. This provides a rapid way of reducing
the rate at which the source inserts data into the buffer when
network congestion develops.

On the other hand, the predetermined observation pe-
riod before adding a layer is set to be more than several
seconds long. Since frequent fluctuation in the number of
layers for a stream can cause the corresponding fluctuation
in the playback quality, the purpose here is to minimize this
fluctuation so as not to be annoying to video viewers.

5. Simulations of Video Streaming

In this section, we run three sets of simulations to study
the performance of RDC connections in streaming video.
The first two sets use similar network configurations, one
set has 10 streaming connections, while the other has 100.
We first describe our simulation setup for both cases, and
then present results of each of the simulation sets in a sub-
section. Using the 10-stream simulation, we demonstrate
that ECN, exact RDC, and 1-bit RDC have better stability
than DropTail, and exact RDC and 1-bit RDC have smaller
router buffer occupancy than DropTail and ECN. Using the
100-stream simulation, we demonstrate that 1-bit RDC per-
forms better than ECN when there are many flows.

The third set of simulations, described in a separate
subsection, uses a different configuration. This set of simu-
lations compares the performance of ECN and 1-bit RDC in
situations where streams with different round-trip times are
mixed in the network.

5.1 Simulation Setup

Both sets of simulation use the network configuration de-
picted in Fig. 5, a configuration also used in [2]. In this
network, the bottleneck link is the central link connecting
routers ��i and ��k . �mi and ��k have side links connecting to
sender nodes ( � � ) and receiver nodes ( � � ), respectively. For
each M , there is a TCP connection from node �v� to ��� . The
variable Z is the number of streaming connections, which is

either 10 or 100. The bottleneck bandwidth is set to Tag �J� ! Z
Mbps for reasons to be explained below. Both � i and � k
have a FIFO buffer of 100 or 200 packets for the 10 or 100
connection setup, respectively.

We set all the data packets to have a fixed size of 1,000
bytes, and all TCP senders to have a maximum window of
40 packets. To reduce traffic phase effect among flows, we
start all flows randomly in the first 20 seconds. We run the
simulation for 800 seconds.

Our video data is multi-layer encoded as described in
Section 4, with each layer requiring 20 KByte/s for its de-
livery. Each �/� is a source and delivers a stream to the cor-
responding ��� . For a 4-layer stream, a total of 80 KByte/s,
or 0.64 Mbps, is required. Thus, to achieve the best stream-
ing quality for all connections and maintain fairness, each
source should continuously stream 4 layers of video on each
connection. The period that the streaming application uses
is 50 ms. The threshold � ��4� is set to zero packets, while�/����	�} is set to 20 packets, half of the TCP’s maximum send-
ing buffer size. The observation period for � ��4� is 15 sec-
onds.

Four systems, DropTail, ECN, exact RDC, and 1-bit
RDC, are compared in the 10-stream simulation, but only
ECN and 1-bit RDC are compared for the 100-stream simu-
lation. (For the 100-stream case, DropTail performs poorly.)
When simulating with RED, we have w{M�Zv�)z equal to hA�A� of
the FIFO buffer size (16.67 and 33.33, respectively, for 10-
stream and 100-stream simulations), w{eR|��)z equal to hb� n of
the FIFO buffer size (50 and 100, respectively), Y7� = 0.002,w"e?|a} = 0.1, and ~ PDZ�^6�&P � ^�`b��P . For simulations with both
exact RDC and 1-bit RDC, we use the same parameters as
those used in simulations of Section 3, except that for the
100-stream simulation, ^ _c`APALD_ �)( is increased from 500 to
5,000.

5.2 10-Stream Simulation

In this subsection we show that both exact RDC and 1-bit
RDC can provide a relatively steady streaming quality, com-
pared with DropTail and ECN. We also show that the packet
delivery delay is significantly reduced for exact RDC and
1-bit RDC, because the FIFO buffer occupancy of the out-
going link from � i to � k is kept low in both cases.

In Fig. 6, results on achieved throughput in number of
layers are presented. For each connection, the change in the

10ms
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Fig. 5 Network configuration for video simulations.
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Fig. 6 10-stream simulation. Number of layers for each connection over
time for (a) DropTail, (b) ECN, (c) exact RDC, and (d) 1-bit RDC. Only
flow 10 is highlighted with a thick solid line, while the others are in thin
dashed lines.
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Fig. 7 10-stream simulation. Sampled FIFO buffer occupancy of the out-
going link from ��� to ��� for (a) DropTail, (b) ECN, (c) exact RDC, and
(d) 1-bit RDC. Y-axis of the figures are in the log scale.
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number of layers for each stream is shown. We note that
the higher the number of layers, the better the quality of
transported video. As expected, DropTail in Fig. 6(a) ex-
hibits severe unfairness in the number of layers for different
streams, and ECN in Fig. 6(b) also exhibits some fluctuation
and unfairness. A random stream is highlighted with thick
solid line for better presentation.

In contrast, both exact RDC and 1-bit RDC perform
better in terms of fluctuation and fairness in the number of
layers. However, since the throughput is bounded above at
90%, due to our choice of drain ratio � = 0.9 in the simula-
tion, the average number of layers for both cases are lower
than that of ECN’s. The utilization will be increased accord-
ingly if a larger value of � such as � = 0.95 is used.

In Fig. 7, we present results on the FIFO buffer occu-
pancy. The buffer occupancy is sampled at every 50 FIFO
buffer enqueue or dequeue events. The results show that ex-
act RDC, in Fig. 7(c), has the lowest buffer occupancy of
only a few packets. 1-bit RDC, in Fig. 7(d), has a lower oc-
cupancy and less fluctuation compared with both ECN and
DropTail. These results imply that both delay and delay jit-
ter are smaller with exact RDC and 1-bit RDC.

Finally, we note from our simulation that DropTail ex-
hibits many packet loss and timeouts, while both ECN and
1-bit RDC exhibit only a few packet drops and timeouts.
Exact RDC does not have any packet loss or timeout at all.

5.3 100-Stream Simulation

In this subsection, we present simulation results when the
number of streams is increased from 10 to 100. We also
increase ��i ’s FIFO buffer size from 100 to 200, and ad-
just RED’s parameters accordingly. The parameters for 1-
bit RDC remain the same. ECN and 1-bit RDC are com-
pared, since the two methods depend on similar network
support such as 1-bit congestion notification from routers.
The results presented in this subsection demonstrate that
1-bit RDC performs well when the number of streams in-
creases from 10 to 100, while the performance of ECN de-
grades.

Fig. 8 examines the performance results. In the top
two figures of Fig. 8, we show the number of layers over
time for 10 randomly selected streams among the 100 sim-
ulated streams. A random stream is highlighted with thick
solid line in each figure to simplify presentation. We also
present the sampled FIFO buffer occupancy in the bottom
two figures. For the number of layers, both ECN and 1-bit
RDC show slightly increased fluctuation compared with the
10-stream case. However, larger fluctuation in buffer occu-
pancy is only observed under ECN.

The increased fluctuation in buffer occupancy of ECN
connections is partly due to their relatively high packet loss
rates and large numbers of timeouts. Table 1 shows the
packet loss rate and the total number of timeouts during the
lifetime of the 100 connections for both the ECN and 1-bit
RDC cases. ECN exhibits significantly more timeouts than
1-bit RDC.

Table 1 Packet lost rate and number of timeouts in the lifetime of the
100-stream simulations.

ECN 1-bit RDC

Packet lost rate 8.5E-4 3.5E-6
(number lost) (5076) (17)

Number of timeouts 675 2

64 M
bps

5ms

5ms

64 M
bps 100 M

bps

10
0 

M
bp

s

10
0 

M
bp

s

10
0 

M
bp

s

10
0 

M
bp

s

10
0 

M
bp

s

64 M
bps

5ms

64 M
bps

5ms

G3

G2

G1

G6

S

S

41S

S60

21S

S

1

20

40

1R

R100
5 ms

64 Mbps
100 ms

5 
m

s

5 
m

s

5 
m

s

5 
m

s

5 
m

s

G5

S100

81S

G4

61

80

S

S

Fig. 9 Network configuration for video streams with different round-trip
times.

5.4 Streams with Different Round-trip Times

We have studied, in previous subsections, performance of
RDC and ECN when streams have homogeneous round-
trip time. In this subsection, we compare their performance
when streams have different round-trip times. Fig. 9 depicts
the simulation network configuration.

There are 100 streams in this network, divided into
5 groups each with 20 streams. The round-trip times for
streams in these groups are 220 ms, 230 ms, 240 ms, 250
ms and 260 ms. We note that these round-trip times are
much longer than those considered in previous subsections.
Parameters specific to ECN and RDC remain the same, as
well as the queue size on the bottleneck link router.

As we expected, the performance, in terms of packet
loss rate and buffer occupancy, of RDC and ECN are sim-
ilar to the results of previous subsection. However, since
streams now have different round-trip times, the perfor-
mance of video layers over time are different.

Fig. 10 shows the number of layers for five randomly
selected streams for ECN and RDC, one from each group.
ECN exhibits higher layer disparity than RDC, due to dif-
ferent RTTs of streams. Streams with shorter RTT, for ex-
ample, the one highlighted with thick line in Fig. 10(a), can
grow its layers to 8 and starve other streams with longer
RTTs.

5.5 Performance Summary

We have shown, by simulation, that the proposed multi-
layered streaming can work well under ECN, exact RDC
and 1-bit RDC. Traditional TCP with DropTail routers, on
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Fig. 8 100-stream simulation. The first row is the number of layers for each connection over time for
(a) ECN, and (b) 1-bit RDC. 10 connections are randomly selected to simplify presentation, but only
one is high lighted with a thick solid line. The second row is the sampled FIFO buffer occupancy of
outgoing link from �+� to ��� over time.

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900

n
u

m
b

er
 o

f 
la

ye
rs

time (second)

stream 5

(a) ECN

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900

n
u

m
b

er
 o

f 
la

ye
rs

time (second)

stream 5

(b) 1-bit RDC

Fig. 10 100-stream simulation with different round-trip times. The number of layers for each con-
nection over time for (a) ECN, and (b) 1-bit RDC are shown. Five connections are randomly selected
to simplify presentation, one from each RTT group, but only one with the smallest RTT is high lighted
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the other hand, performs poorly and is not appropriate for
this purpose.

Exact RDC generally outperforms ECN and 1-bit
RDC. However, as noted in Section 4, 1-bit RDC, which
is an approximation of RDC, is more attractive than exact
RDC for easy implementation and deployment.

When ECN and 1-bit RDC are compared, we note that
when the number of competing streams is small (see the 10-
stream simulation results of Fig. 6 and 7), 1-bit RDC per-

forms better than ECN, but not by much. The performance
difference becomes significant when the number of compet-
ing streams increases (see 100-stream simulation results of
Fig. 8 and Table 1). This is because the RDC approach can
reduce the number of timeouts as explained in Section 2.2.1.

6. Related Work and Discussion

In supporting exact RDC we require a router to manage the
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FIFO buffer by dropping packets and sending out delay noti-
fications based on the buffer occupancy and the token bucket
level. Thus, it is an instance of active queue management
(AQM) [13] as opposed to scheduling algorithm [27] that
applies different treatments to different classes of packets in
order to improve performance. Token-bucket based marking
schemes similar to ours in Section 2.3 seem to have gained
some popularity recently in the literature; see for example
[28].

ECN [8] is a framework for sending explicit congestion
signal from routers to TCP senders or receivers. Routers
with AQM, such as RED, detect persistent high buffer oc-
cupancy and notify the senders that contributes to the con-
gestion with such a signal. In response to the presence of
congestion signal, these senders reduce their sending rates
by half. In contrast, routers in the RDC framework notify
receivers the need for delaying the ACKing of data packets.

ECN and RDC use different approaches in dealing with
congestion. Under ECN, TCP senders adjust congestion
window size to avoid congestion, whereas under RDC, TCP
receivers control the delay of ACK packets. Other receiver-
based congestion control methods manage the advertised
window size, such as those discussed in [29].

Kanakia [30] studied the use of feedback information
from the network, such as the router buffer occupancy, to
modulate the source rate of a video encoder. The conges-
tion control scheme used there is optimized for video quality
and does not consider the TCP friendly requirement when
there are other competing TCP flows. We consider in the
paper not only optimizing video playback quality, which is
achieved by reduced timeouts, steady delivery rate and lay-
ered encoding, but also being friendly with other competing
TCP flows.

Real-time Transport Protocol (RTP) is a popular proto-
col that is used to stream multimedia over the Internet [31].
RTP marks packets with payload type identifiers, as well
as time stamps and sequence numbers, so that audio and
video data can be synchronized at the receiving host. But
RTP does not itself have a feedback mechanism whereby the
transmitter can be informed about the status of data delivery
as seen at the receiver. An adjunct to RTP is a control proto-
col known as Real-Time Control Protocol (RTCP). This pro-
tocol allows information about sender identification, quality
of service, packet losses and other factors to be interchanged
between RTP sender and receiver, while the RTP data are
being transmitted. In other words, RTCP provides a control
channel for RTP. Feedback from the receivers is mainly for
diagnosing delivery faults. RTCP produces sender and re-
ceiver reports, such as stream statistics and packet counts.
However, neither RTP nor RTCP does congestion control
for applications.

The main advantage of our streaming algorithm using
RDC connections is that we do not need to develop a new
congestion control algorithm for applications. The changes
to the receiver are minimal while the requirements of in-
termediate routers are similar to that of ECN. As we men-
tioned in the paper, the ACK delaying mechanism at the re-

ceiver could be viewed as a natural extension of TCP de-
layed ACK. The token bucket for routers is not necessary,
if one can set the parameters of RED or other active queue
mechanisms properly.

7. Summary and Concluding Remarks

We have demonstrated by simulation that TCP connections
with Receiver-based Delay Control (RDC) works well for
carrying layered video streams. We have described an im-
plementation, called 1-bit RDC, that only uses 1-bit in the
IP header to carry congestion notifications generated by
routers. Thus, 1-bit RDC could be implemented using the
CE bit in the IP header.

For 1-bit RDC, accurate delays are actually not impor-
tant for setting the CE bit in a packet header. A randomized
algorithm for detecting congestion, such as RED, can gener-
ally achieve the same effect, if parameters are set correctly.

In addition to RDC, we have described a method for
streaming hierarchically-encoded layered videos over TCP
connections. The method includes an algorithm for a video
streaming source to add or drop layers dynamically based on
the buffer occupancy of the TCP sending buffer. Our sim-
ulation results show that the method works well with RDC
connections.

While being able to utilize available bandwidth in de-
livering data and reduce playback latency, the RDC connec-
tion itself is friendly to competing TCP connections. Thus
the combination of our RDC and layered video source algo-
rithms offers an attractive approach to streaming video over
IP networks.
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