
Abstract -- We apply sensor networks to the problem of tracking
moving objects. We describe a publish-and-subscribe tracking
method, called Scalable Tracking Using Networked Sensors
(STUN), that scales well to large numbers of sensors and moving
objects by using hierarchy. We also describe a method, called
drain-and-balance (DAB), for building efficient tracking hierar-
chies, computed from expected characteristics of the objects’
movement patterns. DAB is shown to perform well by running it
on 1D and 2D sensor network topologies, and comparing it to
schemes which do not utilize movement information.

I. INTRODUCTION

Progress in miniaturization has allowed researchers to build
networked sensors, increasingly compact devices that combine
the functionality of sensors, radios, and processors [1, 5, 8].
Their low cost and wireless communication capability make it
feasible to deploy them in large numbers, and without pre-
existing infrastructure. With more sensors available in the
environment, it is more likely that phenomena of interest are
near some sensors, thereby leading to the main appeal of wire-
less sensors compared to the tethered ones. On the other hand,
such sensors rely on limited sources of power, and so energy
efficiency becomes an important feature of the systems that use
them.

Tracking consists of detecting and monitoring locations of
real-world objects, possibly using several types of sensing such
as acoustic, seismic, electromagnetic, etc. Numerous applica-
tions of tracking are currently in use; for example, air traffic
control, fleet tracking, habitat monitoring, mobile telephony,
etc. Networked sensors have recently been used for this pur-
pose [2].

We are interested in designing an efficient tracking method,
based on networked sensors, that has the ability to cover large
regions of interest by using many sensors with small detection
range. The method will need to handle a large number of mov-
ing objects at once. To address the scalability goals, we use
hierarchical organization, similar to schemes previously used
in cellular telephone systems [6]. We focus on improving the
energy efficiency of such schemes.

A. Movement Locality

In order to aid the task of designing methods for tracking
objects across large areas, we discuss the expected characteris-
tics of large-scale traffic patterns. A popular mobility model
used for several ad hoc network protocols [4, 7] consists of
nodes that move uniformly across a region under study, in
order to approximate small-scale scenarios where the move-
ments are expected to be random and close to uniform. Exam-

ples of such scenarios are visitors at a convention, rescue teams
at a disaster site, etc.

We postulate that large-scale movement patterns are not
likely to be uniform, because large-scale real-world environ-
ments usually have inherent structure that makes this infeasi-
ble. For example, a downtown area of a city may consists of a
street grid and buildings that prevent pedestrians from moving
around arbitrarily. Further, it is uncommon for a city-dweller to
roam around uniformly at random; a more likely trajectory
consists of spending time within some local region, and occa-
sionally making long-range transitions.

As a second example, consider a large-scale disaster recov-
ery or battlefield scenario. It may be unusual for every partici-
pant to move uniformly across the entire field; rather, due to
organizational structure, the movement may be constrained so
that there is little traffic between different units, while move-
ment within units is quite high.

Finally, let us examine a large natural habitat, such as a
national park, that scientists may wish to monitor [2]. Once
more, it is unlikely to observe animals moving around uni-
formly. The animals may be living in herds; different types of
animals may avoid trespassing upon each others’ territory; or
there may be various natural obstacles like hills or under-
growth that restrict movement in certain regions, etc.

The common characteristic of the above three examples is
movement locality. This observation provides support for our
design in later sections.

B. Summary of Contributions

This paper makes two contributions. The first is STUN—
Scalable Tracking Using Networked Sensors—a scalable
tracking architecture that employs hierarchical structure to
allow the system to handle a large number of tracked objects.
The design of this architecture is the topic of Section II.

Our second contribution is DAB (drain-and-balance)—a
method to construct STUN’s hierarchical structure based on
expected properties of the object movement patterns such as
the frequency of object movements over a region. Utilizing
these properties permits it to build hierarchies which are more
efficient than those constructed without. The DAB method is
described in Section III. We demonstrate the benefits of DAB
in Section IV by applying it to 1D and 2D sensor network
topologies.

Efficient Location Tracking Using Sensor Networks
H. T. Kung and D. Vlah

Division of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138, U.S.A.

Proceedings of 2003 IEEE Wireless Communications
and Networking Conference (WCNC)

II. STUN: SCALABLE TRACKING USING NETWORKED
SENSORS

Consider a set of objects moving through a certain region of
interest, where a number of short-range wireless sensors has
been deployed for detection purposes. The distributed tracking
problem we are interested in solving is about communicating
the locations of the detected objects from the sensors to a que-
rying point, where the information is further utilized by the
user.

A. The STUN Design

The approach we use, called STUN, rests on the observation
that the objects we wish to track move predictably, in a sense
that there exists a natural limit on their speed, and thus the
maximum distance they can travel in a given amount of time is
bounded. The approach uses hierarchy to record information
about presence of the objects; since their movements are lim-
ited, keeping this information up to date usually requires
updating just the nodes near the bottom of the hierarchy. As a
result, the system can track more objects than one where all
information travels indiscriminately to the querying point.

Our method uses a hierarchy to connect the sensors, using
the querying point as the root. Let us call this the hierarchy
tree. The leaves of the tree are sensors, and the other nodes are
communication nodes, which are called intermediate nodes in
the rest of the paper. The information about presence of the
detected objects is stored at intermediate nodes; in particular,
each intermediate node stores the set of objects that were
detected jointly by its descendants. Let us call this set the
detected set. For example, the detected set of a sensor at a leaf
node consists of just the objects within the sensor’s detection
range, while the root node’s detected set contains all objects
present in the region.

In order to keep the detected sets up to date, leaf sensors
send detection messages toward the root. However, the mes-
sages do not always need to reach the root; an intermediate
node will pass a detection message upward only if it has modi-
fied its detected set. Otherwise, the message is terminated,
because it would not have modified any ancestor nodes. By
eliminating redundant message passing, this message-pruning
hierarchy is the key to lower communication cost.

We provide an example in Figure 1 where a row of sensors
covering a region is shown to be descendent from the same
intermediate node X. When an object, which is a car, moves
through the region, each sensor will detect its arrival and
departure, and generate the corresponding detection messages.
To simplify the illustration, we consider here only the mes-
sages that detect the arrival of the car. Note that the message
from sensor 1 triggers Y and its ancestors to add the car to their
detected sets. Subsequent messages from all the other sensors
do not result in additions to X’s detected set, and thus X does
not forward them to its ancestors. Similarly, the message from
sensor 3 adds the car to the detected set of Z, is forwarded to X,
but then stops at X as it leaves X’s detected set unchanged.

Messages from sensors 2 and 4 do not change the detected sets
of their parents, and thus do not propagate past them.

The main purpose of maintaining the detected sets is to allow
efficient querying. A query is routed from the top of the hierar-
chy, across a single path toward the sensor that reported the
sought object. Without the information contained in the
detected sets, the queries would need to be flooded to all
leaves, and would thus be much more costly.

This method can be viewed as a sort of publish-and-sub-
scribe mechanism. The sensors publish the existence of
detected objects in the hierarchy, while the querying points are
subscribers who want to track current locations of the desired
objects.

B. Discussion of STUN

We now discuss several properties of the STUN architecture.
First we define some terms.

1) Notation and Definitions
We use a weighted graph , called the

sensor graph, to represent the sensors and certain expected
characteristics of the moving objects being detected by the sen-
sors. The vertices represent the sensors. The locations of
the sensors are represented by a function , mapping senors
to geographical locations. The edges indicate adjacencies
between pairs of sensors; we say two sensors are adjacent if it
is possible for objects to move from the detection range of one
of the two sensors to that of the other without passing through
that of any other sensor. We assume that G is connected, in the
sense that any two nodes can be connected through a path.

The weights represent the movement pattern of the
objects in various regions in units of detection rates, as fol-
lows. Each time an object arrives at or departs from a sensor’s
detection range, the sensor generates a detection event. We
assume that objects move from sensor to sensor so that for each
pair of adjacent sensors that an object passes through, the two
sensors will experience the same detection rates with respect to
that object. This assumption basically says that an object will
not terminate its movement in the middle between two sensors,

Figure 1: Example of a message-pruning hierarchy. Consider those detection
messages from sensors that detect the arrival of the car. Sensor 1’s message
will update the detected sets of all its ancestors. The messages from sensors 2
and 4 do not update the detected sets of their parents and thus will be pruned
there. The message from sensor 3 updates only its parent Z and thus will be
pruned at X

X ...

1 2 3 4

Y Z

...

G VG EG lG w, , ,()=

VG
lG

EG

w

or if it does such occurrences must be statistically insignificant.
With this assumption, we can assign a weight to each pair of
adjacent sensors, representing the detection rate that each of
these two sensors will experience with respect to objects mov-
ing between them. For example, the sensor graph in Figure 2
depicts a 1D sensor array with each edge connecting a pair of
adjacent sensors. The larger weight on the rightmost edge indi-
cates heavier movement between the two rightmost sensors.

The hierarchical network that connects the sensors is repre-
sented by a tree denoted by , where and

 represent the nodes and edges of the tree, respectively, and
the function specifies locations of tree nodes. We assume
that tree nodes are located in the same space as that of sensors.
For example, for the case of a 1D or 2D sensor graph, the tree
nodes will be in the same 1D or 2D array as the sensors,
respectively. A tree link can be an overlay link over multiple
sensor nodes.

2) Performance Metrics: Communication Cost and Delay
We will evaluate the performance of distributed tracking

using two metrics. The first is the communication cost defined
as the total number of detection messages occurring in the net-
work in a unit time. The second is the delay defined as the time
required for the information about a detection to reach the que-
rying point from the detecting sensor. A good tracking method
is characterized both by a low communication cost, and a low
delay.

The performance of STUN is determined by the structure of
its message-pruning hierarchy and the tracked objects’ mobil-
ity pattern. Given information about these two items, we can
compute STUN’s communication cost and delay.

Communication Cost. Given a sensor graph and a message-
pruning hierarchy tree , we can compute the cost, in detec-
tion messages per unit time, that the network will incur in order

to keep the detected sets of intermediate nodes up to date. In
particular, consider the cost contributed by a pair of adjacent
sensors, say and , with weight . Their detection
messages, triggered by object movements between and ,
travel upward, but get absorbed at the first common ancestor,
say, , of the two sensors. Thus, the events between and
induce a cost of messages per unit time on the path
from and to .

We illustrate this with the example in Figure 3, where all of
the detection events occur between the middle two sensors at a
unit rate. These events cause detection messages to travel
across the six links indicated by the arrows until they reach a
common ancestor, leading to a cost of 6 messages per unit
time. Note that these links comprise the only path in
between the two indicated sensors.

We thus define the communication cost for a sensor graph
and hierarchy as the sum of the individual contributions of
all pairs of sensors adjacent in G:

Since adjacent tree nodes may be physically distant, we
define the costs of tree links used in the PathCostT computation
to be Euclidean distances. Thus, the communication cost
reflects the required radio power consumption.

In order to obtain hierarchies that yield low communication
costs, the intermediate nodes near the root should be connect-
ing points for adjacent sensors sharing low-rate edges. For
example, the hierarchy from Figure 3 could have had a lower
cost if the adjacent sensors sharing the high-rate edge had been
connected by a low level intermediate node, instead of the root.
An example of a better hierarchy appears in Figure 4.

Delay. The second metric is the maximum or average delay
incurred by messages traveling from leaves to the root.
Expressed in units of intermediate nodes, this is equivalent to
the height of the hierarchy tree.

The maximum or average delay is smallest in trees which are
fully balanced, since their height is minimal. The worst case
delay occurs in a degenerate tree where the intermediate nodes
form a line graph.

w

2 1 56

Figure 2: An example 1D sensor graph. Each weight represents the frequency
of object movement between a pair of adjacent sensors

A B C D

T VT ET lT, ,()= VT
ET

lT

Figure 3: In this example, detection events occur only between the middle two
sensors, at a unit rate. Since the detection messages travel to the root, the com-
munication cost of six messages per unit time is incurred at the links indicated
by the arrows

0 0 0 0 0 01

hierarchy tree T

sensor graph G

T

x y w x y,()
x y

z x y
w x y,()

x y z

T

G
T

CommunicationCost G T,()=

w x y,() PathCostT x y,()⋅
x y,() EG∈
∑

0 0 0 0 0 01
Figure 4: This example shows a hierarchy with a minimal communication cost.
The detection messages from the shaded sensors are pruned by their immediate
ancestor

hierarchy tree T

sensor graph G

III. DAB: DRAIN-AND-BALANCE METHOD FOR
CONSTRUCTING MESSAGE-PRUNING HIERARCHIES

In this section we describe a method for constructing desir-
able message-pruning hierarchy trees, that is, trees for which
both the communication cost and the query delay are low.

A. Method Approach and Description

Our method, called DAB (drain-and-balance), constructs the
tree in a bottom-up fashion, i.e., from leaves to the root,
through a series of DAB steps. Within each DAB step, a subset
of the sensors is merged into balanced subtrees, without regard
for event rates. The effectiveness of the method comes from
properly choosing the nodes to merge in each of these steps—
this time by utilizing the event rate information. In particular,
sensors are partitioned using one or more event rate thresholds,
that we will call “draining thresholds,” and the high-rate sub-
sets are merged first. We now describe this process precisely.

The input to the method is a sensor graph
, and its output is a hierarchy tree

. The method is parameterized by a
sequence of decreasing “draining” thresholds,

, where . The k-step DAB tree con-
struction for a 1D sensor graph proceeds as follows:

1. Initialize to be an empty graph.
2. For each draining threshold , in the increasing

order of i, perform a DAB step, consisting of the follow-
ing two phases:

2.1 Draining. Add those nodes in into which have
at least one incident edge whose weight is greater than
or equal to . This inserts a number of singleton
trees into . We say that two trees in are adjacent if
some of their leaves are adjacent in .

2.2 Balancing. Repeatedly merge pairs of adjacent trees in
 to form clusters of sensors, in a non-decreasing

manner. That is, at each merging step connect the
roots of two adjacent trees with a new intermediate
node so that the merged tree will have the smallest
number of sensors among all possible merges of adja-
cent tree pairs. The merging process terminates when
there remain only non-adjacent trees in .

Note that the last DAB step corresponds to the threshold
, guaranteeing that all nodes from are inserted into

 and that the output of the last merging step is a single tree.
This follows from the assumption that G is connected.

B. Examples

1) An Example Run
Figure 5 illustrates a 3-step DAB tree construction for a 1D

sensor graph. Figure 5a describes the 1D sensor graph, with the
weights depicted using vertical bars, and the draining thresh-
olds indicated on the side. Figure 5b-d shows
the forest at the end of the first, second and third DAB step,

respectively. The final tree in Figure 5d is the resulting mes-
sage-pruning hierarchy tree.

As we can see, processing the sensors with high cost edges
earlier lets us place their connecting nodes near the leaves of
the hierarchy, as desired. Similarly, the least expensive sensors
are processed last, and thus their connecting nodes end up scat-
tered between large regions derived in previous steps, again as
desired.

Each step in the DAB tree construction can be viewed as a
process of draining water in a region to reveal high peaks and
then grouping these revealed high peaks which are adjacent
into clusters in a balanced manner. Consider the vertical bars in
Figure 5a as peaks. Assume that initially all the peaks are
under the water. In step 1, the draining lowers the water down
to height , revealing the peak corresponding to (G, H).
In step 2, the draining lowers the water further down to height

, revealing additional peaks corresponding to (B, C)
and (D, E). Finally, in step 3, when the draining lowers the
water level to height , all the remaining peaks emerge.
This is the reason why we have called the method “drain-and-
balance (DAB).”

2) Comparison to Huffman Trees
It is instructive to compare the DAB tree construction with

the well-known Huffman tree construction [3, pg. 337], which
is also a greedy method. We will do the comparison by way of
the example in Figure 6.

First we note that the Huffman tree construction assumes a
scenario which is equivalent to the case of distributed tracking
where all event updates would travel from leaf nodes to the
root without message pruning at intermediate nodes. Under
this scenario, the Huffman tree achieves the minimal cost for a
given set of event rates associated with sensors. In contrast, the
DAB tree construction assumes message pruning at intermedi-
ate tree nodes.

G VG EG lG w, , ,()=
T VT ET lT, ,()=

H h1 … hk, ,{ }= hk 0=

T
hi H∈

VG VT

hi
T T

G

T

T

hk 0= G
T

H 6 3 0, ,{ }=
T

Figure 5: Example of the DAB tree construction for building a message-prun-
ing hierarchy. Part a) shows the 1D input sensor graph G, with the weights
depicted using vertical bars, and three indicated thresholds. Parts b, c, d)
show the tree after the first, second and last DAB step, respectively. The final
tree constructed appears in part d)

1 3 2 1 2 95

c)

d)

a)

b)

h1=6

h2=3

h3=0

A B C D E F G H B C

G H

G HD E

A B C D E F G H

h1 6=

h2 3=

h3 0=

Second, as we can see in the figure, the Huffman tree con-
struction, by definition, merges the least expensive nodes first.
The more expensive nodes, e.g., D and E, end up being con-
nected at intermediate nodes close to the root. This is undesir-
able for the message-pruning purpose. In contrast, the DAB
construction merges the most expensive nodes first, so that
heavy traffic can be pruned at intermediate nodes near leaves.

Third, the Huffman tree construction does not concern with
tree balancing, unlike the DAB construction. As shown in
Figure 6, the tree resulting from the Huffman construction can
be relatively imbalanced with relatively long links.

C. Discussion

The choice of the number of steps and the draining threshold
for each step in the DAB tree construction may affect the qual-
ity of the constructed tree. On one extreme, if the entire tree is
constructed in a single step, there is no distinction being made
between high and low rate regions, and so the resulting tree
does not take advantage of rate information. Such a tree is
more likely to be balanced, and thus have low height, since
there are no “gaps” in the sensors to force it to a less balanced
shape. However, the communication cost for such a tree will
likely be high.

On the other extreme, if the tree is constructed using an
excessive number of steps, there tends to be a very limited
choice of sensors to merge during each step, and consequently
very little opportunity to enhance tree balance. In this case, the
resulting tree’s shape is dictated by the positions of sensors
uncovered in each step, possibly leading to a tree with long
links and a large height. To achieve a reasonably balanced tree,
the number of steps for the tree construction will generally
need to be small.

The setting of the numbers of DAB steps and their draining
thresholds should generally depend on the movement fre-
quency as a function of locations in the region where objects
are tracked. For example, the DAB method with uniformly
spaced draining thresholds is expected to work well for traffic
patterns where similar variations in movement frequency
appear throughout the region, such as the traffic pattern
depicted in Figure 7d.

Note that the DAB method may not help for certain traffic
patterns such as those exhibiting little locality. For example,
very regular traffic patterns, such as a constant or a strictly
increasing movement frequency over a 1D region do not offer
opportunities for DAB to improve performance over straight-
forward traffic-oblivious methods.

D. DAB for Multi-dimensional Sensor Graphs

The basic concept of DAB as described above applies to
multi-dimensional sensor graphs. Consider, for example, the
2D case. The input sensor graph would now be a weighted
mesh with sensors scattered around a 2D region. The draining
process is exactly the same as that in the 1D case. However, for
the balancing step, the “best” pair of adjacent trees to merge
would now be those whose sensors which are contained by the
smallest bounding square.

IV. EVALUATION

In this section we evaluate the performance of the DAB tree
construction based on simulation results; in particular, we
apply DAB to 1D and 2D sensor graphs to show it achieves
better performance than a method which ignores the traffic pat-
tern information. We first describe a mobility model, called the
city mobility model, that we have developed for the purpose of
generating traffic to support simulation.

A. The City Mobility Model

This model is to simulate large scale object movements
which exhibit locality. As we have argued in the beginning of
the paper, such behavior is likely to occur in some real-world
scenarios.

The model works as follows. The main region in which the
object movements are being tracked is divided into several
smaller subregions, which represent points of interest such as
shopping areas of a city, main squares, etc. These subregions,
which we will refer to as level-1 regions are in turn subdivided
further, representing increasingly local attraction points such as
popular areas of a shopping center, or the sidewalks in a main
square. We will refer to these increasingly nested subregions as
level-2, level-3, etc. The subdivisions continue until some fixed
depth is reached.

Each object travels with a constant speed along a straight
path to its destination. Once it reaches the destination, a new
destination is selected for the object as follows. First, the object
decides with some probability p1 whether to leave its level-1
region. If so, it selects a destination in a neighboring level-1
region uniformly at random. Otherwise, it remains in the same
level-1 region, and repeats the same process at the next lower
level, level-2, with probability p2, and so on until it either
reaches a bottom region or decides to leave a current subre-
gion.

The probabilities pi to leave the current level-i region
decrease with the region’s size. This forces the object move-
ments to exhibit locality; they are less likely to embark on long

Figure 6: Example of the Huffman tree construction. A node’s weight is the
sum of the weights of incident edges in Figure 5. In each step, two smallest
weight nodes are merged into one, and the new node takes on the sum of the
merged nodes’ weights. The resulting tree on the right is undesirable for the
message pruning purpose, since more expensive nodes are closer to the root.

1

A B C D E F G H

4 5 7 6 3 11 9

A

B C D E

F

G H

4 5 7 6 11 94

A

B
C D E

F

G H

5 7 6 11 98

...

1)

2)

3)

46

A B C D E F G H
1 4 5 7 6 3 11 9

trips than they are to embark on short trips. In particular, the
traffic patterns we have generated in our experiments use an
exponential leaving probability , where C is a
positive constant, and d is the number of levels of the attraction
spots.

B. Description of Results

We show the trees constructed by three types of the DAB
method under the city mobility model:

• A single-step run, where a single DAB step is used. This
type of run disregards the information about movement
frequencies, and thus serves as a basis for comparison.

• A coarse-resolution run, where DAB uses a small number
of steps.

• A fine-resolution run, where DAB uses a large number of
steps. Even though this type of run utilizes movement fre-
quencies, it suffers from large delays due to limited avail-
ability of merging choices in the balancing phase of each
DAB step.

In addition, we plot the communication cost and tree height
achieved using varying numbers of DAB steps. For both 1D
and 2D cases, we use the expected value of the average weight
as the first threshold , and exponentially decaying thresh-
olds thereafter. That is, . Each data point
reported represents the average of 5 runs.

The locations of intermediate nodes were placed to minimize
the communication cost as defined in Section 2B, using an
optimizing heuristic. However, in Figure 7, intermediate nodes
are placed between their subtrees for easy inspection. In exper-
iments where the communication cost of DAB is compared to
that of other methods, the same layout optimizing heuristic was
applied to all trees under comparison.

1) Results for a 1D Sensor Graph
Figure 7a shows the outcome of the single-step DAB run,

where the resulting tree is almost fully balanced. However, as
we can see, the high-level nodes in this tree sometimes cut the
main region at busy spots, and thus a high volume of detection
messages may travel on long paths. This results in a high com-
munication cost of 1122.07.

Method: Water Level Tree (single round) Cost: 1122.07 Height: 10

Method: Water Level Tree (coarse resolution) Cost: 814.78 Height: 12

Method: Water Level Tree (fine resolution) Cost: 1188.96 Height: 22

Figure 7: The trees constructed by the DAB method for a 1D sensor graph with 256 nodes. The intermediate nodes are placed between their subtrees, in order to
make it easier to inspect the associated weight. d) The input weights are shown at the bottom. a) The top tree, obtained by a single-step run, ignores the weights
and places some high level nodes into expensive areas of the region. b) The middle tree, obtained using 4 DAB steps, is best of the three. c) The bottom tree,
obtained in 17 DAB steps, suffers large delays due to poor selection of merging choices at each step

a)

b)

c)

d)

Method: DAB tree (single step)

Method: DAB tree (coarse resolution)

Method: DAB tree (fine resolution)

p i() e C2d i––=
h1

hi h1 2 i– 1+⋅=

Figure 7b shows the outcome of the coarse resolution DAB
run, where the resulting tree is not far from balanced while
high level tree nodes cut the main region mainly at spots with
small event rates. The communication cost is reduced to
814.78, while the height is 12, just slightly larger than that of
the fully balanced tree.

Figure 7c shows the outcome of the fine resolution DAB run,
where the resulting tree is both unbalanced and inefficient. The
communication cost is 1188.96 and the height is 22.

The plot in Figure 10 compares the communication cost of
the DAB method with that of a fully balanced tree for a 1D
sensor graph of 4096 sensors, with the number of DAB steps
varying between 1 and 10. The DAB tree has lower cost, but
the improvement in cost eventually diminishes, because intro-
ducing additional small draining thresholds only affects a small
fraction of sensors.

Figure 11 shows the average and maximum tree heights
obtained for the same scenario. The height of DAB trees is
larger than the minimal, as expected; however, the maximum
height is not far from the average height, indicating a good
worst case delay. In particular, the tree construction avoids
building degenerate trees whose heights are proportional to the
number of sensors.

2) DAB Results for a 2D Sensor Graph
We evaluate the performance of the DAB tree construction

for 2D sensor graphs using the traffic pattern of Figure 8 gener-
ated by the city mobility model. The light areas in the diagram
denote higher event rates, while darker areas denote areas of
less activity. As we can see, this scenario exhibits locality,
since most high activity regions are surrounded by the regions
of low activity.

Figure 9a shows an approximately balanced tree constructed
by using single-step DAB. Similar to the 1D case, all the nodes

are available for combining at once, and the combining process
does not take into account the mobility pattern information.

Figure 9b shows a tree constructed by four-step DAB. The
earlier steps combine higher cost nodes first, which end up
placed near the bottom of the tree. Similarly, the low cost
nodes take up the upper levels of the tree. For example, we can
see that the borders of the 2 top levels of the tree follow the
low-cost regions in the traffic pattern. Thus, only low-rate
detection messages end up traveling to the top 2 levels of the
tree. As a result, the DAB tree achieves a lower total communi-

Figure 8: 2D traffic pattern used by 2D DAB, consisting of sensors arranged
in a 64x64 grid. Darker and lighter colors indicate smaller and larger
weights, respectively

Height: 17 Cost: 43948.48

Height: 19 Cost: 26576.87

Figure 9: b) A tree resulting from 4-step 2D DAB. The different shades
denote the areas covered by one of the four subtrees starting at depth 2. Note
that the boundaries here match the areas of low frequency movement found
in Figure 8.

Figure 9: a) A tree resulting from single-step 2D DAB. The different shades
denote the areas belonging to one of the four subtrees starting at depth 2.
Note that the boundaries do not follow the traffic distribution in Figure 8

cation cost, while retaining a relatively small tree height.
The plots in Figures 12 and 13 compare the communication

cost and height, respectively, of the DAB constructed trees and
those of fully balanced trees for a 2D sensor graph with nodes
arranged in a 64x64 grid. The results are similar to those of the
1D case.

V. CONCLUSION

This paper made two main contributions. First, we described
STUN (Scalable Tracking using Networked Sensors), a
method for tracking large numbers of moving objects that
gains efficiency through hierarchical organization.

Second, we described the DAB (drain-and-balance) method
for building STUN hierarchies that take advantage of informa-
tion about the mobility patterns of the objects being tracked.
We have demonstrated that this method gains an advantage
over traffic-oblivious schemes when the mobility patterns
exhibit locality. As we argued, locality is to be expected in
large-scale environments, and so we conclude that the DAB
method is useful in large-scale sensor tracking systems.

Acknowledgments. This research was supported in part by
the Air Force Office of Scientific Research Multidisciplinary
University Research Initiative Grant F49620-97-1-0382, and in

parts by research grants from Microsoft Research and Sun
Microsystems.

REFERENCES

[1] Bult, K., Burstein, A., Chang, D., Dong, M., Kaiser, W. J., et. al. “Wire-
less integrated microsensors,” Proc. of Conference on Sensors and Sys-
tems (Sensors Expo), April 1996

[2] Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., and Zhao, J.,
“Habitat Monitoring: Application Driver for wireless Communications
Technology,” to appear in Proc. First ACM SIGCOMM Workshop on
Data Communications in Latin America and the Caribbean, San Jose,
Costa Rica, April 2001

[3] Cormen, T. H., Leiserson, C. E., and Rivest, R. L., “Introduction to Al-
gorithms,” McGraw-Hill, New York, 1990

[4] Johnson, D. B., and Maltz, D. A., “Dynamic Source Routing in Ad hoc
Wireless Networks,” in Imielinski, T., and Korth, H., editors, Mobile
Computing, pages 153-181, Kluwer Academic Publishers, 1996

[5] Kahn, J., Katz, R. and Pister K, “Mobile networking for smart dust,”
Proc. Mobicom ‘99, August 1999

[6] Pitoura, E. and Samaras, G., “Locating Objects in Mobile Computing,”
IEEE Transactions on Knowledge and Data Engineering, Vol. 13, No.
4, pages 571-592, July/August 2001

[7] Perkins, C. E. and Royer, E. M., “Ad hoc On-Demand Distance Vector
Routing,” Proc. 2nd IEEE Workshop on Mobile Computing Systems
and Applications, New Orleans, LA, February 1999

[8] Pottie, G. J., and Kaiser, W. J. “Wireless Integrated Network Sensors,”
in Communications of the ACM, Vol. 43, No. 5, May 2000

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10

C
os

t

Number of DAB steps in the run

Cost achieved for increasing numbers of DAB steps

DAB tree
balanced tree

Figure 10: Communication cost for 1D sensor graphs with 4096 sensors

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

H
ei

gh
t

Number of DAB steps in the run

Tree height achieved for increasing numbers of DAB steps

DAB tree max height
DAB tree avg height
balanced tree height

Figure 11: Delay (tree height) for 1D sensor graphs with 4096 sensors

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8

C
os

t

Number of DAB steps in the run

Cost achieved for increasing numbers of DAB steps

DAB tree
balanced tree

Figure 12: Communication cost for 2D sensor graphs with 64x64 sensors

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

H
ei

gh
t

Number of DAB steps in the run

Tree height achieved for increasing numbers of DAB steps

DAB tree max height
DAB tree avg height
balanced tree height

Figure 13: Delay (tree height) for 2D sensor graphs with 64x64 sensors

