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Abstract 

 
We consider the problem of using artificially 

generated cover traffic to hide the network paths used by 
an application against an adversarial observer who can 
monitor network traffic and perform traffic analysis. We 
propose that on-demand link padding be used on top of 
existing traffic anonymizing infrastructures such as those 
described in the Onion Routing Project or in the ANON 
Project. In on-demand link padding, cover traffic is 
generated dynamically only when real traffic is present. 
Moreover, the bandwidth usage is economical because we 
only generate a small amount of cover traffic above real 
traffic. We describe two types of on-demand link padding 
schemes and evaluate their performance by simulation. We 
report our findings based on the simulation results and 
quantify potential trade-offs in configuring a couple of 
important parameters. Finally, we provide a strategy for 
mitigating the potential problem in face of lost or corrupted 
control packets, to which the traditional recovery solutions 
based on packet retransmission are inappropriate for 
performance considerations. 

 
Keywords: Traffic Anonymizing, Link Padding, Network 

Security. 
 

1 Introduction 
 

We consider the problem of hiding certain meta 
information of an application traffic flow from an 
adversarial observer, such as the source and destination 
network addresses, or the actual network route taken by the 
flow. Often time, it is difficult to learn exactly what the 
adversary can or cannot observe, so we assume the worst: 
an adversary who can observe all network traffic at all time. 
We start with two basic weapons: cryptography and a set of 
trusted, privacy-enhancing forwarders, whose principles of 
operations are described in more details below. First, 
packets are encrypted with a non-malleable, semantically 
secure encryption algorithm [4] such that neither by 
passively inspecting the content of the packets nor by 
actively injecting arbitrary packets can the adversary learn 
any information beyond the fact that the two parties are 
communicating with each other. However, certain 
information of the packets, such as the source and 

destination addresses, cannot be hidden using mere 
cryptography; to hide it, we will use a sequence of trusted, 
privacy-enhancing forwarders to forward packets, to each 
of which we only need to reveal the addresses of its two 
immediate neighbors in the sequence. Furthermore, the 
packets of the target traffic are “mixed” with those of other 
traffic to make tracing more difficult to an outside observer. 
The reader is referred to [5][9] for a discussion on and 
some concrete examples of such forwarders. 

For our adversary, effective mixing in the forwarders 
is important, for the adversary can monitor all network 
links and perform sophisticated traffic analysis. Such 
analysis may correlate packets going into and coming out 
of a forwarder to determine if two trains of packets belong 
to a same traffic flow, or use contextual information such 
as the duration of a conversation to launch intersection 
attacks [8]. To counteract such analysis, we would like to 
design a network system in which the characteristics of 
network traffic is, be it with or without application traffic, 
indistinguishable to the observer. Link padding [1][8] is a 
well-known solution to this problem. It is based on the 
generation of artificial load, i.e., cover traffic, on a super 
set of those links where application traffic, which we will 
call real traffic subsequently, traverses. The hope is that 
with cover traffic, all links in the superset will exhibit 
indistinguishable behavior, and as a result, the adversary 
will not be able to use traffic analysis to find out which 
subsets of these links actually carry real traffic. 

Use of padding traffic may, however, reduce the 
network’s available bandwidth for serving real traffic. 
Consider the scenario where links may pass through one or 
more intermediate nodes. For example, a link of an overlay 
network built on top of IP networks may pass through 
intermediate IP routers, whereas a link of an IP network 
may pass through intermediate Ethernet switches. In these 
cases, padding traffic on the link will increase the load on 
these intermediate nodes and their adjacent links and thus 
reduce their bandwidth available for serving other real 
traffic. Note that padding traffic and real traffic are 
supposed to be indistinguishable, and thus it would be 
inappropriate to assume that intermediate nodes could give 
normal traffic preferential treatments over padding traffic. 

To mitigate this bandwidth overhead problem of link 
padding, in this paper we propose an on-demand link 
padding scheme capable of generating cover traffic only in 
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the presence of real traffic. Furthermore, we make sure that 
cover traffic can be at a rate just above that of real traffic. 
In this way, we avoid using traditional “flat” cover traffic 
[8] that does not dynamically adapt to real traffic. Thus, 
when real traffic is bursty, the proposed approach can 
significantly reduce cover traffic’s blockage of real traffic 
at intermediate nodes. 

Note that on-demand link padding is not to be 
confused with on-demand bandwidth reservation for 
quality of service purposes. The service provided by link 
padding is path hiding, not bandwidth or latency 
guarantees as in on-demand bandwidth reservation 
schemes such as RSVP [11]. 

The rest of this paper is organized as follows. In 
Section 2, we give a hypothetical application scenario of 
on-demand link padding and formulate an abstract model 
for the on-demand link-padding problem. We then present 
a general mechanism of implementing link padding in 
Section 3 and describe two types of on-demand link 
padding in Section 4. We use simulation to demonstrate the 
advantages of on-demand link padding over traditional flat 
link padding in Section 5. We report our findings and 
discuss potential trade-offs in configuring the important 
parameters of the proposed on-demand link padding 
scheme in Section 6. We describe our strategy for dealing 
with the problem of possible control packet losses in 
Section 7. We review related work in the literature in 
Section 8 and conclude this paper in Section 9. 
 
2 Application and Model Problem 
 

To illustrate the need of using cover traffic, we 
consider a hypothetical application scenario. A company 
has sent agents to a foreign country X to explore a highly 
secretive business deal and wants to prevent its competitors 
from knowing exactly which country it is. At various times 

the company’s agents residing in country X need to 
communicate to the company’s headquarters using, e.g., 
VoIP applications such as Skype. Beyond hiding the 
content of communication via message encryption (as 
Skype currently does with AES), the company’s security 
measure will also include hiding traffic so that its 
competitors cannot deduce the source of the agents’ 
communication (country X in this example) from traffic 
monitoring and analysis. To implement traffic hiding, the 
company recruits some number of decoy nodes, which can 
fool the competitors by sending and receiving cover traffic 
that looks like real traffic. Whenever an agent has data 
ready to send, it will first inform the headquarters the 
amount of data and the rate at which the data is to be sent, 
through a low-bandwidth control channel that can be easily 
hidden. The headquarters will convey, over the control 
channel again, the received information to all the decoy 
nodes so that they can transmit proper cover traffic at the 
same time when the agents send the data. Using this 
method, traffic from the agents to the headquarters can be 
hidden in decoy nodes’ cover traffic. Hiding 
communication from the headquarters to the agents can be 
accomplished similarly by having the headquarters send 
cover traffic to decoy nodes. 

From the above scenario, we formulate a model 
problem that we will use in this paper to study on-demand 
link padding. Although it is simple, this model problem 
captures the essential issues of on-demand link padding. 

We consider the situation where the network path 
between a client C and a server S needs to be hidden. The 
basic protection strategy is that, whenever C and S 
communicate, similar cover traffic will be generated over 
multiple network paths. Even for an adversary which could 
monitor all network links, it would be difficult to tell which 
network path C and S use, let alone to locate S. 

Motivated by the application scenario given earlier in 
this section, we use the topology of a balanced tree 
network of depth d, called a cover tree, for hiding a path 
between C and S, with C being the root and S a leaf, as 
depicted in Figure 1. Given a path between C and S, the 
tree is fixed for a period of time in order to guard against 
intersection attacks [8]. It is possible to use topologies 

 
Figure 2 Token bucket based link padding implementation 

 
Figure 1 The cover tree for our model problem, where C is the client

and S is the server. The diagram on the left  illustrates that
the total traffic on the path between C and S is the sum  of
real and cover traffic, while that on any other link  is just
cover traffic. The two diagrams on the right indicate that at
any given time, the total traffic over any link looks the same
with or without real traffic 

R
at

e 
R

at
e 



On-Demand Link Padding in Traffic Anonymizing 
 

243

other than trees; to simplify the presentation, we only use 
the tree topology to illustrate our on-demand link padding 
ideas in this paper. 

Cover traffic will be generated over all the paths from 
the root to the leaves, with the property that the total traffic 
over any link in the tree is statistically the same whenever 
C and S communicate.  The total traffic is defined to be 
the sum of both cover and real traffic. 

To achieve this objective, we need to address several 
issues. First, we need a signaling mechanism that can 
notify nodes in the tree network to generate cover traffic 
when real traffic is present. While the total traffic should 
look statistically indistinguishable across all links, real 
traffic should not “stick out.” Furthermore, the cover traffic 
should not be excessive to avoid unnecessary load on the 
network. Finally, participating nodes need to detect 
whether control messages are lost and act properly so as 
not to leak useful information to the adversary. 

 

3 Link Padding Operation at a Node 
 

We review a typical token-bucket-based scheme to 
generate cover traffic. The token bucket receives tokens at 
a rate corresponding to the target rate of the total traffic, 
including cover and real traffic. When it receives a token, 
as depicted in Figure 2, the node will send out a packet 
from real traffic if the real traffic queue is non-empty. In 
this case, a token is removed from the token bucket, and a 
packet is also removed from the real traffic queue. 

Otherwise, the node will send out a padding packet as a 
part of cover traffic. In this case, only a token is removed 
from the token bucket. 

There are various types of link padding. In the 
traditional type, which we call flat or constant link padding, 
padding traffic is inserted to a link so that the link usage is 
constant [8]. This type of link padding is simple but not 
bandwidth efficient. In contrast, in on-demand link padding 
as proposed in this paper, padding traffic is inserted 
dynamically only when real traffic is present. 

 

4 On-Demand Link Padding 
 

In this section, we describe our proposed on-demand 
link padding scheme within the context of our model 
problem. We use a signaling channel to send out control 
messages (also called signaling messages) from the root 
node to the participating decoy nodes at leaves to notify the 
amount of link padding to use. To ensure that any two 
communicating parties receive enough covering, we use 
explicit acknowledgment messages sent from participating 
decoy nodes to the root node. We assume the control 
channel is encrypted, and covered possibly by constant link 
padding. This should not significantly degrade available 
bandwidth of the underlying network to serve other real 
traffic because control traffic uses only modest bandwidth. 

For simplicity, on-demand padding described here 
addresses the situation where there is only one client C 
requesting cover traffic, and hence there is only one single 
tree rooted at the client. When deployed on a large network, 
multiple clients can request for cover traffic on multiple 
trees at the same time. If a node receives multiple requests 
for cover traffic, the node will try to meet all the requests. 
If the node is unable to satisfy a request because the total 
bandwidth need by all incoming requests is larger than the 
bandwidth reserved for the anonymizing service, then the 
node rejects the request by sending a negative reply. As 
depicted in Figure 3, the node sends out replies in the 
signaling stage to notify each of the requesting clients 
whether their individual requests can be met or not. Replies 
or acknowledgements destined to the same client may be 
combined or piggybacked in data packets to save 
bandwidth. 

 
Figure 3 Th
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The basic concept of on-demand link padding is to 
add padding traffic based on the bandwidth usage observed 
from real traffic. This allows padding to be applied only 
when real traffic is present. Moreover, to minimize its 
impact to other traffic, the amount of the padding should be 
limited to a level just sufficient to cover real traffic. We 
present two types of on-demand link padding. 
 
4.1 On-Demand Link Padding with Delay 
 

e 3-stage pipeline architecture for data segment processing in
demand link padding with delay. When segment Si-1 is being
t over the network links, the signal that carries the band-
th requirement for segment Si is being propagated from
fic source to all the nodes in the network. Meanwhile, the
dwidth requirement of segment Si+1 is being measured
ile the segment is being transmitting into a delay buffer
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The first type, called on-demand link padding with 
delay, works as follows. Consider real traffic from C to S 
in our model problem of Section 2. We break C’s traffic 
into consecutive data segments, each lasting for one round-
trip time (RTT), where RTT is the longest round-trip time 
among the paths between the root and the leaves in the 
cover tree network of Figure 1. When a segment departs 
from C, it will stay in a delay buffer at the output port of C 
for a time period of 2RTT. During the first RTT, the 
bandwidth usage of the segment is measured. During the 
second RTT, a signaling message is sent to all the tree 
nodes, requesting them to generate padding traffic so that 
the total traffic over each link will be at a rate equal to the 
measured bandwidth. At the end of the second RTT, if C 
has received sufficiently many acknowledgements from the 
leaf nodes, it sends out the segment at the rate of the 
measured bandwidth over a period of RTT. 

For real traffic from S to C, an approach similar to the 
one described above is used. There is a delay buffer at the 
output port of S. After having measured the bandwidth of 
the current segment, S will send a notification about the 
measured bandwidth to the root C so that C can signal all 
tree nodes to generate proper padding traffic. The delay 
buffer in this case needs to be extended to accommodate 
the additional delay for S to send the bandwidth 
notification to C, and for C to send acknowledgements 
back to S. 

As shown in Figure 3, we use a pipeline architecture 
to process three consecutive segments simultaneously at 
three pipeline stages. The three stages, each being one RTT 
long, are for bandwidth measurement, signaling, and data 
sending. 

In both cases of sending traffic from C to S and from 
S to C, since the bandwidth usage of a segment is 
measured before the target rate of link padding is set, on-
demand link padding with delay can target the total link 
bandwidth usage to be exactly the same as the measured 

bandwidth. Therefore, in on-demand link padding with 
delay, there is no waste of network bandwidth in cover 
traffic. However, the cost is that the real traffic will be 
delayed for two or three RTTs. 

 
4.2 On-Demand Link Padding with Headroom  

The second type of on-demand link padding is on- 
demand link padding with headroom. This type is of 
interest because it does not incur extra delays. The basic 
idea is to use measured bandwidth usage of a previously 
sent segment to predict that of the current one and to add 
headroom in the allocated bandwidth to allow traffic bursts 
to pass through. We describe the idea by considering real 
traffic from C to S in Figure 1. By using a traffic shaper, as 
shown in Figure 4, we can ensure that any bandwidth 
increase in the current segment is limited to an allowable 
range. This means that the current segment can be sent out 
immediately. 

 

 

 
Figure 4 Traffic shaper installed at the client C when using on-demand link

padding with headroom. The shaper will shape the outgoing
traffic from C and cap rate increases within the allowed range
absorbable by the headroom size. When the traffic rate of C
increases, the input queue will build up, and packets will be
dropped if the queue fills up. The shaper can be implemented using
a token bucket mechanism similar to that depicted in Figure 2 
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delivered during S1 SIG. As long as the sum of the 
measured bandwidth and headroom is larger than the 
bandwidth required by S3, we can send S3 without delay, 
while ensuring that the traffic of S3 will not stick out above 
the total traffic seen on other paths. 
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Table 1 Simulation Configuration 
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We report the results obtained from ns-2 [3] 

simulations in this section. These simulation results assume 
on-demand link padding with headroom. 

 
5.1 Simulation Setup 

The topology of the simulated network is a complete 
binary tree of Figure 1, with the client C sitting at the root 
node. We investigate the case where the depth of the tree is 
four (d = 4), i.e., the client wishes to send data to a server 
three hops away at a leaf node. The parameters are 
summarized in Table 1. 

We assume that the client is an open-loop traffic 
source that generates constant-sized packets at a time- 
varying rate. The packet inter-arrival times are drawn from 
Pareto distributions with shape parameters between 1.05 
and 1.15 [10]. Recall that the probability density function 
of Pareto distribution is f(x) = βαβx﹣β﹣１ where the 
“shape” parameter β  controls the shape of the 
distribution. Pareto distribution is widely used in modeling 
the heavy-tailed behavior of Internet traffic [7]. Note that 
when the shape parameter of Pareto distribution is between 
1 and 2, it has finite mean but infinite variance. 

When the client C generates a packet, the packet is 
delivered to the input queue, as shown in Figure 4, where it 
might be queued for later transmission. The queue is of 
fixed size, and when it is full, the newly generated packet 
will be dropped. We use packet drop probabilities as a 
metric to measure performance of different link padding 
methods.
 
5.2 Simulation Result 

We consider three factors that affect performance of 
link padding methods: queue size, amount of cover traffic, 
and source traffic characteristics. 

First, we investigate the effect of queue size and 
headroom size. Queue and headroom can absorb traffic 
increases. As we can see in Figure 6, increasing either the 
queue size or the headroom size decreases packet loss 
probabilities. The applications traffic is generated using 
Pareto inter arrival times of shape 1.1 at an average rate of 
0.876 Mbps. 

Next, we compare the performance of flat link 
 
Figure 6 The effect of queue size and headroom size on packet drop

probabilities. A Pareto traffic source is used with the aver-
age rate being 0.876 Mbps. The bandwidthdelay product is
about 6 KBytes. The figure shows that the packet drop
probabilities can be decreased by either increasing the queue
size or the headroom size 
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padding and on-demand link padding with headroom. 
In Figure 7, we show that the effects of different 

queue sizes. For achieving the same packet drop 
probability, on-demand padding uses less cover traffic than 
flat padding, when the queue size is reasonably large. The 
average data traffic rate is 0.735 Mbps, generated by the 
same Pareto traffic source as used in the previous 
simulation. 

Finally, we show how traffic characteristics play an 
important role in packet drop probabilities. As Pareto 
distribution of shape 1.05, it requires more cover traffic 
than less bursty traffic sources, such as those of shape 1.1 
in Figure 6 and Figure 7. The average data traffic rates are 
1.019, 0.735, and 0.663 Mbps for shape 1.05, 1.1, and 1.15, 
respectively. 

 

6 Discussion 
 

We use queue and headroom to absorb traffic bursts, 
which results in a trade-off between delay and link 
utilization, as mentioned earlier in Section 4.2. As we will 
explain below, using queue or headroom alone is 
insufficient to achieve a low packet loss rate. This is 
because the marginal effect of increasing either queue size 
or headroom size decreases if we increase either alone. 

The diminishing marginal effect of increasing 
headroom size alone can be illustrated using the diagram in 
Figure 9. For simplicity, we ignore the discrete steps in our 
control mechanism and regard the resulting on-demand 
link padding system as evolving continuously over time. 
The product of headroom size and signaling delay 
determines the maximum ramp-up speed of the application 
traffic. If the traffic ramps up too fast so that it generates 

more excess packets than what the queue can hold, then 
those surplus packets will be dropped. This is independent 
of traffic rate; it can happen even if the traffic rate is low. 
Flat link padding, on the other hand, suffers from packet 
losses only when there are persistent bursts whose 
accumulative deficit in bandwidth exceeds what the queue 
can hold, such as region GHJK in Figure 9. In the 
simulation, when the queue size is small, increasing cover 
traffic beyond a certain limit would benefit flat link 
padding more than on-demand link padding. This results in 
the crossover of the curves in Figure 7 and Figure 8. From 
the above illustration, we can see that the reason for such a 
slowdown is that when we increase cover traffic volume, 
the probability of having persistent bursts decreases faster 
than the probability of having long ramp-up. 

 

7 Handling Signaling Packet Loss 
 
Packet losses due to network buffer overflows and 

other reasons are inevitable in a large network such as the 
Internet. When the signaling packet that tells a 
participating node at the leaves of the cover tree how much 
padding traffic to insert in the following round fails to 
reach its destination, that particular node will not be able to 
provide covering for the root node; even if it decides to, the 
adversary would easily distinguish the node, for it will not 
know the exact amount of cover traffic to send and hence 
cannot pretend to be the real source of the traffic. 

As we have stated earlier in Section 4, in order to 
ensure that the root node will receive enough covering, we 
use explicit acknowledgment messages sent from leaf 
nodes to the root node of a cover tree. The root node will 
stop sending if it does not receive enough acknowledgment 
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Figure 8 Performance comparison under different traffic character-
istics. The shape parameter in Pareto distribution controls
burstiness of traffic rate: traffic rate with smaller shape
parameter is more bursty than those with larger shape
parameters. Flat padding is more prone to increasing
burstiness in the traffic rate than on-demand padding, as is
evident in the larger gaps between curves representing flat
link padding of different traffic characteristics 

Figure 7 Performance comparison between flat and on-demand link
padding. For the same queue size, flat padding uses more
cover traffic in order to achieve the same packet drop
probability. However, if the queue is not large enough,
adding more headroom to on-demand padding is less
effective, compared with adding more bandwidth to flat
padding. This phenomenon of crossover curves is
explained in Section 6 
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messages. Reasons for the root node not receiving 
acknowledgment messages from some of the leaf nodes 
include, but not limit to, that the acknowledgment 
messages sent by leaf nodes may get dropped in the 
network, that these leaf nodes did not receive signaling 
messages in the first place, and that these leaf nodes may 
simply go down during the course of the communication. 
Such events can pose a security threat to the anonymizing 
service provided by the system. 

For example, consider the scenario in which a server 
sits at a leaf node of a cover tree, so that a client at the root 
node can request services from the server without knowing 
the address of the server [5]. An adversary who can 
monitor output links of all leaf nodes may be able to infer 
useful information by continually making requests to the 
server and checking received replies. If, during certain 
period of time, the adversary receives replies from the 
server and observes that a small set of leaf nodes are not 
participating, then he can infer that these nodes cannot be 
the real server. In the rest of this section, we analyze the 
success probability of such attacks and describe schemes 
that can tolerate losses of signaling packets. 

 
7.1 Model Problem 

Consider the situation where the adversary is able to 
act like a legitimate user by sending requests to a server S. 
In this case the adversary wants to find out the address of 
the server S. The system recruits a set of n nodes, called 
camouflaging nodes, to provide cover for S (for example, 
in Figure 1 the camouflaging nodes are the leaf nodes other 
than S). Time is segmented into runs, and before the 
beginning of each run, a signaling packet is sent to each of 
the n camouflaging nodes and S, in which the amount of 
padding is disclosed. We denote by X an arbitrary 
camouflaging node: if X fails to receive the signaling 
packet for a particular run, it will not send any padding 
traffic in that run. Similarly, if S does not receive the  
signaling packet, it will not send any traffic in that run. We 
assume that in each run, a camouflaging node X or server 
node S fails to receive its signaling packet with some small 
probability p such as 0.01, and whether or not a node 
receives its signaling packets is independent of any other 
node. 

We further assume that the adversary is able to 
monitor traffic on links connecting to all camouflaging 
nodes and server S; however, due to link encryption and 
link padding, it can only tell the total amount of traffic 
within each run that flows through these links. In each run, 
we denote the set of all nodes that send the correct amount 
of padding traffic as a “participant group” (PG) and the 
complement as a “non-participant group” (NPG). Nodes in 
PG are called participating nodes or simply participants for 

that run. As a result, by monitoring the links, the adversary 
can identify whether a node is in PG or in NPG. 

Since the adversary is acting as a legitimate client, it 
will be able to tell whether the server S has sent out true 
replies or not in any run. We denote a run to be a successful 
run if the adversary receives a true reply message from 
server S; otherwise it is an unsuccessful run. We 
summarize our model problem in Figure 10. 

 
7.2 Convergence Time for Attacks that Exploit 

Successful Runs 
We first investigate the case where the adversary 

exploits information obtained from successful runs. Since 
S must be in PG in a successful run, those nodes in NPG 
cannot be S. Only those nodes that are in all PGs of all 
successful runs can be a candidate for S. We denote by 
AS(s) the set of nodes that still cannot be pruned after s 
successful runs. Then the expected size of this set, |AS(s)|, 
is 

E [│AS ( s )│] = n ( 1- p )S. 
 
In the above calculation, we have used the fact that 

|AS(s)| is a binomially distributed random variable with 
size n and probability (1-p)s. Recall that a binomial random 
variable with size  and probability  can be interpreted 
as, say, the number of heads in tossing  biased coin, 
where the outcome of each coin toss is head with 
probability  independently of that of any other coin toss. 
We can view the event that a camouflaging node X appears 
in all PG of s successful runs as a “head” event in a coin 
toss with the probability of a head being (1-p)s , which we 
assumed to be independent of that of any other node. 
Consequently, |AS(s)| is binomially distributed with size  
= n and probability  = (1-p)s. 

We give an illustrative scenario where the adversary 
wants to be 99.9% sure that a particular node is S, i.e., it 
wants |AS(s)| = 0 with probability of 0.999, after s runs. 
For p = 0.01 and n = 1000, the adversary will need to 
observe for roughly s = 1400 runs, where s is the solution 
to the equation: 

( 1 - (1 - p ) s ) n = 0.999 
Recall that S has the same probability p of being in 

PG. Thus the expected number of runs for each successful 
run is 1/(1-p), which is about 1.01 for p = 0.01.  Since 
1414/1.01 is approximately 1400, the expected total 
number of runs for the adversary to identify S with 99.9% 
of probability is about 1414 runs. 
 
7.3 Convergence Time for Attacks that Exploit 

Unsuccessful Runs 
Intersection attacks can also be based on unsuccessful 

runs, assuming that server S always sends out true replies 
when it receives signaling packets. Under this assumption, 
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those nodes which do send out cover traffic in an 
unsuccessful run cannot be S; only those nodes which are 
in all NPGs of all unsuccessful runs can be S. We denote 
the set of nodes that still cannot be pruned after r 
unsuccessful runs as AS(r). Then the size of this set, 
|AS(r)|, is also a binomially distributed random variable 
with size n and probability pr. Thus, the expected number 
of camouflaging nodes in AS(r) is npr after r runs. 

Attacks that exploit unsuccessful runs are more 
effective than those that exploit successful runs when p is 
small. That is, an adversary might be able to get |AS(r)| = 0 
more quickly than |AS(s)| = 0. For example, for p = 0.01 
and n = 1000, we have r ≈ 3 by solving the following 
equation: 

( 1 – pr ) n = 0.999 
Note that the expected number of runs for S to appear 

in the NPG of one of these runs is 1/p, which is 100. Thus 
the expected number of runs for the adversary to identify S 
with 99.9% of probability is only about r*100 = 300, much 
smaller compared with the number of 1414 runs in Section 
7.2. In this case, attacks exploiting unsuccessful runs are 
more effective than those exploiting successful runs. 

 
7.4 Adding S Randomness: First Attempt to Defend 

Against Attacks that Exploit Unsuccessful Runs 
The intersection attack mentioned in the previous 

section depends on the assumption that server S will 
always send out true replies when it receives signaling 
packets. The consequence is that, when the adversary 
receives no true reply, it can deduce that S did not receive 
its signaling packet, i.e., S is in NPG. To defend against 
this attack, we can add randomness to the behavior of S, 
namely, we will allow S not to send true replies with 
certain probability q even when it does receive signaling 
packets. That is, when S receives a signaling packet, with 
probability q it will pretend to be a camouflaging node by 

sending out pure padding traffic instead of true replies. 
From the adversary’s point of view, this is an unsuccessful 
run since it does not receive any true reply. Note that in 
this case S is in PG because it does send out something, so 
the adversary can no longer use the rule that S must be in 
NGP for every unsuccessful run. 

Let u and v denote the probability of S or X in PG of 
an unsuccessful run, respectively. Then, u = (1 – p) q, 
whereas v = p (1 – p) + u (1 – p). 

The value of v consists of two terms: the first 
corresponds to the case when S does not receive its 
signaling packet but X does, while the second one 
corresponds to the case when S pretends to be a 
camouflaging node and X happens to receive its signaling 
packet. We can rewrite v as 

v = p(1 – p - u) + u = p(1 - p)(1 -q) + u ≥ u. 
This means, unless q is equal to 1, in which case S 

will not be able to send any true reply, the probability of S 
in PG of an unsuccessful run is always less than that of X. 
Using this fact, the adversary will be able to tell, with high 
probability, whether or not a particular node is S, when the 
number of runs is sufficiently large for necessary statistical 
tests. 

 
7.5 Adding Both S and X Randomness to Defend 

Against Attacks that Exploit Unsuccessful Runs 
To correct the problem that S is more probable to 

appear in NPG of an unsuccessful run than X, we increase 
the probability of X appearing in NPG from p to ap, where 
p ≤ ap ≤ 1 This can be achieved by introducing randomness: 
when X receives a signaling message, it will send out 
padding traffic with probability h = (1 – ap)/(1 – p) and 
keep silent otherwise. For example, for a = 2 and p = 0.01, 
we have h approximately equal to 0.99, so that when X 
receives a signaling packet, with probability 0.99, it sends 
out padding traffic, and with probability 0.01, it sends 
nothing. Therefore, the probabilities of X in PG and NPG 
are always 1 - ap and ap, respectively, in either successful 
or unsuccessful runs. 

 
Figure 10 A model problem for analyzing intersection attacks.

Depending on whether or not a node receives the
signaling packet in a run, it can be in the participant
group (PG) or  non-participant  group  (NPG).  The
adversary classifies each run to be either successful or
unsuccessful, depending on whether it has received true
replies from the server. The server is denoted by S and
any of the camouflaging nodes by X. Note that in a
successful run, S must be in PG 

Next, we compute these probabilities for S during 
unsuccessful runs. The probability that S falls in PG of an 
unsuccessful run is (1 – p)q, whereas the probability that S 
falls in NPG of an unsuccessful run is simply p. Because 
the two cases mentioned above are the only possible ways 
for unsuccessful runs to happen, we denote the probability 
of unsuccessful run by η, where η = (1 - p) q + p. From 
the adversary’s perspective, given the fact that it is an 
unsuccessful run, the conditional probabilities of S being in 
PG and NPG are ((1 – p)+q)/ η and p η, respectively. /

We adjust a and q such that the probabilities of S 
being in PG or NPG are equal to those of X being in PG or 
NPG, respectively. This implies 
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, 

when p is small. In this case, there is no way an 
adversary can tell which node is S based on information 
obtained during unsuccessful runs. 
 
7.6 Trade-offs and Optimal Strategies 

From the above formula for a and q, we note that for 
small p, the product of a and q remains constant, so 
increasing the value of one will require decreasing the 
value of the other. However, one may wish to decrease 
both values simultaneously for the following reasons. As 
we have seen in Section 7.2, the expected size of the 
anonymity set |AS(s)| is n (1 – ap) s , and as we decrease a, 
E[|AS(s)|] becomes larger so that the adversary will have to 
spend more time pruning; hence it is more difficult for the 
adversary to identify S based on information  obtained  
from successful runs. On the other hand, as we decrease q, 
S will spend less time on sending pure padding traffic 
rather than true replies in order to confuse the adversary; 
thus S achieves higher resource utilization. As a result, 
depending on the security requirements and resource 
budget, one may need to choose a pair of suitable 
parameters a and q to strike a balance between security and 
efficiency. 

We also note that it is not necessary for the 
probabilities of S in PG and X in PG of an unsuccessful 
run to be equal, because the adversary can always identify 
S using information obtained from successful runs. 
Therefore one can relax the condition on a and q such that 
it takes approximately the same number of total runs for 
the adversary to identify S via either successful runs or 
unsuccessful runs. We note that the problem for the 
adversary to identify S using information obtained from 
unsuccessful runs is a type of statistical hypothesis testing, 
in which the adversary has to accept or reject the 
hypothesis that a set of sample outcomes are drawn from 
the probability distribution that S is in PG (or equally 
effectively that S is in NPG). Given any target confidence 
level for the adversary, one can apply the Chernoff bounds 
(or resort to similar arguments) to obtain constraints on the 
probabilities of S in PG and X in PG (and hence those of S 
in NPG and X in NPG) such that with high probability, the 
adversary cannot identify S more quickly via unsuccessful 
runs than successful runs. 

 

8 Related Work 
 
Chaum proposes to construct a synchronous, 

untraceable email system called MIX [1]. MIX nodes 
perform anonymizing tasks by collecting, reordering, and 

distributing messages in a synchronous manner. An outside 
adversary can only obtain the information that a participant 
may be communicating with one or more parties involved 
in a MIX network in that particular round but cannot be 
sure with which party or parties the participant is 
communicating. Our entire tree can be thought of as a real-
time MIX node, with the root communicating with one of 
the leaves.  

Many extensions to the MIX network that aim to 
provide real-time traffic transport have been proposed, 
among which the Onion Routing Project [9] is the most 
widely known. In Onion routing, the initiator of 
communication first constructs an Onion, in which the 
entire path to be taken by subsequent packets is specified. 
The Onion is then forwarded, a secure virtual circuit is set 
up, and the application packets are exchanged without link 
padding. We note that our proposed on-demand link 
padding schemes can be used to help Onion routing 
achieve better anonymity protection against a more 
powerful adversary model. 

The purpose of the NymIP [6] proposal aims to define 
and deploy standardized protocols for pseudonymity and 
anonymity at the IP layer. ANON [5] and Onion Routing 
[9] represent some implementation efforts in IP 
anonymizing. All these projects emphasized the 
importance of link padding. 
 
9 Conclusion 
 

We have investigated the problem of using on- 
demand link padding to hide the network paths used by 
applications. We propose to generate cover traffic 
dynamically on demand, only when real traffic is present. 
We describe the control mechanisms and report 
performance comparisons with flat link padding using ns-2 
simulation. The results show that, for open-loop traffic 
sources, on-demand link padding experiences fewer packet 
loss than flat link padding when both methods use 
comparable link bandwidth. Furthermore, we have 
considered the situation where control messages could be 
lost. We describe how nodes should behave under such 
circumstances in order to prevent useful information from 
leaking to the adversary. 

We note that the problem considered in Section 7.5 
can be placed in a more general setting of anonymizing 
infrastructure to obtain security parameters in defense 
against generic intersection attacks. It is typical that one 
side of the situation cannot be changed, e.g., S has to be in 
PG during successful runs in our model problem, so the 
participant nodes have to cooperate in other situations to 
reduce the probability of S being identified. 
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