
On-Demand Link Padding in Traffic Anonymizing

241

On-Demand Link Padding in Traffic Anonymizing

Chen-Mou Cheng, H. T. Kung, Koan-Sin Tan
Harvard University

U.S.A.
doug@eecs.harvard.edu, kung@harvard.edu, freedom@itri.org.tw

Abstract

We consider the problem of using artificially

generated cover traffic to hide the network paths used by
an application against an adversarial observer who can
monitor network traffic and perform traffic analysis. We
propose that on-demand link padding be used on top of
existing traffic anonymizing infrastructures such as those
described in the Onion Routing Project or in the ANON
Project. In on-demand link padding, cover traffic is
generated dynamically only when real traffic is present.
Moreover, the bandwidth usage is economical because we
only generate a small amount of cover traffic above real
traffic. We describe two types of on-demand link padding
schemes and evaluate their performance by simulation. We
report our findings based on the simulation results and
quantify potential trade-offs in configuring a couple of
important parameters. Finally, we provide a strategy for
mitigating the potential problem in face of lost or corrupted
control packets, to which the traditional recovery solutions
based on packet retransmission are inappropriate for
performance considerations.

Keywords: Traffic Anonymizing, Link Padding, Network

Security.

1 Introduction

We consider the problem of hiding certain meta
information of an application traffic flow from an
adversarial observer, such as the source and destination
network addresses, or the actual network route taken by the
flow. Often time, it is difficult to learn exactly what the
adversary can or cannot observe, so we assume the worst:
an adversary who can observe all network traffic at all time.
We start with two basic weapons: cryptography and a set of
trusted, privacy-enhancing forwarders, whose principles of
operations are described in more details below. First,
packets are encrypted with a non-malleable, semantically
secure encryption algorithm [4] such that neither by
passively inspecting the content of the packets nor by
actively injecting arbitrary packets can the adversary learn
any information beyond the fact that the two parties are
communicating with each other. However, certain
information of the packets, such as the source and

destination addresses, cannot be hidden using mere
cryptography; to hide it, we will use a sequence of trusted,
privacy-enhancing forwarders to forward packets, to each
of which we only need to reveal the addresses of its two
immediate neighbors in the sequence. Furthermore, the
packets of the target traffic are “mixed” with those of other
traffic to make tracing more difficult to an outside observer.
The reader is referred to [5][9] for a discussion on and
some concrete examples of such forwarders.

For our adversary, effective mixing in the forwarders
is important, for the adversary can monitor all network
links and perform sophisticated traffic analysis. Such
analysis may correlate packets going into and coming out
of a forwarder to determine if two trains of packets belong
to a same traffic flow, or use contextual information such
as the duration of a conversation to launch intersection
attacks [8]. To counteract such analysis, we would like to
design a network system in which the characteristics of
network traffic is, be it with or without application traffic,
indistinguishable to the observer. Link padding [1][8] is a
well-known solution to this problem. It is based on the
generation of artificial load, i.e., cover traffic, on a super
set of those links where application traffic, which we will
call real traffic subsequently, traverses. The hope is that
with cover traffic, all links in the superset will exhibit
indistinguishable behavior, and as a result, the adversary
will not be able to use traffic analysis to find out which
subsets of these links actually carry real traffic.

Use of padding traffic may, however, reduce the
network’s available bandwidth for serving real traffic.
Consider the scenario where links may pass through one or
more intermediate nodes. For example, a link of an overlay
network built on top of IP networks may pass through
intermediate IP routers, whereas a link of an IP network
may pass through intermediate Ethernet switches. In these
cases, padding traffic on the link will increase the load on
these intermediate nodes and their adjacent links and thus
reduce their bandwidth available for serving other real
traffic. Note that padding traffic and real traffic are
supposed to be indistinguishable, and thus it would be
inappropriate to assume that intermediate nodes could give
normal traffic preferential treatments over padding traffic.

To mitigate this bandwidth overhead problem of link
padding, in this paper we propose an on-demand link
padding scheme capable of generating cover traffic only in

Journal of Internet Technology Volume 6 (2005) No.3

242

the presence of real traffic. Furthermore, we make sure that
cover traffic can be at a rate just above that of real traffic.
In this way, we avoid using traditional “flat” cover traffic
[8] that does not dynamically adapt to real traffic. Thus,
when real traffic is bursty, the proposed approach can
significantly reduce cover traffic’s blockage of real traffic
at intermediate nodes.

Note that on-demand link padding is not to be
confused with on-demand bandwidth reservation for
quality of service purposes. The service provided by link
padding is path hiding, not bandwidth or latency
guarantees as in on-demand bandwidth reservation
schemes such as RSVP [11].

The rest of this paper is organized as follows. In
Section 2, we give a hypothetical application scenario of
on-demand link padding and formulate an abstract model
for the on-demand link-padding problem. We then present
a general mechanism of implementing link padding in
Section 3 and describe two types of on-demand link
padding in Section 4. We use simulation to demonstrate the
advantages of on-demand link padding over traditional flat
link padding in Section 5. We report our findings and
discuss potential trade-offs in configuring the important
parameters of the proposed on-demand link padding
scheme in Section 6. We describe our strategy for dealing
with the problem of possible control packet losses in
Section 7. We review related work in the literature in
Section 8 and conclude this paper in Section 9.

2 Application and Model Problem

To illustrate the need of using cover traffic, we
consider a hypothetical application scenario. A company
has sent agents to a foreign country X to explore a highly
secretive business deal and wants to prevent its competitors
from knowing exactly which country it is. At various times

the company’s agents residing in country X need to
communicate to the company’s headquarters using, e.g.,
VoIP applications such as Skype. Beyond hiding the
content of communication via message encryption (as
Skype currently does with AES), the company’s security
measure will also include hiding traffic so that its
competitors cannot deduce the source of the agents’
communication (country X in this example) from traffic
monitoring and analysis. To implement traffic hiding, the
company recruits some number of decoy nodes, which can
fool the competitors by sending and receiving cover traffic
that looks like real traffic. Whenever an agent has data
ready to send, it will first inform the headquarters the
amount of data and the rate at which the data is to be sent,
through a low-bandwidth control channel that can be easily
hidden. The headquarters will convey, over the control
channel again, the received information to all the decoy
nodes so that they can transmit proper cover traffic at the
same time when the agents send the data. Using this
method, traffic from the agents to the headquarters can be
hidden in decoy nodes’ cover traffic. Hiding
communication from the headquarters to the agents can be
accomplished similarly by having the headquarters send
cover traffic to decoy nodes.

From the above scenario, we formulate a model
problem that we will use in this paper to study on-demand
link padding. Although it is simple, this model problem
captures the essential issues of on-demand link padding.

We consider the situation where the network path
between a client C and a server S needs to be hidden. The
basic protection strategy is that, whenever C and S
communicate, similar cover traffic will be generated over
multiple network paths. Even for an adversary which could
monitor all network links, it would be difficult to tell which
network path C and S use, let alone to locate S.

Motivated by the application scenario given earlier in
this section, we use the topology of a balanced tree
network of depth d, called a cover tree, for hiding a path
between C and S, with C being the root and S a leaf, as
depicted in Figure 1. Given a path between C and S, the
tree is fixed for a period of time in order to guard against
intersection attacks [8]. It is possible to use topologies

Figure 2 Token bucket based link padding implementation

Figure 1 The cover tree for our model problem, where C is the client

and S is the server. The diagram on the left illustrates that
the total traffic on the path between C and S is the sum of
real and cover traffic, while that on any other link is just
cover traffic. The two diagrams on the right indicate that at
any given time, the total traffic over any link looks the same
with or without real traffic

R
at

e
R

at
e

On-Demand Link Padding in Traffic Anonymizing

243

other than trees; to simplify the presentation, we only use
the tree topology to illustrate our on-demand link padding
ideas in this paper.

Cover traffic will be generated over all the paths from
the root to the leaves, with the property that the total traffic
over any link in the tree is statistically the same whenever
C and S communicate. The total traffic is defined to be
the sum of both cover and real traffic.

To achieve this objective, we need to address several
issues. First, we need a signaling mechanism that can
notify nodes in the tree network to generate cover traffic
when real traffic is present. While the total traffic should
look statistically indistinguishable across all links, real
traffic should not “stick out.” Furthermore, the cover traffic
should not be excessive to avoid unnecessary load on the
network. Finally, participating nodes need to detect
whether control messages are lost and act properly so as
not to leak useful information to the adversary.

3 Link Padding Operation at a Node

We review a typical token-bucket-based scheme to
generate cover traffic. The token bucket receives tokens at
a rate corresponding to the target rate of the total traffic,
including cover and real traffic. When it receives a token,
as depicted in Figure 2, the node will send out a packet
from real traffic if the real traffic queue is non-empty. In
this case, a token is removed from the token bucket, and a
packet is also removed from the real traffic queue.

Otherwise, the node will send out a padding packet as a
part of cover traffic. In this case, only a token is removed
from the token bucket.

There are various types of link padding. In the
traditional type, which we call flat or constant link padding,
padding traffic is inserted to a link so that the link usage is
constant [8]. This type of link padding is simple but not
bandwidth efficient. In contrast, in on-demand link padding
as proposed in this paper, padding traffic is inserted
dynamically only when real traffic is present.

4 On-Demand Link Padding

In this section, we describe our proposed on-demand
link padding scheme within the context of our model
problem. We use a signaling channel to send out control
messages (also called signaling messages) from the root
node to the participating decoy nodes at leaves to notify the
amount of link padding to use. To ensure that any two
communicating parties receive enough covering, we use
explicit acknowledgment messages sent from participating
decoy nodes to the root node. We assume the control
channel is encrypted, and covered possibly by constant link
padding. This should not significantly degrade available
bandwidth of the underlying network to serve other real
traffic because control traffic uses only modest bandwidth.

For simplicity, on-demand padding described here
addresses the situation where there is only one client C
requesting cover traffic, and hence there is only one single
tree rooted at the client. When deployed on a large network,
multiple clients can request for cover traffic on multiple
trees at the same time. If a node receives multiple requests
for cover traffic, the node will try to meet all the requests.
If the node is unable to satisfy a request because the total
bandwidth need by all incoming requests is larger than the
bandwidth reserved for the anonymizing service, then the
node rejects the request by sending a negative reply. As
depicted in Figure 3, the node sends out replies in the
signaling stage to notify each of the requesting clients
whether their individual requests can be met or not. Replies
or acknowledgements destined to the same client may be
combined or piggybacked in data packets to save
bandwidth.

Figure 3 Th

on-
sen
wid
traf
ban
wh

The basic concept of on-demand link padding is to
add padding traffic based on the bandwidth usage observed
from real traffic. This allows padding to be applied only
when real traffic is present. Moreover, to minimize its
impact to other traffic, the amount of the padding should be
limited to a level just sufficient to cover real traffic. We
present two types of on-demand link padding.

4.1 On-Demand Link Padding with Delay

e 3-stage pipeline architecture for data segment processing in
demand link padding with delay. When segment Si-1 is being
t over the network links, the signal that carries the band-
th requirement for segment Si is being propagated from
fic source to all the nodes in the network. Meanwhile, the
dwidth requirement of segment Si+1 is being measured
ile the segment is being transmitting into a delay buffer

Journal of Internet Technology Volume 6 (2005) No.3

244

The first type, called on-demand link padding with
delay, works as follows. Consider real traffic from C to S
in our model problem of Section 2. We break C’s traffic
into consecutive data segments, each lasting for one round-
trip time (RTT), where RTT is the longest round-trip time
among the paths between the root and the leaves in the
cover tree network of Figure 1. When a segment departs
from C, it will stay in a delay buffer at the output port of C
for a time period of 2RTT. During the first RTT, the
bandwidth usage of the segment is measured. During the
second RTT, a signaling message is sent to all the tree
nodes, requesting them to generate padding traffic so that
the total traffic over each link will be at a rate equal to the
measured bandwidth. At the end of the second RTT, if C
has received sufficiently many acknowledgements from the
leaf nodes, it sends out the segment at the rate of the
measured bandwidth over a period of RTT.

For real traffic from S to C, an approach similar to the
one described above is used. There is a delay buffer at the
output port of S. After having measured the bandwidth of
the current segment, S will send a notification about the
measured bandwidth to the root C so that C can signal all
tree nodes to generate proper padding traffic. The delay
buffer in this case needs to be extended to accommodate
the additional delay for S to send the bandwidth
notification to C, and for C to send acknowledgements
back to S.

As shown in Figure 3, we use a pipeline architecture
to process three consecutive segments simultaneously at
three pipeline stages. The three stages, each being one RTT
long, are for bandwidth measurement, signaling, and data
sending.

In both cases of sending traffic from C to S and from
S to C, since the bandwidth usage of a segment is
measured before the target rate of link padding is set, on-
demand link padding with delay can target the total link
bandwidth usage to be exactly the same as the measured

bandwidth. Therefore, in on-demand link padding with
delay, there is no waste of network bandwidth in cover
traffic. However, the cost is that the real traffic will be
delayed for two or three RTTs.

4.2 On-Demand Link Padding with Headroom

The second type of on-demand link padding is on-
demand link padding with headroom. This type is of
interest because it does not incur extra delays. The basic
idea is to use measured bandwidth usage of a previously
sent segment to predict that of the current one and to add
headroom in the allocated bandwidth to allow traffic bursts
to pass through. We describe the idea by considering real
traffic from C to S in Figure 1. By using a traffic shaper, as
shown in Figure 4, we can ensure that any bandwidth
increase in the current segment is limited to an allowable
range. This means that the current segment can be sent out
immediately.

Figure 4 Traffic shaper installed at the client C when using on-demand link

padding with headroom. The shaper will shape the outgoing
traffic from C and cap rate increases within the allowed range
absorbable by the headroom size. When the traffic rate of C
increases, the input queue will build up, and packets will be
dropped if the queue fills up. The shaper can be implemented using
a token bucket mechanism similar to that depicted in Figure 2

4

Figure 5 Sending rate as a function of time. Bo

pipeline depicted in Figure 3. The up
the 2RTT delay. For example, S
bandwidth measured during S1 BW a
during S1 SIG. The lower diagram
sufficient headroom we can send segm
example, S3 is sent using the bandwid
BW and the signal delivered during S1
the measured bandwidth and headro
bandwidth required by S3, we can send
th (a) and (b) show the
per diagram (a) shows
1 is sent using the
nd the signal delivered
 (b) shows that with
ents without delay. For
th measured during S1

 SIG. Since the sum of
om is larger than the
 it without delay

On-Demand Link Padding in Traffic Anonymizing

245

However,
from a drawba
accommodate r
bandwidth fluc
of large headro
real traffic resu
link padding.

To allevia
traffic shaper w
to absorb ban
segments, ther
The queueing r
introduce delay
with headroom
traffic shaper fo

4.3 Illustration

We use F
demand link p
show that the
padding with d
sent using the
signal delivere
using on-deman
segments imm

using the bandwidth measured during S1 BW and the signal
delivered during S1 SIG. As long as the sum of the
measured bandwidth and headroom is larger than the
bandwidth required by S3, we can send S3 without delay,
while ensuring that the traffic of S3 will not stick out above
the total traffic seen on other paths.

Sim

Lin

Link p

Round-tri

P

5 Simulation

Pa
ck

et
 d

ro
p

pr
ob

ab
ili

ty
(%

)
Table 1 Simulation Configuration

ulation time 600 sec.

k bandwidth 10 Mbps

ropagation delay 16.7 ms

p propagation delay 100 ms

acket size 1000 bytes
this zero-delay link padding method suffers
ck. That is, large headroom is needed to
eal traffic that may or may not have large
tuations between consecutive segments. Use
om while there is not corresponding large
lts in wasteful use of network bandwidth in

te this link efficiency problem, we use the
ith an input queue, as depicted in Figure 4,
dwidth fluctuations between consecutive

eby reducing the need of large headroom.
equired in the traffic shaper, however, could
. Thus when using on-demand link padding
, we can trade off queueing delay at the
r small headroom.

igure 5 to illustrate the two types of on-
adding described above. In Figure 5(a) we
2RTT delay is required by on-demand link
elay. For example, the first segment S1 is

bandwidth measured during S1 BW and the
d during S1 SIG. Figure 5(b) shows that
d link padding with headroom, we can send

ediately. For example, segment S3 is sent

We report the results obtained from ns-2 [3]

simulations in this section. These simulation results assume
on-demand link padding with headroom.

5.1 Simulation Setup

The topology of the simulated network is a complete
binary tree of Figure 1, with the client C sitting at the root
node. We investigate the case where the depth of the tree is
four (d = 4), i.e., the client wishes to send data to a server
three hops away at a leaf node. The parameters are
summarized in Table 1.

We assume that the client is an open-loop traffic
source that generates constant-sized packets at a time-
varying rate. The packet inter-arrival times are drawn from
Pareto distributions with shape parameters between 1.05
and 1.15 [10]. Recall that the probability density function
of Pareto distribution is f(x) = βαβx﹣β﹣１ where the
“shape” parameter β controls the shape of the
distribution. Pareto distribution is widely used in modeling
the heavy-tailed behavior of Internet traffic [7]. Note that
when the shape parameter of Pareto distribution is between
1 and 2, it has finite mean but infinite variance.

When the client C generates a packet, the packet is
delivered to the input queue, as shown in Figure 4, where it
might be queued for later transmission. The queue is of
fixed size, and when it is full, the newly generated packet
will be dropped. We use packet drop probabilities as a
metric to measure performance of different link padding
methods.

5.2 Simulation Result

We consider three factors that affect performance of
link padding methods: queue size, amount of cover traffic,
and source traffic characteristics.

First, we investigate the effect of queue size and
headroom size. Queue and headroom can absorb traffic
increases. As we can see in Figure 6, increasing either the
queue size or the headroom size decreases packet loss
probabilities. The applications traffic is generated using
Pareto inter arrival times of shape 1.1 at an average rate of
0.876 Mbps.

Next, we compare the performance of flat link

Figure 6 The effect of queue size and headroom size on packet drop

probabilities. A Pareto traffic source is used with the aver-
age rate being 0.876 Mbps. The bandwidthdelay product is
about 6 KBytes. The figure shows that the packet drop
probabilities can be decreased by either increasing the queue
size or the headroom size

Journal of Internet Technology Volume 6 (2005) No.3

246

padding and on-demand link padding with headroom.
In Figure 7, we show that the effects of different

queue sizes. For achieving the same packet drop
probability, on-demand padding uses less cover traffic than
flat padding, when the queue size is reasonably large. The
average data traffic rate is 0.735 Mbps, generated by the
same Pareto traffic source as used in the previous
simulation.

Finally, we show how traffic characteristics play an
important role in packet drop probabilities. As Pareto
distribution of shape 1.05, it requires more cover traffic
than less bursty traffic sources, such as those of shape 1.1
in Figure 6 and Figure 7. The average data traffic rates are
1.019, 0.735, and 0.663 Mbps for shape 1.05, 1.1, and 1.15,
respectively.

6 Discussion

We use queue and headroom to absorb traffic bursts,
which results in a trade-off between delay and link
utilization, as mentioned earlier in Section 4.2. As we will
explain below, using queue or headroom alone is
insufficient to achieve a low packet loss rate. This is
because the marginal effect of increasing either queue size
or headroom size decreases if we increase either alone.

The diminishing marginal effect of increasing
headroom size alone can be illustrated using the diagram in
Figure 9. For simplicity, we ignore the discrete steps in our
control mechanism and regard the resulting on-demand
link padding system as evolving continuously over time.
The product of headroom size and signaling delay
determines the maximum ramp-up speed of the application
traffic. If the traffic ramps up too fast so that it generates

more excess packets than what the queue can hold, then
those surplus packets will be dropped. This is independent
of traffic rate; it can happen even if the traffic rate is low.
Flat link padding, on the other hand, suffers from packet
losses only when there are persistent bursts whose
accumulative deficit in bandwidth exceeds what the queue
can hold, such as region GHJK in Figure 9. In the
simulation, when the queue size is small, increasing cover
traffic beyond a certain limit would benefit flat link
padding more than on-demand link padding. This results in
the crossover of the curves in Figure 7 and Figure 8. From
the above illustration, we can see that the reason for such a
slowdown is that when we increase cover traffic volume,
the probability of having persistent bursts decreases faster
than the probability of having long ramp-up.

7 Handling Signaling Packet Loss

Packet losses due to network buffer overflows and

other reasons are inevitable in a large network such as the
Internet. When the signaling packet that tells a
participating node at the leaves of the cover tree how much
padding traffic to insert in the following round fails to
reach its destination, that particular node will not be able to
provide covering for the root node; even if it decides to, the
adversary would easily distinguish the node, for it will not
know the exact amount of cover traffic to send and hence
cannot pretend to be the real source of the traffic.

As we have stated earlier in Section 4, in order to
ensure that the root node will receive enough covering, we
use explicit acknowledgment messages sent from leaf
nodes to the root node of a cover tree. The root node will
stop sending if it does not receive enough acknowledgment

Pa
ck

et
 d

ro
p

pr
ob

ab
ili

ty
(%

)

Pa
ck

et
 d

ro
p

pr
ob

ab
ili

ty
(%

)

Figure 8 Performance comparison under different traffic character-
istics. The shape parameter in Pareto distribution controls
burstiness of traffic rate: traffic rate with smaller shape
parameter is more bursty than those with larger shape
parameters. Flat padding is more prone to increasing
burstiness in the traffic rate than on-demand padding, as is
evident in the larger gaps between curves representing flat
link padding of different traffic characteristics

Figure 7 Performance comparison between flat and on-demand link
padding. For the same queue size, flat padding uses more
cover traffic in order to achieve the same packet drop
probability. However, if the queue is not large enough,
adding more headroom to on-demand padding is less
effective, compared with adding more bandwidth to flat
padding. This phenomenon of crossover curves is
explained in Section 6

On-Demand Link Padding in Traffic Anonymizing

247

messages. Reasons for the root node not receiving
acknowledgment messages from some of the leaf nodes
include, but not limit to, that the acknowledgment
messages sent by leaf nodes may get dropped in the
network, that these leaf nodes did not receive signaling
messages in the first place, and that these leaf nodes may
simply go down during the course of the communication.
Such events can pose a security threat to the anonymizing
service provided by the system.

For example, consider the scenario in which a server
sits at a leaf node of a cover tree, so that a client at the root
node can request services from the server without knowing
the address of the server [5]. An adversary who can
monitor output links of all leaf nodes may be able to infer
useful information by continually making requests to the
server and checking received replies. If, during certain
period of time, the adversary receives replies from the
server and observes that a small set of leaf nodes are not
participating, then he can infer that these nodes cannot be
the real server. In the rest of this section, we analyze the
success probability of such attacks and describe schemes
that can tolerate losses of signaling packets.

7.1 Model Problem

Consider the situation where the adversary is able to
act like a legitimate user by sending requests to a server S.
In this case the adversary wants to find out the address of
the server S. The system recruits a set of n nodes, called
camouflaging nodes, to provide cover for S (for example,
in Figure 1 the camouflaging nodes are the leaf nodes other
than S). Time is segmented into runs, and before the
beginning of each run, a signaling packet is sent to each of
the n camouflaging nodes and S, in which the amount of
padding is disclosed. We denote by X an arbitrary
camouflaging node: if X fails to receive the signaling
packet for a particular run, it will not send any padding
traffic in that run. Similarly, if S does not receive the
signaling packet, it will not send any traffic in that run. We
assume that in each run, a camouflaging node X or server
node S fails to receive its signaling packet with some small
probability p such as 0.01, and whether or not a node
receives its signaling packets is independent of any other
node.

We further assume that the adversary is able to
monitor traffic on links connecting to all camouflaging
nodes and server S; however, due to link encryption and
link padding, it can only tell the total amount of traffic
within each run that flows through these links. In each run,
we denote the set of all nodes that send the correct amount
of padding traffic as a “participant group” (PG) and the
complement as a “non-participant group” (NPG). Nodes in
PG are called participating nodes or simply participants for

that run. As a result, by monitoring the links, the adversary
can identify whether a node is in PG or in NPG.

Since the adversary is acting as a legitimate client, it
will be able to tell whether the server S has sent out true
replies or not in any run. We denote a run to be a successful
run if the adversary receives a true reply message from
server S; otherwise it is an unsuccessful run. We
summarize our model problem in Figure 10.

7.2 Convergence Time for Attacks that Exploit

Successful Runs
We first investigate the case where the adversary

exploits information obtained from successful runs. Since
S must be in PG in a successful run, those nodes in NPG
cannot be S. Only those nodes that are in all PGs of all
successful runs can be a candidate for S. We denote by
AS(s) the set of nodes that still cannot be pruned after s
successful runs. Then the expected size of this set, |AS(s)|,
is

E [│AS (s)│] = n (1- p)S.

In the above calculation, we have used the fact that

|AS(s)| is a binomially distributed random variable with
size n and probability (1-p)s. Recall that a binomial random
variable with size and probability can be interpreted
as, say, the number of heads in tossing biased coin,
where the outcome of each coin toss is head with
probability independently of that of any other coin toss.
We can view the event that a camouflaging node X appears
in all PG of s successful runs as a “head” event in a coin
toss with the probability of a head being (1-p)s , which we
assumed to be independent of that of any other node.
Consequently, |AS(s)| is binomially distributed with size
= n and probability = (1-p)s.

We give an illustrative scenario where the adversary
wants to be 99.9% sure that a particular node is S, i.e., it
wants |AS(s)| = 0 with probability of 0.999, after s runs.
For p = 0.01 and n = 1000, the adversary will need to
observe for roughly s = 1400 runs, where s is the solution
to the equation:

(1 - (1 - p) s) n = 0.999
Recall that S has the same probability p of being in

PG. Thus the expected number of runs for each successful
run is 1/(1-p), which is about 1.01 for p = 0.01. Since
1414/1.01 is approximately 1400, the expected total
number of runs for the adversary to identify S with 99.9%
of probability is about 1414 runs.

7.3 Convergence Time for Attacks that Exploit

Unsuccessful Runs
Intersection attacks can also be based on unsuccessful

runs, assuming that server S always sends out true replies
when it receives signaling packets. Under this assumption,

Journal of Internet Technology Volume 6 (2005) No.3

248

those nodes which do send out cover traffic in an
unsuccessful run cannot be S; only those nodes which are
in all NPGs of all unsuccessful runs can be S. We denote
the set of nodes that still cannot be pruned after r
unsuccessful runs as AS(r). Then the size of this set,
|AS(r)|, is also a binomially distributed random variable
with size n and probability pr. Thus, the expected number
of camouflaging nodes in AS(r) is npr after r runs.

Attacks that exploit unsuccessful runs are more
effective than those that exploit successful runs when p is
small. That is, an adversary might be able to get |AS(r)| = 0
more quickly than |AS(s)| = 0. For example, for p = 0.01
and n = 1000, we have r ≈ 3 by solving the following
equation:

(1 – pr) n = 0.999
Note that the expected number of runs for S to appear

in the NPG of one of these runs is 1/p, which is 100. Thus
the expected number of runs for the adversary to identify S
with 99.9% of probability is only about r*100 = 300, much
smaller compared with the number of 1414 runs in Section
7.2. In this case, attacks exploiting unsuccessful runs are
more effective than those exploiting successful runs.

7.4 Adding S Randomness: First Attempt to Defend

Against Attacks that Exploit Unsuccessful Runs
The intersection attack mentioned in the previous

section depends on the assumption that server S will
always send out true replies when it receives signaling
packets. The consequence is that, when the adversary
receives no true reply, it can deduce that S did not receive
its signaling packet, i.e., S is in NPG. To defend against
this attack, we can add randomness to the behavior of S,
namely, we will allow S not to send true replies with
certain probability q even when it does receive signaling
packets. That is, when S receives a signaling packet, with
probability q it will pretend to be a camouflaging node by

sending out pure padding traffic instead of true replies.
From the adversary’s point of view, this is an unsuccessful
run since it does not receive any true reply. Note that in
this case S is in PG because it does send out something, so
the adversary can no longer use the rule that S must be in
NGP for every unsuccessful run.

Let u and v denote the probability of S or X in PG of
an unsuccessful run, respectively. Then, u = (1 – p) q,
whereas v = p (1 – p) + u (1 – p).

The value of v consists of two terms: the first
corresponds to the case when S does not receive its
signaling packet but X does, while the second one
corresponds to the case when S pretends to be a
camouflaging node and X happens to receive its signaling
packet. We can rewrite v as

v = p(1 – p - u) + u = p(1 - p)(1 -q) + u ≥ u.
This means, unless q is equal to 1, in which case S

will not be able to send any true reply, the probability of S
in PG of an unsuccessful run is always less than that of X.
Using this fact, the adversary will be able to tell, with high
probability, whether or not a particular node is S, when the
number of runs is sufficiently large for necessary statistical
tests.

7.5 Adding Both S and X Randomness to Defend

Against Attacks that Exploit Unsuccessful Runs
To correct the problem that S is more probable to

appear in NPG of an unsuccessful run than X, we increase
the probability of X appearing in NPG from p to ap, where
p ≤ ap ≤ 1 This can be achieved by introducing randomness:
when X receives a signaling message, it will send out
padding traffic with probability h = (1 – ap)/(1 – p) and
keep silent otherwise. For example, for a = 2 and p = 0.01,
we have h approximately equal to 0.99, so that when X
receives a signaling packet, with probability 0.99, it sends
out padding traffic, and with probability 0.01, it sends
nothing. Therefore, the probabilities of X in PG and NPG
are always 1 - ap and ap, respectively, in either successful
or unsuccessful runs.

Figure 10 A model problem for analyzing intersection attacks.

Depending on whether or not a node receives the
signaling packet in a run, it can be in the participant
group (PG) or non-participant group (NPG). The
adversary classifies each run to be either successful or
unsuccessful, depending on whether it has received true
replies from the server. The server is denoted by S and
any of the camouflaging nodes by X. Note that in a
successful run, S must be in PG

Next, we compute these probabilities for S during
unsuccessful runs. The probability that S falls in PG of an
unsuccessful run is (1 – p)q, whereas the probability that S
falls in NPG of an unsuccessful run is simply p. Because
the two cases mentioned above are the only possible ways
for unsuccessful runs to happen, we denote the probability
of unsuccessful run by η, where η = (1 - p) q + p. From
the adversary’s perspective, given the fact that it is an
unsuccessful run, the conditional probabilities of S being in
PG and NPG are ((1 – p)+q)/ η and p η, respectively. /

We adjust a and q such that the probabilities of S
being in PG or NPG are equal to those of X being in PG or
NPG, respectively. This implies

On-Demand Link Padding in Traffic Anonymizing

249

,

when p is small. In this case, there is no way an
adversary can tell which node is S based on information
obtained during unsuccessful runs.

7.6 Trade-offs and Optimal Strategies

From the above formula for a and q, we note that for
small p, the product of a and q remains constant, so
increasing the value of one will require decreasing the
value of the other. However, one may wish to decrease
both values simultaneously for the following reasons. As
we have seen in Section 7.2, the expected size of the
anonymity set |AS(s)| is n (1 – ap) s , and as we decrease a,
E[|AS(s)|] becomes larger so that the adversary will have to
spend more time pruning; hence it is more difficult for the
adversary to identify S based on information obtained
from successful runs. On the other hand, as we decrease q,
S will spend less time on sending pure padding traffic
rather than true replies in order to confuse the adversary;
thus S achieves higher resource utilization. As a result,
depending on the security requirements and resource
budget, one may need to choose a pair of suitable
parameters a and q to strike a balance between security and
efficiency.

We also note that it is not necessary for the
probabilities of S in PG and X in PG of an unsuccessful
run to be equal, because the adversary can always identify
S using information obtained from successful runs.
Therefore one can relax the condition on a and q such that
it takes approximately the same number of total runs for
the adversary to identify S via either successful runs or
unsuccessful runs. We note that the problem for the
adversary to identify S using information obtained from
unsuccessful runs is a type of statistical hypothesis testing,
in which the adversary has to accept or reject the
hypothesis that a set of sample outcomes are drawn from
the probability distribution that S is in PG (or equally
effectively that S is in NPG). Given any target confidence
level for the adversary, one can apply the Chernoff bounds
(or resort to similar arguments) to obtain constraints on the
probabilities of S in PG and X in PG (and hence those of S
in NPG and X in NPG) such that with high probability, the
adversary cannot identify S more quickly via unsuccessful
runs than successful runs.

8 Related Work

Chaum proposes to construct a synchronous,

untraceable email system called MIX [1]. MIX nodes
perform anonymizing tasks by collecting, reordering, and

distributing messages in a synchronous manner. An outside
adversary can only obtain the information that a participant
may be communicating with one or more parties involved
in a MIX network in that particular round but cannot be
sure with which party or parties the participant is
communicating. Our entire tree can be thought of as a real-
time MIX node, with the root communicating with one of
the leaves.

Many extensions to the MIX network that aim to
provide real-time traffic transport have been proposed,
among which the Onion Routing Project [9] is the most
widely known. In Onion routing, the initiator of
communication first constructs an Onion, in which the
entire path to be taken by subsequent packets is specified.
The Onion is then forwarded, a secure virtual circuit is set
up, and the application packets are exchanged without link
padding. We note that our proposed on-demand link
padding schemes can be used to help Onion routing
achieve better anonymity protection against a more
powerful adversary model.

The purpose of the NymIP [6] proposal aims to define
and deploy standardized protocols for pseudonymity and
anonymity at the IP layer. ANON [5] and Onion Routing
[9] represent some implementation efforts in IP
anonymizing. All these projects emphasized the
importance of link padding.

9 Conclusion

We have investigated the problem of using on-
demand link padding to hide the network paths used by
applications. We propose to generate cover traffic
dynamically on demand, only when real traffic is present.
We describe the control mechanisms and report
performance comparisons with flat link padding using ns-2
simulation. The results show that, for open-loop traffic
sources, on-demand link padding experiences fewer packet
loss than flat link padding when both methods use
comparable link bandwidth. Furthermore, we have
considered the situation where control messages could be
lost. We describe how nodes should behave under such
circumstances in order to prevent useful information from
leaking to the adversary.

We note that the problem considered in Section 7.5
can be placed in a more general setting of anonymizing
infrastructure to obtain security parameters in defense
against generic intersection attacks. It is typical that one
side of the situation cannot be changed, e.g., S has to be in
PG during successful runs in our model problem, so the
participant nodes have to cooperate in other situations to
reduce the probability of S being identified.

Journal of Internet Technology Volume 6 (2005) No.3

250

Acknowledgment

This work was supported in part by DARPA through
AFRL/IFKD under contract F33615-01-C-1983.

Reference

[1] Chaum, D., “Untraceable electronic mail, return

addresses, and digital pseudonyms,” Communications of
the ACM, Vol. 24, Feb. 1981, pp. 84-88.

[2] Crovella, M. and A. Bestavros, “Self-similarity in
world wide web traffic: Evidence and possible causes,”
in Proc. SIGMETRICS’96, Philadelphia, Pennsylvania,
May 1996.

[3] Breslau, L., D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
and H. Yu, “Advances in network simulation,” IEEE
Computer, Vol. 33, No. 5, May 2000, pp. 59-67.

[4] Dolev, O., C. Dwork, and M. Naor, “Non-malleable
cryptography,” in Proc. ACM STOC’91, New
Orleans, Louisiana, May 1991.

[5] Kung, H. T., C-M Cheng, K-S Tan, and S. Bradner,
“Design and Analysis of an IP-Layer Anonymizing
Infrastructure,” The Third DARPA Information
Survivability Conference and Exposition (DISCEX 3) ,
April 2003, pp. 62-75.

[6] NymIP Effort, http://www.nymip.org/
[7] Paxson, V. and S. Floyd, “Wide-area traffic: The fail-

ure of poisson modeling,” IEEE/ACM Trans. Net-
working, Vol. 3, No. 3, Jun. 1995, pp. 226-244.

[8] Raymond, J.-F., “Traffic analysis: Protocols, attacks,
design issues and open problems,” Designing
Privacy Enhancing Technologies: Proceedings,
International Workshop on Design Issues in
Anonymity and Unobservability, LNCS, Vol. 2009,
Springer-Verlag, 2001, pp. 10-29.

[9] Reed, M., P. Syverson, and D. Goldschlag,
“Anonymous connections and onion routing,” IEEE
Journal on Selected Areas in Communications, Vol.
16, No. 4, May 1998, pp.482-494.

[10] von Seggern, D., CRC Standard Curves and Surfaces,
CRC Press, 1993, p. 252.

[11] Zhang, L., S. Deering, D. Estrin, S. Shenker, and D.
Zappala, “RSVP: A new resource reservation
protocol,” IEEE Network, Sep. 1993.

Biographies

Chen-Mou Cheng is currently a Ph.D.
student at Harvard University. His
research interests include network
security and privacy, sensor networks,
and wireless communications. Cheng
received his S.M. and S.B., both in

Electrical Engineering, from National Taiwan University,
Taiwan.

H. T. Kung is currently William H. Gates
Professor of Computer Science and
Electrical Engineering at Harvard
University. Since 1999, he has co-chaired a
joint Ph.D. program with the Harvard
Business School on information,

technology and management. Prior to joining Harvard, he
served on the faculty of Carnegie Mellon University from
1974 to 1992. Kung has pursued a variety of interests over
his career, including complexity theory, database theory,
systolic arrays, VLSI design, parallel computing, computer
networks, and network security. He received his Ph.D.
from Carnegie Mellon in 1974 and B.S. from National
Tsing Hua University in Taiwan in 1968.

Koan-Sin Tan is a researcher at the
Advanced Technology Center in
Industrial Technology Research
Institute, Taiwan. His research
interests include congestion control,
network security, embedded software,
and sensor networks. Tan received his
Ph.D. in Information Management

from National Chiao-Tung University, Taiwan, in 2003.

	Chen-Mou Cheng, H. T. Kung, Koan-Sin Tan
	Harvard University
	U.S.A.
	doug@eecs.harvard.edu, kung@harvard.edu, freedom@itri.org.tw
	Abstract
	1 Introduction
	2 Application and Model Problem
	3 Link Padding Operation at a Node
	4 On-Demand Link Padding
	5 Simulation
	6 Discussion
	7 Handling Signaling Packet Loss
	8 Related Work
	9 Conclusion
	Acknowledgment
	Reference

