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1. INTRODUCTION

There are many communications and network systems whose
properties are characterized by the eigenstructure of a ma-
trix of the form AHA, also known as the Gram matrix of A,
where A is a matrix with real or complex entries. For exam-
ple, for a communications system, A could be a channel ma-
trix, usually denoted H. The capacity of such system is related
to the eigenvalues of HHH [1]. In the area of web page rank-
ing, with entries of A representing hyperlinks, Kleinberg [2]
shows that eigenvectors corresponding to the largest eigen-
values of ATA give the rankings of the most useful (author-
ity) or popular (hub) web pages. Using a reputation system
that parallels Kleinberg’s work, Kung and Wu [3] developed
an eigenvector-based peer-to-peer (P2P) network user rep-
utation ranking in order to provide services to P2P users
based on past contributions (reputation) to avoid “freeload-
ers.” Furthermore, the rate of convergence in the iterative
computation of reputations is determined by the gap of the
leading two eigenvalues of AHA.

The recognition that the eigenstructure of AHA deter-
mines the properties of these communications and network
systems motivates the work of this paper. We will develop a
theoretical framework, called a hub matrix theory, which al-
lows us to predict the eigenstructure of AHA by examining A
directly. We will prove sufficient and necessary conditions for
the existence of a large gap between the largest and the sec-
ond largest eigenvalues of AHA. Finally, we apply the “hub”

theory and our mathematical results to multiple-input and
multiple-output (MIMO) wireless systems.

2. HUB MATRIX THEORY

It is instructive to conduct a thought experiment on a com-
putation process before we introduce our hub matrix the-
ory. The process iteratively computes the values for a set of
variables, which for example could be beamforming weights
in a beamforming communication system. Figure 1 depicts
an example of this process: variable X uses and contributes
to variables U2 and U4, variable Y uses and contributes to
variables U3 and U5, and variable Z uses and contributes to
all variables U1, . . . ,U6. We say variable Z is a “hub” in the
sense that variables involved in Z’s computation constitute
a superset of those involved in the computation of any other
variable. The dominance is illustrated graphically in Figure 1.

We can describe the computation process in matrix no-
tation. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

1 0 1

0 1 1

1 0 1

0 1 1

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)
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Figure 1: Graphical representation of hub concept.

This process performs two steps alternatively (cf. Figure 1).

(1) X , Y , and Z contribute to variables in their respective
regions.

(2) X , Y , and Z compute their values using variables in
their respective regions.

The first step (1) is (U1,U2, . . . ,U6)T ← A∗(X ,Y ,Z)T and
next step (2) is (X ,Y ,Z)T ← AT∗(U1,U2, . . . ,U6)T . Thus, the
computational process performs the iteration (X ,Y ,Z)T ←
S∗(X ,Y ,Z)T , where S is defined as follows:

S = ATA =
⎛
⎜⎝

2 0 2
0 2 2
2 2 6

⎞
⎟⎠ . (2)

Note that an arrowhead matrix S, as defined below, has
emerged. Furthermore, note that matrix A exhibits the hub
property of Z in Figure 1 in view of the fact that the last col-
umn of A consists of all 1’s, whereas other columns consist of
only a few 1’s.

Definition 1 (arrowhead matrix). Let S ∈ Cm×m be a given
Hermitian matrix. S is called an arrowhead matrix if

S =
(
D c

cH b

)
, (3)

where D = diag(d(1), . . . ,d(m−1)) ∈ R(m−1)×(m−1) is a real di-
agonal matrix, c = (c(1), . . . , c(m−1)) ∈ Cm−1 is a complex
vector, and b ∈ R is a real number.

The eigenvalues of an arbitrary square matrix are invari-
ant under similarity transformations. Therefore, we can with
no loss of generality arrange the diagonal elements of D to be
ordered so that d(i) ≤ d(i+1) for i = 1, . . . ,m − 2. For details
concerning arrowhead matrices, see for example [4].

Definition 2 (hub matrix). A matrix A ∈ Cn×m is called a
candidate-hub matrix, if m− 1 of its columns are orthogonal
to each other with respect to the Euclidean inner product.
If in addition the remaining column has its Euclidean norm
greater than or equal to that of any other column, then the
matrix A is called a hub matrix and this remaining column
is called the hub column. We are normally interested in hub
matrices where the hub column has much large magnitude
than other columns. (As we show later in Theorems 4 and 10
that in this case the corresponding arrowhead matrices will
have large eigengaps).

In this paper, we study the eigenvalues of S = AHA, where
A is a hub matrix. Since the eigenvalues of S are invariant
under similarity transformations of S, we can permute the
columns of the hub matrix A so that its last column is the hub
column without loss of generality. For the rest of this paper,
we will denote the columns of a hub matrix A by a1, . . . , am,
and assume that columns a1, . . . , am−1 are orthogonal to each
other, that is, aHi aj = 0 for i �= j and i, j = 1, . . . ,m − 1,
and column am is the hub column. The matrix A introduced
in the context of the graphical model from Figure 1 is such a
hub matrix.

In Section 4, we will relax the orthogonality condition of
a hub matrix, by introducing the notion of hub and arrow-
head dominant matrices.

Theorem 1. Let A ∈ Cn×m and let S ∈ Cm×m be the Gram
matrix of A that is, S = AHA. S is an arrowhead matrix if and
only if A is a candidate-hub matrix.

Proof. Suppose A is a candidate-hub matrix. Since S = AHA,
the entries of S are s(i, j) = aHi aj for i, j = 1, . . . ,m. By
Definition 2 of a candidate-hub matrix, the nonhub columns
of A are orthogonal, that is, aHi aj = 0 for i �= j and i, j =
1, . . . ,m − 1. Since S is Hermitian, the transpose of the last
column is the complex conjugate of the last row and the di-
agonal elements of S are real numbers. Therefore, S = AHA
is an arrowhead matrix by Definition 1.

Suppose S = AHA is an arrowhead matrix. Note that the
components of the S matrix of Definition 1 can be repre-
sented in terms of the inner products of columns of A, that
is, b = aHmam, d(i) = aHi ai, c

(i) = aHi am for i = 1, . . . ,m − 1.
Since S is an arrowhead matrix, all other off-diagonal entries
of S, s(i, j) = aHi aj for i �= j and i, j = 1, . . . ,m − 1, are zero.
Thus, aHi aj = 0 if i �= j and i, j = 1, . . . ,m − 1. So, A is a
candidate-hub matrix by Definition 2.

Before proving our main result in Theorem 4, we first re-
state some well-known results which will be needed for the
proof.

Theorem 2 (interlacing eigenvalues theorem for bordered
matrices). Let U ∈ C(m−1)×(m−1) be a given Hermitian ma-
trix, let y ∈ C(m−1) be a given vector, and let a ∈ R be a given
real number. Let V ∈ Cm×m be the Hermitian matrix obtained
by bordering U with y and a as follows:

V =
(
U y

yH a

)
. (4)

Let the eigenvalues of V and U be denoted by {λi} and {μi},
respectively, and assume that they have been arranged in in-
creasing order, that is, λ1 ≤ · · · ≤ λm and μ1 ≤ · · · ≤ μm−1.
Then

λ1 ≤ μ1 ≤ λ2 ≤ · · · ≤ λm−1 ≤ μm−1 ≤ λm. (5)

Proof. See [5, page 189].

Definition 3 (majorizing vectors). Let α ∈ Rm and β ∈ Rm

be given vectors. If we arrange the entries of α and β in
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increasing order, that is, α(1) ≤ · · · ≤ α(m) and β(1) ≤ · · · ≤
β(m), then vector β is said to majorize vector α if

k∑

i=1

β(i) ≥
k∑

i=1

α(i) for k = 1, . . . ,m (6)

with equality for k = m.

For details concerning majorizing vectors, see [5, pages
192–198]. The following theorem provides an important
property expressed in terms of vector majorizing.

Theorem 3 (Schur-Horn theorem). Let V ∈ Cm×m be Her-
mitian. The vector of diagonal entries of V majorizes the vector
of eigenvalues of V .

Proof. See [5, page 193].

Definition 4 (hub-gap). Let A ∈ Cn×m be a matrix with its
columns denoted by a1, . . . , am with 0 < ‖a1‖2

2 ≤ · · · ≤
‖am‖2

2. For i = 1, . . . ,m − 1, the ith hub-gap of A is defined
to be

HubGapi(A) =
∥∥am−(i−1)

∥∥2
2∥∥am−i

∥∥2
2

. (7)

Definition 5 (eigengap). Let S ∈ Cm×m be a Hermitian ma-
trix with its real eigenvalues denoted by λ1, . . . , λm with λ1 ≤
· · · ≤ λm. For i = 1, . . . ,m−1, the ith eigengap of S is defined
to be

EigenGapi(S) = λm−(i−1)

λm−i
. (8)

Theorem 4. Let A ∈ Cn×m be a hub matrix with its columns
denoted by a1, . . . , am and 0 < ‖a1‖2

2 ≤ · · · ≤ ‖am‖2
2. Let S =

AHA ∈ Cm×m be the corresponding arrowhead matrix with its
eigenvalues denoted by λ1, . . . , λm with 0 ≤ λ1 ≤ · · · ≤ λm.
Then

HubGap1(A) ≤ EigenGap1(S)

≤ (HubGap1(A) + 1
)

HubGap2(A).
(9)

Proof. Let T be the matrix formed from S by deleting its
last row and column. This means that T is a diagonal ma-
trix with diagonal elements ‖ai‖2

2 for i = 1, . . . ,m − 1. By
Theorem 2, the eigenvalues of S interlace those of T , that
is, λ1 ≤ ‖a1‖2

2 ≤ · · · ≤ λm−1 ≤ ‖am−1‖2
2 ≤ λm. Thus,

λm−1 is a lower bound for ‖am−1‖2
2. By Theorem 3, the vec-

tor of diagonal values of S majorizes the vector of eigenval-
ues of S, that is,

∑k
i=1 d

(i) ≥∑k
i=1 λi for k = 1, . . . ,m − 1 and∑m−1

i=1 d(i) + b = ∑m
i=1 λm. So, b ≤ λm. Since b = ‖am‖2

2,
λm is an upper bound for ‖am‖2

2. Hence, ‖am‖2
2/‖am−1‖2

2 ≤
λm/λm−1 or HubGap1(A) ≤ EigenGap1(S).

Again, by using Theorems 2 and 3, we have
∑m−1

i=1 d(i) +
b = ∑m

i=1 λm and λ1 ≤ d(1) ≤ λ2 ≤ d(2) ≤ λ3 ≤ · · · ≤
d(m−2) ≤ λm−1 ≤ d(m−1) ≤ λm, and, as such,

(
d(1) + · · · + d(m−2)) + d(m−1) + b

= λ1 +
(
λ2 + · · · + λm−1

)
+ λm

≥ λ1 +
(
d(1) + · · · + d(m−2)) + λm.

(10)

This result implies that d(m−1) + b ≥ λ1 + λm ≥ λm. By noting
that d(m−2) ≤ λm−1, we have

EigenGap1(S) = λm
λm−1

≤ d(m−1) + b

d(m−2)
=
∥∥am−1

∥∥2
2 +

∥∥am
∥∥2

2∥∥am−2
∥∥2

2

=
∥∥am−1

∥∥2
2∥∥am−2
∥∥2

2

+

∥∥am
∥∥2

2∥∥am−1
∥∥2

2

·
∥∥am−1

∥∥2
2∥∥am−2
∥∥2

2

= (HubGap1(A) + 1
) ·HubGap2(A).

(11)

By Theorem 4, we have the following result, where nota-
tion “	” means “much larger than.”

Corollary 1. Let A ∈ Cn×m be a matrix with its columns
a1, . . . , am satisfying 0 < ‖a1‖2

2 ≤ · · · ≤ ‖am−1‖2
2 ≤ ‖am‖2

2.
Let S = AHA ∈ Cm×m with its eigenvalues λ1, · · · , λm satisfy-
ing 0 ≤ λ1 ≤ · · · ≤ λm. The following holds

(1) if A is a hub matrix with ‖am‖2 	 ‖am−1‖2, then S
is an arrowhead matrix with λm 	 λm−1; and

(2) if S is an arrowhead matrix with λm 	 λm−1, then A
is a hub matrix with ‖am‖2 	 ‖am−1‖2 or ‖am−1‖2 	
‖am−2‖2 or both.

3. MIMO COMMUNICATIONS APPLICATION

A multiple-input multiple-output (MIMO) system with Mt

transmit antennas and Mr receive antennas is depicted in
Figure 2 [6, 7]. Assume the MIMO channel is modeled by
the Mr × Mt channel propagation matrix H = (hi j). The
input-output relationship, given a transmitted symbol s, for
this system is given by

x = szHHw + zHn. (12)

The vectors w and z in the equation are called the beamform-
ing and combining vectors, respectively, which will be chosen
to maximize the signal-to-noise ratio (SNR). We will model
the noise vector n as having entries, which are independent
and identically distributed (i.i.d.) random variables of com-
plex Gaussian distribution CN(0, 1). Without loss of gener-
ality, assume the average power of transmit signal equals one,
that is, E|s|2 = 1. For the beamforming system described
here, the signal to noise ratio, γ, after combining at the re-
ceiver is given by

γ =
∣∣zHHw

∣∣2

‖z‖2
2

. (13)

Without loss of generality, assume ‖z‖2 = 1. With this as-
sumption, the SNR becomes

γ = ∣∣zHHw
∣∣2
. (14)
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Figure 2: MIMO block diagram (see [6, datapath portion of Figure 1]).

3.1. Maximum ratio combining

A receiver where z maximizes γ for a given w is known as a
maximum ratio combining (MRC) receiver in the literature.
By the Cauchy-Bunyakovskii-Schwartz inequality (see, e.g.,
[8, page 272]), we have

∣∣zHHw
∣∣2 ≤ ‖z‖2

2‖Hw‖2
2. (15)

Since we already assume ‖z‖2 = 1,

∣∣zHHw
∣∣2 ≤ ‖Hw‖2

2. (16)

Moreover, since in MRC we desire to maximize the SNR, we
must choose z to be

zMRC = Hw

‖Hw‖2
, (17)

which implies that the SNR for MRC is

γMRC = ‖Hw‖2
2. (18)

3.2. Selection diversity transmission,
generalized subset selection, and
combined SDT/MRC and GSS/MRC

For a selection diversity transmission (SDT) [9] system, only
the antenna that yields the largest SNR is selected for trans-
mission at any instant of time. This means

w = [δ1, f (1), . . . , δMt , f (1)
]T

, (19)

where the Kronecker impulse δi, j is defined as δi, j = 1 if i = j,
and δi, j = 0 if i �= j, and f (1) represents the value of the in-
dex x that maximizes

∑
i |hi,x|2. Thus, the SNR for the com-

bined SDT/MRC communications system is

γSDT/MRC = ∥∥h f (1)
∥∥2

2. (20)

By definition, a generalized subset selection (GSS) [10] sys-
tem powers those k transmitters which yield the top k
SNR values at the receiver for some k > 1. That is, if
f (1), f (2), . . . , f (k) stand for the indices of these transmit-
ters, then wf (i) = 1/

√
k for i = 1, . . . , k, and all other entries

of w are zero. It follows that, for the combined GSS/MRC
communications system, the SNR gain is given by

γGSS/MRC = 1
k

∥∥∥∥∥
k∑

i=1

h f (i)

∥∥∥∥∥
2

2

. (21)

In the limiting case when k = Mt, GSS becomes equal gain
transmission (EGT) [6, 7], which requires all Mt transmit-
ters to be equally powered, that is, wf (i) = 1/

√
Mt for i =

1, . . . ,Mt. Then, for the combined EGT/MRC communica-
tions system, the SNR gain takes the expression

γEGT/MRC = 1
Mt

∥∥∥∥∥
Mt∑

i=1

h f (i)

∥∥∥∥∥
2

2

. (22)

3.3. Maximum ratio transmission and
combined MRT/MRC

Suppose there are no constraints placed on the form of the
vector w. Let us reexamine the expression of SNR gain γMRC.
Note

γMRC = ‖Hw‖2
2 = (Hw)H(Hw) = wH

(
HHHw

)
. (23)

With the assumption that ‖w‖2 = 1, the above equation is
maximized under maximum ratio transmission (MRT) [9]
(see, e.g., [5, page 295]), that is, when

w = wm, (24)

where wm is the normalized eigenvector corresponding to the
largest eigenvalues λm of HHH . Thus, for an MRT/MRC sys-
tem, we have

γMRT/MRC = λm. (25)
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3.4. Performance comparison between
SDT/MRC and MRT/MRC

Theorem 5. Let H ∈ Cn×m be a hub matrix with its columns
denoted by h1, . . . ,hm and 0 < ‖h1‖2

2 ≤ · · · ≤ ‖hm−1‖2
2 ≤

‖hm‖2
2. Let γSDT/MRC and γMRT/MRC be the SNR gains for

SDT/MRC and MRT/MRC, respectively. Then

HubGap1(H)
HubGap1(H) + 1

≤ γSDT/MRC

γMRT/MRC
≤ 1. (26)

Proof. We note that the A matrix in hub matrix theory of
Section 2 corresponds to the H matrix here, and the ai col-
umn of A corresponds to the hi column of H for i = 1, . . . ,m.
From the proof of Theorem 4, we note b = ‖am‖2

2 ≤ λm or
‖hm‖2

2 ≤ λm. It follows that

γSDT/MRC

γMRT/MRC
≤ 1. (27)

To derive a lower bound for γSDT/MRC/γMRT/MRC, we note
from the proof of Theorem 4 that λm ≤ d(m−1) + b. This
means that

γMRT/MRC ≤ ∥∥am−1
∥∥2

2 +
∥∥am

∥∥2
2 =

∥∥hm−1
∥∥2

2 +
∥∥hm

∥∥2
2. (28)

Thus

γSDT/MRC

γMRT/MRC
≥

∥∥hm
∥∥2

2∥∥hm−1
∥∥2

2 +
∥∥hm

∥∥2
2

= HubGap1(H)
HubGap1(H) + 1

.

(29)

The inequality γSDT/MRC/γMRT/MRC ≤ 1 in Theorem 5 ref-
lects the fact that in the SDT/MRC system, w is cho-
sen to be a particular unit vector rather than an optimal
choice. The other inequality of Theorem 5, HubGap1(H)/
(HubGap1(H) + 1) ≤ γSDT/MRC/γMRT/MRC, implies that the
SNR for SDT/MRC approaches that for MRT/MRC when H
is a hub matrix with a dominant hub column. More precisely,
we have the following result.

Corollary 2. Let H ∈ Cn×m be a hub matrix with its
columns denoted by h1, . . . ,hm and 0 < ‖h1‖2

2 ≤ · · · ≤
‖hm‖2

2. Let γSDT/MRCand γMRT/MRC be the SNR for SDT/MRC
and MRT/MRC, respectively. Then, as HubGap1(H) increases,
γMRT/MRC/γSDT/MRC approaches one at a rate of at least
HubGap1(H)/(HubGap1(H) + 1).

3.5. GSS-MRT/MRC and performance comparison
with MRT/MRC

Using an analysis similar to the one above, we can derive per-
formance bounds for a recently discovered communication
system that incorporates antenna selection with MRT on the
transmission side while applying MRC on the receiver side
[11, 12]. This approach will be called GSS-MRT/MRC here.
Given a GSS scheme that powers those k transmitters which
yield the top k highest SNR values, a GSS-MRT/MRC sys-
tem is defined to be an MRT/MRC system applied to these k

transmitters. Let f (1), f (2), . . . , f (k) be the indices of these
k transmitters, and H̃ the matrix formed by columns h f (i) of
H for i = 1, . . . , k. It is easy to see that the SNR for GSS-
MRT/MRC is

γGSS-MRT/MRC = λ̃m, (30)

where λ̃m is the largest eigenvalue of H̃HH̃ .

Theorem 6. Let H ∈ Cn×m be a hub matrix with its columns
denoted by h1, . . . ,hm and 0 < ‖h1‖2

2 ≤ · · · ≤ ‖hm−1‖2
2 ≤

‖hm‖2
2. Let γGSS−MRT/MRC and γMRT/MRC be the SNR values for

GSS-MRT/MRC and MRT/MRC, respectively. Then

HubGap1(H)
HubGap1(H) + 1

≤ γGSS−MRT/MRC

γMRT/MRC
≤ HubGap1(H) + 1

HubGap1(H)
.

(31)

Proof. Since 0 < ‖h1‖2
2 ≤ · · · ≤ ‖hm−1‖2

2 ≤ ‖hm‖2
2, H̃ con-

sists of the last k columns of H . Moreover, since H is a hub
matrix, so is H̃ . From the proof of Theorem 4, we note both

λm and λ̃m are bounded above by ‖hm−1‖2
2 +‖hm‖2

2 and below
by ‖hm‖2

2. It follows that

HubGap1(H)
HubGap1(H) + 1

=
∥∥hm

∥∥2
2∥∥hm−1

∥∥2
2 +

∥∥hm
∥∥2

2

≤ γGSS−MRT/MRC

γMRT/MRC
= λ̃m
λm

≤
∥∥hm−1

∥∥2
2 +

∥∥hm
∥∥2

2∥∥hm
∥∥2

2

= HubGap1(H) + 1
HubGap1(H)

.

(32)

3.6. Diversity selection with partitions,
DSP-MRT/MRC, and performance bounds

Suppose that transmitters are partitioned into multiple
transmission partitions. We define the diversity selection
with partitions (DSP) to be the transmission scheme where
in each transmission partition only the transmitter with the
largest SNR will be powered. Note that SDT discussed above
is a special case of DSP when there is only one partition con-
sisting of all transmitters.

Let k be the number of partitions, and f (1), f (2),
. . . , f (k) the indices of the powered transmitters. A DSP-
MRT/MRC system is defined to be an MRT/MRC system
applied to these k transmitters. Define Ĥ to be the matrix
formed by columns h f (i) of H for i = 1, . . . , k. Then the SNR
for DSP-MRT/MRC is

γDSPS-MRT/MRC = λ̂m, (33)

where λ̂m is the largest eigenvalue of ĤHĤ .
Note that in general the powered transmitters for DSP

are not the same as those for GSS. This is because a trans-
mitter that yields the highest SNR among transmitters in
one of the k partitions may not be among the transmit-
ters that yield the top k highest SNR values among all
transmitters. Nevertheless, when H is a hub matrix with
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0 < ‖h1‖2
2 ≤ · · · ≤ ‖hm−1‖2

2 ≤ ‖hm‖2
2, we can bound λ̂m

for DSP-MRT/MRC in a manner similar to how we bound
λ̃m for GSS-MRT/MRC. That is, for DSP-MRT/MRC, λ̂m is
bounded above by ‖hk‖2

2 +‖hm‖2
2 and below by ‖hm‖2

2, where
hk is the second largest column of Ĥ in magnitude. Note that
‖hk‖2

2 ≤ ‖hm−1‖2
2, since the second largest column of Ĥ in

magnitude cannot be larger that than of H . We have the fol-
lowing result similar to that of Theorem 6.

Theorem 7. Let H ∈ Cn×m be a hub matrix with its columns
denoted by h1, . . . ,hm and 0 < ‖h1‖2

2 ≤ · · · ≤ ‖hm−1‖2
2 ≤

‖hm‖2
2. Let γDSP−MRT/MRC and γMRT/MRC be the SNR for DSP-

MRT/MRC and MRT/MRC, respectively. Then

HubGap1(H)
HubGap1(H) + 1

≤ γDSP−MRT/MRC

γMRT/MRC
≤ HubGap1(H) + 1

HubGap1(H)
.

(34)

Theorems 6 and 7 imply that when HubGap1(H) becomes
large, the SNR values of both GSS-MRT/MRC and DSP-
MRT/MRC approach that of MRT/MRC.

4. HUB DOMINANT MATRIX THEORY

We generalize the hub matrix theory presented above to situ-
ations when matrix A (or H) exhibits a “near” hub property.
In order to relax the definition of orthogonality of a set of
vectors, we use the notion of frame.

Definition 6 (frame). A set of distinct vectors { f1, . . . , fn} is
said to be a frame if there exist positive constants ξ and ϑ
called frame bounds such that

ξ
∥∥ f j

∥∥2 ≤
n∑

i=1

∣∣ f Hi f j
∣∣ ≤ ϑ

∥∥ f j
∥∥2

for j = 1, . . . ,n. (35)

Note that if ξ = ϑ = 1, then the set of vectors { f1, . . . , fn}
is orthogonal. Here we use frames to bound the non-
orthogonality of a collection of vectors, while the usual use
for frames is to quantify the redundancy in a representation
(see, e.g., [13]).

Definition 7 (hub dominant matrix). A matrix A ∈ Cn×m

is called a candidate-hub-dominant matrix if m − 1 of its
columns form a frame with frame bounds ξ = 1 and ϑ = 2,
that is, ‖aj‖2 ≤ ∑m−1

i=1 |aHi aj| ≤ 2‖aj‖2 for j = 1, . . . ,m− 1.
If in addition the remaining column has its Euclidean norm
greater than or equal to that of any other column, then the
matrix A is called a hub-dominant matrix and the remaining
column is called the hub column.

We next generalize the definition of arrowhead matrix
to arrowhead dominant matrix, where the matrix D in
Definition 1 goes from being a diagonal matrix to a diago-
nally dominant matrix.

Definition 8 (diagonally dominant matrix). Let E ∈ Cm×m

be a given Hermitian matrix. E is said to be diagonally dom-
inant if for each row the magnitude of the diagonal entry is

greater than or equal to the row sum of magnitudes of all
off-diagonal entries, that is,

∣∣e(i,i)
∣∣ ≥

m−1∑

j=1
j �=i

∣∣e(i, j)
∣∣ for i = 1, . . . ,m. (36)

For more information on diagonally dominant matrices, see
for example [5, page 349].

Definition 9 (arrowhead dominant matrix). Let S ∈ Cm×m be
a given Hermitian matrix. S is called an arrowhead dominant
matrix if

S =
(
D c

cH b

)
, (37)

where D ∈ C(m−1)×(m−1) is a diagonally dominant matrix,
c = (c(1), . . . , c(m−1)) ∈ Cm−1 is a complex vector, and b ∈ R
is a real number.

Similar to Theorem 1, we have the following theorem.

Theorem 8. Let A ∈ Cn×m and let S ∈ Cm×m be the Gram
matrix of A, that is, S = AHA. S is an arrowhead dominant
matrix if and only if A is a candidate-hub-dominant matrix.

Proof. Suppose A is a candidate-hub-dominant matrix. Since
S = AHA, the entries of S can be expressed as s(i, j) = aHi aj for
i, j = 1, . . . ,m. By Definition 7 of a hub-dominant matrix,
the nonhub columns of A form a frame with frame bounds
ξ = 1 and ϑ = 2, that is ‖aj‖2 ≤ ∑m−1

i=1 |aHi aj| ≤ 2‖aj‖2

for j = 1, . . . ,m − 1. Since ‖aj‖2 = |aHj aj|, it follows that

|aHi ai| ≥
∑m−1

j=1, j �=i |aHi aj|, i = 1, . . . ,m− 1, which is the diag-
onal dominance condition on the sub-matrix D of S. Since S
is Hermitian, the transpose of the last column is the complex
conjugate of the last row and the diagonal elements of S are
real numbers. Therefore, S = AHA is an arrowhead domi-
nant matrix in accordance with Definition 9.

Suppose S = AHA is an arrowhead dominant matrix.
Note that the components of the S matrix of Definition 9 can
be represented in terms of the columns of A. Thus b = aHmam
and c(i) = aHi am for i = 1, . . . ,m − 1. Since |aHj aj| = ‖aj‖2,

the diagonal dominance condition, |aHi ai| ≥
∑m−1

j=1, j �=i |aHi aj|,
i = 1, . . . ,m− 1, implies that ‖aj‖2 ≤∑m−1

i=1 |aHi aj| ≤ 2‖aj‖2

for j = 1, . . . ,m− 1. So, A is a candidate-hub-dominant ma-
trix by Definition 7.

Before proceeding to our results in Theorem 10, we will
first restate a well-known result which will be needed for the
proof.

Theorem 9 (monotonicity theorem). Let G,H ∈ Cm×m be
Hermitian. Assume H is positive semidefinite and that the
eigenvalues of G and G + H are arranged in increasing order,
that is, λ1(G) ≤ · · · ≤ λm(G) and λ1(G + H) ≤ · · · ≤
λm(G + H). Then λκ(G) ≤ λk(G + H) for k = 1, . . . ,m.

Proof. See [5, page 182].
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Theorem 10. Let A ∈ Cn×m be a hub-dominant matrix with
its columns denoted by a1, . . . , am with 0 < ‖a1‖2 ≤ · · · ≤
‖am−1‖2 ≤ ‖am‖2. Let S = AHA ∈ Cm×m be the correspond-
ing arrowhead dominant matrix with its eigenvalues denoted
by λ1, . . . , λm with λ1 ≤ · · · ≤ λm. Let d(i) and σ (i) denote
the diagonal entry and the sum of magnitudes of off-diagonal
entries, respectively, in row i of S for i = 1, . . . ,m. Then

(a) HubGap1(A)/2 ≤ EigenGap1(S), and
(b) EigenGap1(S) = λm/λm−1 ≤ (d(m−1) + b +∑m−2

i=1 σ (i))/(d(m−2) − σ (m−2)).

Proof. Let T be the matrix formed from S by deleting its last
row and column. This means that T is a diagonally dominant
matrix. Let the eigenvalues of T be {μi} with μ1 ≤ · · · ≤
μm−1. Then by Theorem 9, we have λ1 ≤ μ1 ≤ λ2 ≤ · · · ≤
λm−1 ≤ μm−1 ≤ λm. Applying Gershgorin’s theorem to T and
noting that T is a diagonally dominant with d(m−1) being its
largest diagonal entry, we have μm−1 ≤ 2d(m−1). Thus λm−1 ≤
2d(m−1) = 2‖am−1‖2

2. As observed in the proof of Theorem 4,
λm ≥ b = ‖am‖2

2. Therefore, ‖am‖2
2/(2‖am−1‖2

2) ≤ λm/λm−1

or HubGap1(A)/2 ≤ EigenGap1(S).
Let E be the matrix formed from T with its diagonal en-

tries replaced by the corresponding off-diagonal row sums,
and let T = T − E. Since T is a diagonally dominant matrix,
T is a diagonal matrix with nonnegative diagonal entries. Let

the diagonal entries of T be {d(i)}. Then d
(i) = d(i) − σ (i).

Assume that d
(1) ≤ · · · ≤ d

(m−1)
. Since E is a symmetric di-

agonally dominant matrix with positive diagonal entries, it is
a positive semidefinite matrix. Since T = T+E, by Theorem 9

we have μi ≥ d
(i)

for i = 1, . . . ,m− 1. Let

S =
(
D c

cH b

)
(38)

in accordance with Definition 9. By Theorem 3, we have∑m−1
i=1 d(i) + b = ∑m

i=1 λm. Thus, by noting λ1 ≤ μ1 ≤ λ2 ≤
· · · ≤ λm−1 ≤ μm−1 ≤ λm, we have

d(1) + d(2) + · · · + d(m−1) + b

= λ1 + λ2 + · · · + λm ≥ λ1 + μ1 + · · · + μm−2 + λm

≥ λ1 + d
(1)

+ · · · + d
(m−2)

+ λm.
(39)

This implies that d(m−1) +b+
∑m−2

i=1 σ (i) ≥ λ1 +λm ≥ λm. Since

d(m−2) − σ (m−2) = d
(m−2) ≤ μm−2 ≤ λm−1, we have

EigenGap1(S) = λm
λm−1

≤ d(m−1) + b +
∑m−2

i=1 σ (i)

d(m−2) − σ (m−2)
. (40)

Note that if there exist positive numbers p and q, with
q < 1, such that (1− q)d(m−2) ≥ σ (m−2) and

p
(
d(m−1) + b

) ≥
m−2∑

i=1

σ (i), (41)

then the inequality (b) in Theorem 10 implies

λm
λm−1

≤ r · d
(m−1) + b

d(m−2)
, (42)

where r = (1+ p)/q. As in the end of the proof of Theorem 4,
it follows that

EigenGap1(S) ≤ r · (HubGap1(A) + 1
) ·HubGap2(A).

(43)

This together with (a) in Theorem 10 gives the following re-
sult.

Corollary 3. Let A ∈ Cn×m be a matrix with its columns
a1, . . . , am satisfying 0 < ‖a1‖2

2 ≤ · · · ≤ ‖am−1‖2
2 ≤ ‖am‖2

2.
Let S = AHA ∈ Cm×m be a Hermitian matrix with its eigen-
values λ1, . . . , λm satisfying 0 ≤ λ1 ≤ · · · ≤ λm. The following
holds

(1) if A is a hub-dominant matrix with ‖am‖2 	
‖am−1‖2, then S is an arrowhead dominant matrix with
λm 	 λm−1; and

(2) if S is an arrowhead dominant matrix with λm 	
λm−1, and if p(d(m−1) + b) ≥ ∑m−2

i=1 σ (i) and (1 −
q)d(m−2) ≥ σ (m−2) for some positive numbers p and
q with q < 1, then A is a hub-dominant matrix with
‖am‖2 	 ‖am−1‖2 or ‖am−1‖2 	 ‖am−2‖2 or both.

Sometimes, especially for large-dimensional matrices, it
is desirable to relax the notion of diagonal dominance. This
can be done using arguments analogous to those given above
(see, e.g., [14]), and extensions represent an open research
problem for the future.

5. CONCLUDING REMARKS

This paper has presented a hub matrix theory and applied it
to beamforming MIMO communications systems. The fact
that the performance of the MIMO beamforming scheme is
critically related to the gap between the two largest eigenval-
ues of the channel propagation matrix is well known, but this
paper reported for the first time how to obtain this insight di-
rectly from the structure of the matrix, that is, its hub prop-
erties. We believe that numerous communications systems
might be well described within the formalism of hub matri-
ces. As an example, one can consider the problem of nonco-
operative beamforming in a wireless sensor network, where
several source (transmitting) nodes communicate with a des-
tination node, but only one source node is located in the
vicinity of the destination node and presents a direct line-of-
sight to the destination node. Extending the hub matrix for-
malism to other types of matrices (e.g., matrices with a clus-
ter of dominant columns) represents an interesting open re-
search problem. The contributions reported in this paper can
be extended further to treat the more general class of block
arrowhead and hub dominant matrices that enable the anal-
ysis and design of algorithms and protocols in areas such as
distributed beamforming and power control in wireless ad-
hoc networks. By relaxing the diagonal-matrix condition, in
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the definition of an arrowhead matrix, with a block diagonal
condition, and enabling groups of columns to be correlated
or uncorrelated (orthogonal/nonorthogonal) in the defini-
tion of block dominant hub matrices, a much larger spec-
trum of applications could be treated within the proposed
framework.
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