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Construction of Block Orthogonal Golay Sequences and
Application to Channel Estimation of MIMO-OFDM Systems

Oh-Soon Shin, H. T. Kung, and Vahid Tarokh, Senior Member, IEEE

Abstract— In this paper, we construct a family of block
orthogonal Golay sequences that have low peak-to-mean en-
velope power ratio (PMEPR) as well as blockwise orthogonal
properties. We then present an application of the sequences to
channel estimation of multiple-input multiple-output orthogonal
frequency division multiplexing (MIMO-OFDM) systems. We
compare the performance of the proposed algorithm with that
of a frequency division multiplexing (FDM) piloting algorithm,
and investigate the effect of co-channel interference (CCI) on the
channel estimation performance.

Index Terms— Channel estimation, Golay sequences, multiple-
input multiple-output (MIMO), orthogonal frequency divi-
sion multiplexing (OFDM), peak-to-mean envelope power ratio
(PMEPR).

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) has received growing attention in wireless

communications. Various forms of OFDM have been
adopted in wireless standards, such as digital audio/video
broadcasting, IEEE 802.11a/g, and IEEE 802.16. For high
data rate applications, OFDM offers a number of advantages
including resistance to delay spread of wireless channel,
frequency diversity combined with channel coding, and
multiple access capability [1]. However, a major challenge
of deploying OFDM is dealing with the relatively high
peak-to-mean envelope power ratio (PMEPR) of the OFDM
signal. A high PMEPR requires reducing the transmit power
and efficiency of power amplifiers to lower their operating
point. A desirable solution to this problem is to employ
codes and sequences with low PMEPR property. In particular,
Golay sequences that are invented in [2] are attractive, since
their PMEPR is at most 2 [3].

On the other hand, the use of multiple transmit and receive
antennas, called multiple-input multiple-output (MIMO), can
provide enormous capacity enhancement of wireless systems.
Recently, the combination of MIMO and OFDM, known
as MIMO-OFDM, has attracted considerable attention as
an emerging broadband wireless access technology. When
a MIMO-OFDM system is implemented, accurate channel
estimation is essential for coherent MIMO detection. Channel
estimation usually utilizes pilot sequences that are known to
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the receiver. In order to facilitate channel estimation, the pilot
sequences for the multiple transmit antennas are desired to be
orthogonal to one another.

Since Golay sequences give low PMEPR, it is natural to use
them for OFDM systems. This is particularly true for the pilot
sequences of the MIMO-OFDM system. It must be noted that
low PMEPR of the pilot sequences allows power boosting
of pilot signals compared with data signals, improving the
accuracy of channel estimation. In [4], pilot sequences for two
transmit antennas have been designed to be orthogonal over
each pair of two subcarriers. In this work, we introduce block
orthogonality by extending this idea to the number of transmit
antennas of 2n, and construct a family of Golay sequences that
satisfy this property. Then we apply the sequences to channel
estimation of MIMO-OFDM systems. Simulation results are
provided to demonstrate the performance of the proposed
channel estimation algorithm. In particular, we compare the
performance of the proposed algorithm with that of a fre-
quency division multiplexing (FDM) piloting algorithm taking
co-channel interference (CCI) into consideration.

II. PRELIMINARIES

We consider only pilot sequences for the channel estimation
and the corresponding OFDM signal that is formed by a phase
shift keying (PSK) modulation. The lowpass equivalent of
the transmit OFDM signal Ss(t) constructed by a length N
sequence s = {s(i)}N−1

i=0 defined over ZZH can be written as

Ss(t) =
N−1∑
i=0

ζs(i)ej2πfit (1)

where ζ � ej2π/H , ζs(i) is the H–PSK modulated symbol of
s(i), and fi � f0 + i∆f denotes the frequency of the i-th
subcarrier. The frequency spacing ∆f should be an integer
multiple of the OFDM symbol rate to maintain orthogonality
among subcarriers. The PMEPR of the OFDM signal in (1)
can be computed as [5]

PMEPRs = sup
t∈[0,T ]

T |Ss(t)|2
N

. (2)

Let s1 = {s1(i)}N−1
i=0 and s2 = {s2(i)}N−1

i=0 be dis-
tinct sequences with s1(i), s2(i) ∈ ZZH . Define the aperi-
odic autocorrelation of s� at displacement d as Cs�

(d) �∑
0≤i,i+d<N ζs�(i)−s�(i+d). Then, the sequences s1 and s2

are called a Golay complementary pair over ZZH if Cs1(d) +
Cs2(d) = 0 for any d �= 0. Any sequence which is a member
of a Golay complementary pair is called a Golay sequence [5].
It is well known that the PMEPR of any Golay sequence is at
most 2 [3], which makes it attractive for OFDM systems. A
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systematic way of constructing Golay sequences of length 2n

defined over ZZ2h has been developed by Davis and Jedwab
[5]. For completeness, we provide the main Theorem of Davis
and Jedwab here.

Theorem 1: (Davis and Jedwab [5]) Suppose N = 2n and
H = 2h. Let (xi

1x
i
2 · · ·xi

n) be the binary representation of
the integer i, 0 ≤ i < N , and let xi

0 = 1 for any i. For
any permutation ω of the symbols {1, 2, · · · , n} and for any
ck ∈ ZZH , k = 0, 1, · · · , n, the sequence g = {g(i)}N−1

i=0

given by

g(i) = 2h−1
n−1∑
k=1

xi
ω(k)x

i
ω(k+1) +

n∑
k=0

ckxi
k, 0 ≤ i < N (3)

is a Golay sequence over ZZH of length N .

Theorem 1 states that Golay sequences are given as
cosets of the first-order Reed-Muller codes [6] in the
second-order Reed-Muller codes with coset representatives
{∑n−1

k=1 xi
ω(k)x

i
ω(k+1) : 0 ≤ i < N}, and provides a total

of 2h(n+1)n!/2 Golay sequences of length 2n over ZZ2h .

III. BLOCK ORTHOGONAL GOLAY SEQUENCES

We first define the block–M orthogonality of sequences
over PSK modulation.

Definition 1: Let s1, s2, · · · , sL be distinct sequences over
ZZ2h , where the �-th sequence s� = {s�(i)}N−1

i=0 is a sequence
of length N . Assume that N is divisible by M . We define the
followings.

• Any two distinct sequences s� and sk (� �= k) are
orthogonal, if

∑N−1
i=0 ζs�(i)−sk(i) = 0, where ζ � ej 2π

2h .
• Any two distinct sequences s� and sk (� �= k) are

block–M orthogonal, if the consecutive disjoint sections
of the sequences with length M are orthogonal, i.e.,∑M−1

i=0 ζs�(jM+i)−sk(jM+i) = 0 for all 0 ≤ j < N/M .
• The L sequences s1, s2, · · · , sL form a set of block–M

orthogonal sequences, if any pair of two sequences are
block–M orthogonal.

The following Lemma provides a condition on which a pair
of first-order Reed-Muller codes are orthogonal.

Lemma 1: Assume ck, c′k ∈ ZZ2h for k = 1, 2, · · · , n.
Let (xi

1x
i
2 · · ·xi

n) be the binary representation of the integer
i, 0 ≤ i < N . Consider sequences s1 = {s1(i)}N−1

i=0 and
s2 = {s2(i)}N−1

i=0 of length N = 2n over ZZ2h , generated by
first-order Reed-Muller codes:

s1(i) =
n∑

k=1

ckxi
k,

s2(i) =
n∑

k=1

c′kxi
k, 0 ≤ i < N.

(4)

Then s1 and s2 are orthogonal, if and only if ck − c′k = 2h−1

for at least one k in 1 ≤ k ≤ n.

Proof: We can check the orthogonality between s1 and
s2 as

N−1∑
i=0

ζs1(i)−s2(i) =
N−1∑
i=0

ζ
∑ n

k=1(ck−c′k)xi
k

=
∑

(xi
1···xi

n)∈ZZn
2

ζ
∑ n

k=1(ck−c′k)xi
k

=
∑

(xi
2···xi

n)∈ZZn−1
2

ζ
∑ n

k=2(ck−c′k)xi
k+

ζ(c1−c′1) · ∑(xi
2···xi

n)∈ZZn−1
2

ζ
∑ n

k=2(ck−c′k)xi
k

=
(
1 + ζ(c1−c′1)

)
· ∑(xi

2···xi
n)∈ZZn−1

2
ζ

∑ n
k=2(ck−c′k)xi

k

= · · ·
=

n∏
k=1

(
1 + ζ(ck−c′k)

)
,

(5)

which is zero, if and only if ck − c′k = 2h−1 for at least one
k in 1 ≤ k ≤ n.

Using Lemma 1, we now present main theorem of this
paper that shows how to construct block–M orthogonal Golay
sequences.

Theorem 2: Suppose N = 2n, H = 2h, and M = 2m

(m ≤ n). Let (xi
1x

i
2 · · ·xi

n) be the binary representation of
the integer i, 0 ≤ i < N , and let xi

0 = 1 for any i. For
any permutation ω of the symbols {1, 2, · · · , n} and for any
ck ∈ ZZH , 0 ≤ k ≤ n−m, define a sequence r = {r(i)}N−1

i=0

as

r(i) = 2h−1
n−1∑
k=1

xi
ω(k)x

i
ω(k+1) +

n−m∑
k=0

ckxi
k, (6)

which is a Golay sequence in (3) with ck = 0 for n − m <
k ≤ n. Define H/2 sets of sequences G�, 1 ≤ � ≤ H/2 as

G� � {{r(i) +
∑n

k=n−m+1 ckxi
k}N−1

i=0 |
ck ∈ {� − 1, � − 1 + H/2} , n − m < k ≤ n}.

(7)
Then each set G� contains M sequences and forms a set of
block–M orthogonal Golay sequences.

Proof: From Theorem 1, any sequence in G� is a Golay
sequence. Furthermore, any pair of sequences in G� are block–
M orthogonal, since r is a term common to all sequences
in G� and the sequences in the second term are block–M
orthogonal by Lemma 1. Hence, G� forms a set of block–M
orthogonal sequences.

Corollary 1: The 2nn! binary Golay sequences can be
partitioned into 2n−mn! disjoint sets of block–M orthogonal
sequences, with each set containing M Golay sequences.

Theorem 2 gives H/2 sets of block–M orthogonal Golay
sequences for each given set of ω and ck, 0 ≤ k ≤ n−m. It
must be noted that the first component r of each sequence is
common to all the sequences in each set, whereas the second
block–M orthogonal component

∑n
k=n−m+1 ckxi

k is periodic
with period M , since it depends only on the m least significant
bits of i. For the binary (h = 1) case, Corollary 1 shows that
any Golay sequence in (3) belongs to a certain set of block–M
orthogonal Golay sequences, since the sequences in (7) cover
all the Golay sequences in (3).
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IV. CHANNEL ESTIMATION ALGORITHM FOR

MIMO-OFDM SYSTEMS

In this section, we propose a channel estimation algorithm
for a MIMO-OFDM system that exploits the block orthog-
onality of the Golay sequences constructed in Section III.
The MIMO-OFDM system is equipped with N subcarriers,
M transmit antennas, and K receive antennas. Each of the
block–M orthogonal Golay sequences within a set defined
in Theorem 2 is assigned to one of M transmit antennas, to
form a pilot OFDM symbol as in (1). Specifically, according
to the sequence definition of Theorem 2, we can describe the
pilot sequence sv of the v-th transmit antenna as sv(i) =
r(i) +

∑n
k=n−m+1 ck,vxi

k, 0 ≤ i < N , where ck,v, n − m <
v ≤ n are coefficients specific to the v-th transmit antenna. We
assume that the length N of each sequence is the same as the
number of subcarriers, and that all the subcarriers are used to
transmit the pilot signals. When null subcarriers are employed,
parts of the sequence need to be nulled, which may degrade
the PMEPR property of Golay sequences. In [7], it has been
empirically shown that we can still achieve similar PMEPR
to the original sequence, if the fraction of null subcarriers is
small, which is usually the case. Each transmit antenna sends
Q periods of the pilot symbol with a cyclic prefix attached in
the beginning.

Assuming that transmit signals from M transmit antennas
are synchronous at the receiver, the received pilot signal
yu(q, i) at the u-th receive antenna in the i-th subcarrier during
the q-th OFDM symbol can be expressed as

yu(q, i) =
√

P ·
M∑

v=1

huv(i)αv(i) + ηu(q, i),

1 ≤ u ≤ K, 0 ≤ i < N, 0 ≤ q < Q

(8)

where P is the average received power from each transmit
antenna, huv(i) is the channel response at the u-th receive
antenna in the i-th subcarrier of the v-th transmit antenna with
the average power normalized to E[|huv(i)|2] = 1, αv(i) �
ζsv(i) denotes the H–PSK modulated symbol of sv(i), and
ηu(q, i) denotes the additive white Gaussian noise (AWGN)
with the variance σ2. In (8), it is assumed that the channel does
not vary during the channel estimation period of Q OFDM
symbols. The channel estimation problem at the receiver is to
estimate KM sets of channels {huv(i) : 0 ≤ i < N}, 1 ≤
u ≤ K, 1 ≤ v ≤ M from the signal in (8). We drop the
subscript u hereafter, since the same algorithm can be applied
to each receive antenna.

As the first step of the channel estimation, we enhance the
signal-to-noise ratio (SNR) of the received signal by averaging
the signal in (8) over Q periods as

y(i) � 1
Q

∑Q−1
q=0 y(q, i)

=
√

P ·
M∑

v=1

hv(i)αv(i) + η(i), 0 ≤ i < N
(9)

where η(i) � 1
Q

∑Q−1
q=0 η(q, i) has variance σ2/Q. The re-

ceived signal suffers from mutual interference among different
transmit antennas as well as the AWGN. As proposed in [4]
for M = 2, we can exploit the block–M orthogonality of
the pilot sequences to suppress the interference, assuming that

channel variation is minimal over each block of M adjacent
subcarriers.

To make the following block processing easier, we take off
the common component of the pilot sequences by multiplying
the complex conjugate of modulated sequence {ζr(i)}N−1

i=0 to
(9) as

z(i) � y(i)ζ−r(i)

=
√

P ·
M∑

v=1

hv(i)βv(i) + w(i), 0 ≤ i < N

(10)
where βv(i) � ζsv(i)−r(i) = ζ

∑ n
k=n−m+1 ck,vxi

k defines the
modulated sequence corresponding to the transmit antenna-
specific component of the sequence sv , and w(i) � η(i)ζ−r(i).
Note that βv(i) repeats every block of M subcarriers, i.e.,
βv(i) = βv(�M + i), 0 ≤ i < M, 0 ≤ � < N/M , as
discussed in Section III. Therefore, under the assumption that
channel variation is minimal over each block of subcarriers,
(10) can be approximated to a vector form in terms of the
channel at the center of each block as

Z� ≈
√

P · BH� + W�, 0 ≤ � < N/M (11)

where

Z� � [z(�M) z(�M + 1) · · · z(�M + M − 1)]T , (12)

W� � [w(�M) w(�M + 1) · · · w(�M + M − 1)]T , (13)

B �

⎡
⎢⎢⎢⎢⎢⎣

β1(0) β2(0) · · · βM (0)
β1(1) β2(1) · · · βM (1)
β1(2) β2(2) · · · βM (2)

...
...

...
...

β1(M − 1) β2(M − 1) · · · βM (M − 1)

⎤
⎥⎥⎥⎥⎥⎦

(14)
and H� is an M ×1 channel vector at the center frequency of
the �-th subcarrier block, i.e., at f�M+(M−1)/2. The v-th ele-
ment of H� is hv

(
�M + M−1

2

)
, which is the channel response

at f�M+(M−1)/2. Note that the matrix B is a Hadamard matrix
[6] that is common to all the blocks, since βv(i) repeats every
block. Since BHB = M · I, we observe that an estimate H̃�

of the channel vector H� can be derived from (11) as

H̃� =
1

M
√

P
BHZ� = H�+

1
M

√
P

BHW�, 0 ≤ � < N/M

(15)
which provides channel estimates for every block of M
subcarriers. To obtain full channel estimates for all subcarriers,
we interpolate the block estimates for each transmit antenna
as

{(fi, ĥv(i)) : 0 ≤ i < N} =
I

({(
f�M+(M−1)/2, h̃v

(
�M + M−1

2

))
: 0 ≤ � < N/M

})
,

1 ≤ v ≤ M
(16)

where I(·) denotes an interpolation function from a set of
block estimates to an expanded set corresponding to the
channel estimates for all subcarriers. The estimates in (16)
may be noisy due to the interpolation error as well as the
residual interference and noise. To improve the quality of the
estimates, we apply a lowpass filter to the estimates in (16),
which converts the estimates ĥv(i) in (16) to the time domain,
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Fig. 1. NMSE performance in AWGN and flat fading channels without CCI
for various number of transmit antennas M .

takes only the first W samples of the time-domain impulse
responses, and reconverts them to the frequency domain [4].

It must be noted that the proposed algorithm has been
derived under the assumption that the channel variation is
negligible across subcarriers within each block of size M .
Thus, the proposed algorithm must be primarily suitable for
indoor environments where frequency selectivity is not severe.
The frequency selectivity of the channel will deteriorate the
performance due to the loss of orthogonality among received
pilot sequences. The performance degradation will be more
significant for larger block size and/or larger subcarrier spac-
ing.

V. CHANNEL ESTIMATION PERFORMANCE

In this section, we evaluate the performance of the channel
estimation algorithm proposed in Section IV. The number of
OFDM subcarriers is assumed to be N (= 2n) = 64. We
let the pilot sequences for M = 2m transmit antennas be
the binary block–M orthogonal Golay sequences constructed
with ω(i) = i, 0 ≤ i < N , and ck = 0, 0 ≤ k ≤ n − m.
We use two indoor channel models used in [8], which are
referred to as channel A and channel B. The normalized
multipath intensity profiles of channel A and channel B are
given by {0.9981, 0.0019} and {0.9410, 0.0573, 0, 0.0017},
respectively, with tap spacing of the OFDM sample duration.
Every path of the channel is assumed to follow an independent
complex Gaussian distribution. Note that channel B stands
for a more frequency-selective channel than channel A. We
do not consider nonsample-spaced channels considered in
[9], under the assumption that channel impulse responses are
strictly confined within the cyclic prefix. This assumption is
reasonable since the delay spread of indoor channels is usually
small. The period of transmitted pilot sequences is taken to
be Q = 2. Both the length of cyclic prefix and the window
length W of the low pass filter are set to 10. The linear
interpolation is assumed to be employed in (16). We compare
the performance of the proposed channel estimation algorithm
with another algorithm. In the algorithm, pilot sequences

Fig. 2. NMSE performance in channel A for the number of transmit antennas
M = 2 and 4.

for M transmit antennas are transmitted in the frequency
division fashion: a length N/M Golay sequence for the v-th
transmit antenna is transmitted on (�M +v−1)-th subcarriers
(0 ≤ � < N/M ). The estimates for the N/M subcarriers
are interpolated over all subcarriers, and low pass filtering
is applied as in the proposed algorithm. This algorithm will
be referred to as the FDM algorithm, while the proposed
algorithm as code division multiplexing (CDM) algorithm. We
measure the performance of the channel estimation algorithm
using the normalized mean square error (NMSE) defined as

NMSE � 1
M

M∑
v=1

‖ Hv − Ĥv ‖2

‖ Hv ‖2
. (17)

The NMSE performance in AWGN and flat fading channels
is shown in Fig. 1, when the CCI is not considered. The
channel estimation algorithm is shown to work well for various
numbers of transmit antennas M , in that the NMSE keeps
decreasing with the SNR per transmit antenna, P/σ2. In
most of the SNR range in Fig. 1, the performance is shown
to improve as M increases. The reason is that larger M
yields higher averaging effect in obtaining the sample points
of interpolation and thus less interpolation noise, when the
channel is constant across the subcarriers as in the AWGN
and flat fading channels. In most cases, the CDM algorithm
is shown to slightly outperform the FDM algorithm.

Fig. 2 illustrates the NMSE performance for M = 2 and
M = 4 in channel A. For both M = 2 and M = 4, the
CDM and FDM algorithms provide comparable performance,
when CCI is absent. However, when a CCI is present with
the signal-to-interference ratio (SIR) = 30 dB or 20 dB, the
CDM algorithm is shown to significantly outperform the FDM
algorithm especially in the high SNR region. This gain comes
from the inherent CCI averaging capability of the CDM. The
NMSE performance for channel B is depicted in Fig. 3. When
the CCI is absent, the CDM algorithm is shown to be worse
than the FDM algorithm. The reason for this is that the
orthogonality among pilot sequences of M transmit antennas
is not preserved in channel B, where the channel variation



SHIN et al.: CONSTRUCTION OF BLOCK ORTHOGONAL GOLAY SEQUENCES AND APPLICATION TO CHANNEL ESTIMATION OF MIMO-OFDM SYSTEMS 31

Fig. 3. NMSE performance in channel B for the number of transmit antennas
M = 2 and 4.

Fig. 4. BER performance of a 2×2 MIMO system in channel A, when
uncoded QPSK is employed.

within each block of subcarriers is severer than in channel A.
The mutual interference among transmit antennas yields an
error floor, and it is more significant for a larger block size
M . When a CCI is present, however, the CDM algorithm is
shown to outperform the FDM algorithm. This implies that
the CCI averaging effect of the CDM dominates that of the
orthogonality loss in the presence of CCI.

Fig. 4 shows the impact of channel estimators on the bit
error rate (BER) performance of a 2×2 MIMO system in
channel A, when uncoded QPSK modulation is employed.

The receiver is assumed to detect transmit data using the V-
BLAST algorithm based on the MMSE detection [10]. This
figure verifies that lower NMSE of the CDM algorithm indeed
results in lower BER when a CCI is present. The improvement
in the BER of the CDM algorithm over the FDM algorithm
is shown to be more significant at lower SIR.

VI. CONCLUSIONS

In this paper, we have defined and constructed a family of
block orthogonal Golay sequences. It has been found that each
sequence in a set of block orthogonal Golay sequences can be
decomposed into two sequences; one component sequence is
common to all the sequences in the set, whereas the other
is specific to a sequence and repeats in every block. We
have also applied block orthogonal Golay sequences to a
channel estimation of MIMO-OFDM systems based on CDM
of pilot sequences. Through simulation, we have compared
the performance of the proposed algorithm with that of an
algorithm based on the FDM of pilot sequences, in fading
channels as well as in an AWGN channel. The proposed
algorithm is shown to be less sensitive to the CCI compared
with the FDM based algorithm. Hence, the proposed algorithm
is expected to improve the channel estimation performance
near cell boundaries of a cellular system.
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