
Rainbow: A Wireless Medium Access Control Using Network Coding
for Multi-hop Content Distribution

Chen-Mou Cheng, H. T. Kung, Chit-Kwan Lin, Chia-Yung Su, Dario Vlah
Harvard University

Cambridge, Massachusetts

ABSTRACT

We consider the problem of multi-hop content distribu-
tion over a wireless ad-hoc network. Such mechanisms are
relevant to a broad spectrum of applications, but are par-
ticularly important to data broadcast in wireless distributed
computing where speedy I/O is critical to overall perfor-
mance. In this paper, we present Rainbow, a content dis-
tribution protocol for multi-hop wireless ad-hoc networks.
The protocol uses a content-directed medium access con-
trol (MAC), through which transmission priority is given
to those nodes most capable of delivering useful content to
their neighbors. We describe an efficient implementation of
Rainbow based on network coding. Specifically, Rainbow
uses a MAC priority scheme, where the priority of packet
transmission from a node depends on the rank of the
coefficient matrix associated with the coded content the
node holds. We demonstrate that Rainbow achieves a 1.3-
to 1.9-fold improvement in content distribution time over
other flooding protocols, as measured on a testbed of 29
wireless nodes. We attribute this performance gain in part
to Rainbow’s ability to address a MAC-level bottleneck
in multi-hop wireless networks, which we refer to as the
“bridge lock-out problem”.

1. INTRODUCTION

Content distribution—the problem of transmitting a large
piece of data from a source node to all other nodes in a
network as quickly as possible—has been widely studied in
wire-line networks. Traditionally, it has been the purview of
peer-to-peer (P2P) overlay schemes such as BitTorrent [1],
Gnutella [2], Chord [3] and Pastry [4], where the wired
network is assumed to be unicast, to have consistently low
packet loss, and to have a topology experiencing a low
churn rate.

In this work, we consider the content distribution prob-
lem in a different domain: wireless multi-hop ad-hoc
networks. Potential applications of a protocol geared to-
wards this scenario span a wide spectrum. In the military

realm, an Unmanned Aerial Vehicle (UAV) might be called
upon to distribute up-to-date, local surveillance images to
multiple ground units. Another application would be in
wireless distributed computing, related to our recent work
in distributed speaker identification [5], where a wireless
content distribution method can be used to broadcast input
data for a distributed or parallel computation.

The contributions of this paper are as follows: (1) We
introduce Rainbow, a protocol specifically designed for
content distribution over multi-hop wireless ad-hoc net-
works. Rainbow uses a content-directed MAC and network
coding [6] to improve broadcasting efficiency. To our
knowledge, this is the first real-world implementation of
content distribution over wireless multi-hop ad-hoc net-
works using network coding. (2) We compare Rainbow
to two other flooding protocols and find that Rainbow
gives a significant performance advantage over content-
blind flooding and uncoded flooding in general topologies.
Rainbow achieves this performance gain in spite of the
computation and communication overhead incurred by
network coding. (3) We empirically demonstrate the extent
of the bridge lock-out problem, a type of wireless hidden-
terminal problem that is particularly marked in multi-hop
content distribution due to the heavy use of broadcasting.
We also discuss how Rainbow addresses this problem.

2. CHALLENGES AND APPROACH

Properties specific to wireless multi-hop ad-hoc net-
works introduce additional complexity to the content distri-
bution problem. The wireless medium is shared, rendering
wire-line content distribution strategies that rely on mul-
tiple unicast flows inefficient. For example, we have con-
firmed that BitTorrent, which uses multiple, simultaneous
TCP connections to peers, performs poorly on our wireless
testbed. Similarly, the shared wireless medium also causes
conventional flooding techniques (e.g., in [7]) to suffer
from the “broadcast storm problem” [8], where relaying
nodes experience heavy contention for the channel since
their rebroadcast events are highly correlated in time. More

978-1-4244-2677-5/08/$25.00 c©2008 IEEE 1 of 10



advanced techniques that constrain flooding to a broad-
cast/multicast tree [9] require the building of a shortest path
tree or a Steiner tree. However, physical phenomena such
as fading, interference and capture effects [10] translate
into transient changes in link quality that are difficult to
predict, implying that the overhead of constantly rebuilding
or re-ordering such trees can be prohibitively expensive.

Of particular note is the wireless-specific, hidden ter-
minal problem [11]. In the classic case, hidden termi-
nals cause collisions but, under the 802.11 carrier-sensing
MAC, hidden terminals may even prevent certain nodes
from transmitting for prolonged periods of time. In sce-
narios where there are multiple clusters of nodes and
content must pass through bottleneck, “bridge” nodes, this
can cause severe performance degradations. We term this
phenomenon the bridge lock-out problem, and illustrate it
using the simple scenario in Figure 1.

A

B

C

BUSY BUSY

BUSY BUSY BUSY

BUSY BUSY

time

Figure 1. Illustration of the bridge lock-out problem in a three-
cluster scenario, where content from a source node in cluster
A is propagated to all other nodes. We assume that nodes are
geographically located such that clusters A and C cannot sense
each other’s transmissions, but both have good links with B.
Since the 802.11 contention periods of clusters A and C do not
coincide, B will generally not sense an idle medium and thus
will be “locked out” of sending.

We first observed the bridge lock-out problem on a
real-world wireless testbed deployed in an office building
and organized into a three-cluster topology. Simulating the
phenomenon requires a detailed MAC model; we were
able to reproduce it using the OPNET [12] discrete event
simulator in a scenario where clusters A and C had 5 nodes
each, and B contained 1 node.1

Despite the challenges outlined above, wireless offers the
opportunity to exploit the medium’s broadcast properties.
Due to the nature of wireless channels, a single trans-
mission can be heard by multiple receivers—a property
we term broadcast advantage. In comparison to multiple

1. With the 11 Mbps 802.11b modulation, and infinite offered load
on all nodes, nodes in clusters A and C achieved a 1.8 Mbit/s average
transmission rate, while node B achieved merely 7.9 Kbit/s.

unicasts, broadcast advantage has the potential to signif-
icantly reduce the number of transmissions required for
distributing a piece of content to multiple receivers, even
under lossy conditions.

Our general approach to wireless content distribution is
to use broadcasts to propagate content over multiple hops,
as would be done in most flooding techniques. However,
the shared nature of the medium raises the question of how
to allocate channel share to nodes so that they can relay
efficiently. To address this issue, we use a notion called
innovative content [13]. A piece of content is deemed to
be “innovative” to a node if it represents a new piece
of content which cannot be derived from existing content
already held at the node. When network coding is used
(see Section 3.2), innovative content will increase the rank
of the coded content the node holds. Clearly, transmission
priority should be given to those nodes which are most
capable of delivering innovative content to their neighbors.
To determine which are “most capable”, a node’s content
and link quality, relative to each neighbor, should be taken
into account. We call a MAC that follows this policy a
content-directed MAC. In contrast, we term protocols that
do not use such policies as “content-blind”.

Even with a content-directed MAC, efficient implemen-
tation of a wireless content distribution protocol can still
be difficult, as all nodes must receive the content in its
entirety. Flooding protocols are faced with the “coupon
collector’s problem” [14]. That is, if any node is delayed
in receiving its last piece of content, the entire content
distribution is delayed. More sophisticated relay schemes
such as Selective Forwarding [15] are susceptible to high
inefficiency: if only one node is missing a particular piece
of the content, then its broadcast retransmission is useless
to all the other nodes that have already received it.

Network coding has been suggested as a way to over-
come these limitations (e.g., [15], [16], [17], [13], [18]),
as it has been shown to be an efficient reliable wireless
multicast method which achieves a logarithmic reliability
gain over ARQ mechanisms [19]. For this reason, and
because our target environment is likely to have lossy
wireless links, we employ network coding as a protocol
building block.

A further benefit of network coding, particularly useful
for the implementation of our content-directed MAC, is
the convenience of using the rank information inherent
to random linear coding [20] as a compact indicator of
how much innovative content a node has, relative to its
neighbors. Thus, rank serves as the lynchpin that ties to-
gether network coding (as an efficient and reliable wireless
multicast method) with a content-directed MAC.

Our protocol, called Rainbow, is designed to address
the kind of challenges and opportunities described above.

2 of 10



Specifically, Rainbow is a content-directed MAC protocol
that makes novel use of network coding in improving ef-
ficiency and reliability in the MAC implementation, while
minimizing transmission overhead. We have implemented
Rainbow and validated the implementation on a testbed of
29 XO (Beta-2, development version) laptops from One
Laptop Per Child [21].

3. RAINBOW PROTOCOL

The Rainbow protocol is based on two key elements: (1)
a mechanism to control access to the shared medium based
on each node’s content distribution performance, and (2) a
network coding scheme for the outgoing data at each node.
We detail these two elements in the following subsections.

3.1. Content-directed Medium Access Control

We base Rainbow’s MAC on a two-step innovation
reporting mechanism. First, on each outgoing data packet,
a node piggybacks a short report containing the normal-
ized rate at which it received innovative packets—packets
carrying new pieces of content—from each neighbor over
the past Tr seconds. The innovativeness of packets is deter-
mined by the content distribution layer, and so we describe
the Rainbow MAC as content-directed. The normalized rate
is computed relative to the sending rate, which is derived
from sequence numbers; this way, the report implicitly
includes the quality of wireless links. To control the size of
this piggybacked report, we limit the number of innovation
reports that can go into each packet to P . If a node has
more than P neighbors to report on, then it will randomly
select a subset of size P .

Second, using data from these reports, a node estimates
the total potential innovation its transmission could provide
to neighbors, by summing over all its neighbor nodes, and
includes this total in future transmission reports. Nodes
then select their transmission rates as follows. A node with
the highest potential innovation transmits at the maximum
link rate rL, whereas other nodes send at some small, but
non-zero probing rate rP . This way, when the winning
node runs out of innovative data to send, other nodes’
potential contributions can be gauged from the data sent at
the probing rate, and another node promoted to take over
the channel.

Under this scheme, each node makes its transmission
rate decision based on a comparison of potential contribu-
tions of its one-hop neighbors; however, the recipients of
these contributions reside in the node’s two-hop neighbor-
hood. As a result, the scheme can properly schedule some
difficult topologies such as the cluster-bridge topology
from Figure 1; in that case, the bridge’s upstream neighbors

T
im

e
 

321 4 5 6

321 4 5 6

Figure 2. The node contributing innovative packets at the
highest normalized rate within a two-hop neighborhood obtains
the largest channel share. Assume that content is propagated from
node 1 to all other nodes. Size of a node indicates how much
innovative content it holds; blue solid fill indicates the node is
transmitting at the maximum link rate. At some time point, node
3 delivers innovative content to node 4 at the maximum link
rate. Later, node 4 has received the entire content from node 3,
dropping node 3’s delivery rate of innovative packets to 0. This
causes node 4 to be promoted to transmit at the higher rate.

yield when the bridge receives all available content, and
becomes the only useful transmitter among its one-hop
neighbors.

We use a linear topology to illustrate how this scheme
naturally handles multi-hop content distribution. As shown
in Figure 2, any time when a node at hop i stops being the
highest contributor of innovative packets within the one-
hop neighborhood, a new high-rate transmitter begins to
deliver the content to nodes at hop i+ 1.

3.2. Network Coding Layer

We adopt a random linear coding scheme for network
coding, as detailed in [22]. The content to be distributed is
assumed to consist of k content symbols xi, i ∈ {1, . . . , k},
each of which is drawn from a base finite field K, typically
GF(2q), where q is a small integer such as 8. In coding and
decoding, all arithmetic operations performed on symbols
are in this base field K.

Under the random linear coding scheme, each trans-
mitted symbol yi is a random linear combination of `
content symbols, i.e., yi =

∑`
j=1 ci,jxj , where ci,j , drawn

randomly from the base field K, are coefficients of the
encoding. A receiver receiving L ≥ ` coded symbols
y1, . . . , yL will, with high probability, be able to recover
the content symbols x1, . . . , x` by solving the following
system of linear equations:

c11 c12 · · · c1,`

c21 c22 · · · c2,`

...
...

. . .
...

cL,1 cL,2 · · · cL,`



x1

...

x`

 =


y1

y2

...

yL



3 of 10



To do so, the receivers need the coefficient vector
ci = (ci,1 . . . ci,`)T , so ci needs to be transmitted along
with the coded symbol yi. In a packet-switched network,
symbols are naturally grouped into packets. To reduce
overhead, symbols transmitted in one packet share the same
coefficient vector ci. The overhead incurred by such a
random linear coding scheme is thus η = `/(m−`), where
m is the maximal number of symbols that a packet can
contain, given that most packets are of maximum size in
typical content distribution applications.

To manage this overhead when distributing a large
amount of content, the entire collection of content symbols
is further broken down into generations, each consisting of
`(m−`) symbols, or ` packets, as suggested in [13]. The to-
tal number of generations will thus be n = dk/(`(m−`))e.

A precode is a fixed-rate forward error correcting code,
such as the Reed-Solomon code, with rate λ. This precode
is applied to the n generations to give λn coded gener-
ations. This will alleviate the coupon collector’s problem
among generations [22].

We store the content in reduced row-echelon form. That
is, upon the receipt of a coded packet, a node performs an
(incremental) Gauss-Jordan elimination on the coefficient
matrix C = (c1 c2 . . . cL)T . When it terminates, it will
report whether this packet has increased the rank of the
matrix.

Whenever a node is allowed to transmit, it simply picks
uniformly at random a generation among those coded
generations of which it has received one or more packets.
In theory, it should then form a random linear combination
of all the packets it has in that generation. However, since
we store the coefficient matrix in reduced echelon form,
the node does not need to combine every single packet.
Instead, it only picks those corresponding to the non-zero
rows in the matrix since the span of these rows already
contains all the information that can be derived from the
entire collection of received packets in that generation.

The use of network coding is important for content-
directed MAC, because it leads to small-sized reports
that can piggyback on data packets—a single number,
i.e., the rank of a node’s coefficient matrix, suffices to
describe the “innovativeness” of content held by that node.
Furthermore, no additional control messages are needed,
such as acknowledgments or descriptions of the content
subset held by a particular node.

4. FIELD EXPERIMENT SETUP

4.1. Testbed

We performed outdoor field experiments on a large, flat
athletic field on the Harvard campus in Cambridge, MA.

Figure 3. A photo of a 5-node cluster in our outdoor testbed.
Clusters of OLPC XO nodes were placed on the ground, and
powered externally using the power lines as shown.

C4

C2 C5

C3

C1 C6
170 ft

100 ft    100 ft

   100 ft

50 ft 50 ft

100 ft

Figure 4. The 6-cluster topology we used in our outdoor
experiments, where Ci’s denote clusters. Each cluster contains 5
nodes, except the last cluster, which contains 4; for clarity, the
individual nodes within clusters are not shown.

Outdoor experiments are attractive because: (1) the amount
of external wireless interference (802.11 or any other kind)
is relatively small; and (2) results are easier to reproduce in
a simpler environment. This is in contrast to the outcome
of indoor experiments, which is likely to be dependent on
locale-specific factors such as building layout and radio
interference conditions at the time of the experiment.

Our testbed consisted of 29 OLPC Beta-2 nodes. These
are i386 compatible systems based on the AMD Geode GX
processor running at 366MHz, and equipped with 128MB
RAM. Each system has one Marvell Libertas 88W8388
802.11b/g radio, with tunable transmit power. All of the
nodes were placed on the ground; Figure 3 shows one
of the 5-node clusters in our testbed. We used broadcast
Ethernet packets at the 2Mbit/s rate for all protocol imple-
mentations.

4.2. Network Topology

We focused our experimental work on a class of topolo-
gies where nodes reside in clusters. Such topologies are
interesting because they require that protocols cope with

4 of 10



Receiving Cluster
C1 C2 C3 C4 C5 C6

Trans-
mitting
Cluster

C1 80 47 17 10 0 0
C2 57 80 35 29 0 0
C3 2 2 80 37 16 0
C4 1 5 40 78 8 0
C5 0 0 7 7 87 71
C6 0 0 0 0 75 81

Table 1. Average packet delivery probabilities measured between
the 6 clusters in our testbed, expressed as percentages. The values
on the diagonal are for the links between nodes within single
clusters.

the high density of intra-cluster nodes in single collision
domains, as well as inter-cluster multi-hop communication.

We ran the majority of experiments on a 6-cluster
topology shown in Figure 4; other experiments were run
only on clusters 1–3. Nodes in the individual clusters are
spaced closely—at most 12 ft apart—so they have almost
lossless links to each other. Regardless of the topology, the
content source was always a single node residing in cluster
1.

To gauge the link qualities between clusters, we ran a
low-rate packet generator on each node and computed the
packet delivery probabilities of each sender-receiver pair.
These delivery probabilities are summarized in Table 1,
as averages of all links between any pair of clusters.
These measurements exhibit the complex nature of signal
propagation, showing asymmetric delivery rates between
pairs of clusters, and imperfect packet delivery even within
single clusters. This data will help our understanding of
further results obtained on the same testbed.

4.3. Protocols and Performance Metrics

We compare the performance of three flooding proto-
cols for content distribution: Blind (i.e., content-blind),
Uncoded, and Coded. The Coded protocol is the Rainbow
protocol described in Section 3. We use the other two
protocols as points of comparison, and present their design
here for completeness.

Blind flooding is a classic flooding protocol enhanced
by using a smaller-than-unity relaying probability. Such
probabilistic flooding has been proposed in the literature
to address the redundancy of broadcast transmissions in
the wireless medium [8]. Classic flooding is content-blind,
meaning transmission priority is not moderated. In order
to use the protocol to send large files the source node
splits a file into packet-sized chunks, and floods the chunks
sequentially. Once the last chunk is flooded, the source
repeats the sequence, starting over from the first chunk.

We have also designed and implemented a content-
directed uncoded flooding protocol. The basic design is

similar to the Selective Forwarding strategy [15], with
optimizations specifically designed for wireless networks,
and works as follows. The content to be distributed is
broken into x fixed-size chunks, each of which consists
of y symbols. Every Tb seconds, nodes broadcast an x-bit
vector, in which the bits corresponding to the chunks they
have are set. By broadcasting its content bit vector, a node
implicitly requests missing content from its neighbors.
With the knowledge of what neighbors have, a node sorts
its chunks according to the rarity in the neighborhood,
and then transmits starting from the rarest one. One of
our optimizations is that nodes yield the medium in the
presence of nodes with more content. That is, if a node
detects another in its neighborhood with more content than
itself, it will transmit at a lower probe rate rP . Only the
node that has the most content in its neighborhood will
transmit at full link rate rL. We refer to this protocol as
“Uncoded”.

It is important to note that the Uncoded protocol is
not simply the Coded protocol without network coding;
they have distinct MAC mechanisms chosen to fit the
situation where rank information is absent. Recall that
the Coded MAC in Rainbow uses historical performance
(i.e., innovation reports) over a two-hop neighborhood in
deciding whether a node should transmit at the maximum
link rate rL. Network coding enables us to use rank
information as a natural way of expressing a transmitter’s
past performance. Moreover, the stability of a rank-based
innovation metric is desirable; good historical performance
generally indicates good future performance under network
coding. While a similar mechanism in the Uncoded case
is also possible in principle, the analogous innovation
metric is less stable. For example, under the “rarest first”
policy, the node with the best historical performance may
abruptly run out of innovative chunks to send; this can
lead to thrashing when deciding who should transmit at
rL. To address this problem, our Uncoded MAC makes this
decision based simply on the amount of content each node
in a one-hop neighborhood possesses. While the Coded and
Uncoded MACs are not exactly analogous, the Uncoded
protocol is a reasonable content distribution scheme and
represents a fair point of comparison.

In the implementation of these three protocols, the neigh-
bor information is timed out if a node has not received any
updates from that neighbor for an interval of To seconds.

The key metric we use to evaluate performance of
the three protocols is the completion time, i.e., the time
required for all nodes to obtain the file being distributed.
Such a performance metric has also been used by, e.g.,
[20]. Note that this metric is sensitive to the presence of any
poorly performing nodes; for this reason, we limited the
experiment running times to a reasonable upper bound that

5 of 10



Name Description Value

K Base field GF(28)
k Content size 6,120,000 symbols
` Generation size 100 packets
m Coded packet size 1,324 symbols
η Coding overhead 8.2%
n Number of generations 50
λ Precode rate 1.1
Tr Measurement interval 10 seconds
P Maximum report size 30 neighbors
rL Link rate 1.7 Mbits/s
rP Probe rate 12 Kbits/s
x Number of chunks 4,410
y Uncoded packet size 1,388 symbols
Tb Announcement period 1 second
To Timeout period 10 seconds

Table 2. Parameters used in the experiments.

let most nodes complete, yet kept the experiments practi-
cal. We have also included several empirical probability
distribution functions in the next sections to demonstrate
that the completion time can serve as a representative
indication of how good a contention distribution protocol
is. In particular, we used a small multiple of the content
transmission time at link speed. The size of the file we
distributed was 6.1 MBytes, which at the 1.7 Mbit/s link
rate of our testbed takes about 30 seconds to transfer.
We limited the experiment run time to 300 seconds. We
summarize additional experiment parameters in Table 2.

5. PERFORMANCE RESULTS AND
DISCUSSION

5.1. Comparison of Blind, Uncoded, and Coded
Flooding

We report the completion times of the three flooding pro-
tocols for content distribution: Blind, Uncoded, and Coded
(i.e., Rainbow). The individual node completion times are
plotted as empirical distribution functions (EDFs).

Figure 5 shows the performance of five different
Blind flooding instances with relay probabilities p =
0, 25%, . . . , 100%, as compared to that of Coded flood-
ing (Rainbow). First, note that 0%-flooding completes an
initial set of nodes earlier than any other protocol. This
behavior shows that simple single-source broadcast can be
effective in low packet loss environments with nodes in a
single collision domain. However, because relaying is not
permitted, nodes out of reach of the source cannot obtain
the content. When the relay probability is above zero, we
can see that while more nodes get portions of the content,
the completion times of the nodes nearest to the source
increases. The reason is that channel share is allocated to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

F
ra

c
ti
o

n
 o

f 
n

o
d

e
s
 c

o
m

p
le

te
d

 i
n

 t
im

e
 !

 x

Completion time in seconds (x)

Coded
p=0%

p=25%
p=50%
p=75%

p=100%

Figure 5. Empirical distribution function of the completion times
for single runs of Blind and Coded flooding. The Coded case
(i.e., Rainbow) wins in overall completion time. None of the
Blind runs completed in the allotted 300s time.

more nodes than just the source, slowing down the useful
transmissions.

Figure 5 also showcases the adaptability of the Coded
protocol (Rainbow). That is, Rainbow performs well both
in the single collision domain, where its performance is
within an order of magnitude of the 0%-flooding, and in the
whole topology, where it is the only protocol to complete
before the 300s deadline.

Next, we compare the performance of Coded and Un-
coded flooding, while at the same time showing that
the completion times are stable across different runs. We
present this comparison in Figure 6, where we plot the
completion distribution functions of three runs each for
both Coded and Uncoded. The results show that Coded
completes earlier than the Uncoded in all cases. Specif-
ically, when all the nodes in Coded complete, no more
than about 60% of nodes in Uncoded have completed.

5.2. Effect of Cluster Size

We ran the Coded and Uncoded protocols on clusters
1–3 of Figure 4, while varying the size of those clusters
from 1–5 nodes. We present the results in Figure 7. The
key observation we make is that Uncoded performance is
significantly degraded with the largest two cluster sizes,
4 and 5. In contrast, the Coded performance remains
relatively stable. The key reason for the performance degra-
dation is likely congestion, because unlike Coded, Uncoded
allows multiple nodes to transmit at rL. We provide some
qualitative evidence of this in the next subsection.

6 of 10



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

F
ra

c
ti
o
n
 o

f 
n
o
d
e
s
 c

o
m

p
le

te
d
 i
n
 t
im

e
 !

 x

Completion time in seconds (x)

Run 1 Coded
Run 2 Coded
Run 3 Coded

Run 1 Uncoded
Run 2 Uncoded
Run 3 Uncoded

Figure 6. Three runs each of Coded (i.e., Rainbow) and Uncoded
flooding show that Coded consistently outperforms Uncoded.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

F
ra

c
ti
o
n
 o

f 
n
o
d
e
s
 c

o
m

p
le

te
d
 i
n
 t
im

e
 !

 x

Completion time in seconds (x)

Coded (all 5 cluster sizes)
Uncoded, 1-3 nodes/cluster

Uncoded, 4 nodes/cluster
Uncoded, 5 nodes/cluster

Figure 7. This plot contains the performance results of Coded
(i.e., Rainbow) and Uncoded runs on clusters 1–3, while varying
the cluster size from 1–5 nodes.

5.3. Dynamic Behavior of Flooding Protocols as
Observed by Visualization Tools

We created a set of visualization tools to aid protocol
development by inspecting the dynamic behavior of the
system. The tools allow us to play back traces collected
during experiments and animate several time-varying met-
rics on a single plot. As an example of how we used the
visualizations to gain insight into protocol performance,
Figure 8 shows snapshots of Coded and Uncoded runs in
the middle of a content distribution, where the content file
propagates from the leftmost cluster to the rightmost. In the
figures, a node’s circle grows as it receives an increasing
percentage of the file. The size of a ring around a node’s

solid circle represents the magnitude of redundant packets
received in the past second, where redundant packets are
those containing pieces of content already present at a
node. When a node transmits at a higher rate, its solid
circle has a darker color.

The key metric provided by the snapshots is the trans-
mission rate of the individual nodes at a given time. As we
can see, with the Coded protocol only one node transmits
at a time; furthermore, the transmitting nodes are activated
roughly in a round-robin order, each time delivering a small
chunk of the content. In contrast, under the Uncoded proto-
col multiple nodes transmit at once, leading to collisions at
the desired recipients and a slowdown in completion time.

The Coded snapshots provide insight into how Rainbow
avoids the bridge lock-out problem. Consider the bottom-
most Coded snapshot (left panel) corresponding to 100s
from start of experiment. The only transmitting node at
that time is in cluster 3, acting as a bridge between clusters
1,2 and 5,6. This node is able to transmit because none of
its neighbors have been able to deliver innovative packets
at a better total rate; therefore, per our MAC scheme in
Section 3.1, the other nodes yield.

6. FUTURE WORK

There are several areas of our system where opportuni-
ties for more detailed performance analysis exist. While we
successfully employed network coding for its qualitative
advantages in protocol design, we have not evaluated
the quantitative reliability gain suggested by previous
work [19] to confirm the results.

The size of coefficient vectors chosen in our current
Rainbow implementation was limited by the computation
power of the available testbed hardware. At the same
time, the maximum size of the transferrable content was
dictated by the link layer-defined maximum packet size.
Therefore, an open area of future work consists of a
thorough exploration of the effect of varying these two
parameters.

To our knowledge, no method to estimate the optimal
content delivery time, given an arbitrary multi-hop topol-
ogy with lossy links and the 802.11 protocol model, exists.
Such a method would provide a useful lower bound on the
achievable completion time for file delivery over real-world
systems based on 802.11 radios.

7. CONCLUSION

In this paper, we present Rainbow, a protocol designed
for content distribution over multi-hop wireless ad-hoc
networks. Rainbow was implemented and validated on a
testbed of 29 XO Beta-2 development laptops from One

7 of 10



Laptop Per Child. We compared Rainbow to two other
protocols: content-blind probabilistic flooding and content-
directed uncoded flooding. As depicted in Figures 5 and 6,
Rainbow outperforms probabilistic flooding by 1.3-fold
and content-directed uncoded flooding by 1.9-fold, as cal-
culated by the time required for 50% of nodes to reach
completion, in the best cases. The reasons for these gains
are outlined below.

By virtue of being content-directed, Rainbow is able
to optimize medium access control for content delivery,
previously impossible under traditional content-blind pro-
tocols. The key principle we utilize is that relaying nodes
should only occupy the channel under a combination of
two conditions: (1) when they have good links to their
neighbors and (2) when the innovative content they possess
can help the largest number of their neighbors. As a result,
under Rainbow, only the nodes that are most capable of
delivering innovative content at a given time gain access
to the channel. This minimizes exposure to the broadcast
storm and bridge lockout problems, and thus makes Rain-
bow well-suited for multi-hop topologies with bottleneck
links, where the lockout problem has greatest impact.

We take advantage of network coding to efficiently
implement Rainbow’s content-directed MAC. Innovation
reports, i.e., those based on rank information, are small
enough that they can be piggybacked on coded data
packets, allowing nodes running Rainbow to react quickly
to transient changes in link quality and content quality
of nodes. No separate protocol messages are needed to
communicate completion status. Network coding does in-
cur computation overhead at nodes by performing rank
calculation and encoding/decoding, as well as commu-
nication overhead in transporting coefficients of random
linear combinations. The results of this paper suggest that
performance gain resulting from using network coding
outweighs its overhead in our content-directed MAC.

Finally, we note that Rainbow has the potential to signif-
icantly improve applications where reliable data broadcast
is required. For example, unmanned aerial vehicles (UAVs)
may use Rainbow to distribute surveillance imagery to
ground units. In a more sophisticated use case, Rainbow
could be used by a UAV to stream surveillance video to
ground units participating in a parallelized target discrimi-
nation application. That is, Rainbow can play a pivotal role
in wireless distributed computing, where it can be consid-
ered as a reliable and efficient method for broadcasting the
input data of a task to multiple computation nodes. Our
recent work [5] in distributed speaker identification over
ad-hoc wireless backplanes clearly indicates the need for
such a method. Our future work will focus on pursuing
this line of investigation.

ACKNOWLEDGEMENTS

We are indebted to One Laptop Per Child for providing
us with access to XO Beta-2 development laptops, and
Michail Bletsas of OLPC for his comments and encourage-
ment on this project. This research was supported in part
by the Air Force Research Laboratory Grants FA8750-08-
1-0220, FA8750-08-1-0191 and FA8750-05-1-0035.

REFERENCES

[1] B. Cohen, “Incentives build robustness in bittorrent,” 2003.

[2] The annotated gnutella protocol specification v0.4.
[Online]. Available: http://rfc-gnutella.sourceforge.net/
developer/stable/index.html

[3] I. Stoica, R. Morris, D. Karger, F. M. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” in SIGCOMM, 2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems,” Lecture Notes in Computer Science, vol. 2218,
2001.

[5] H. T. Kung, C.-K. Lin, C.-Y. Su, D. Vlah, J. Grieco,
M. Huggins, and B. Suter, “A computational wireless
network backplane: Performance in a distributed speaker
identification application,” in MILCOM, 2008.

[6] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung,
“Network information flow,” Information Theory, IEEE
Transactions on, vol. 46, no. 4, pp. 1204–1216, 2000.

[7] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath, “Flood-
ing for reliable multicast in multi-hop ad hoc networks,” in
DIALM, 1999.

[8] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The
broadcast storm problem in a mobile ad hoc network,” in
MOBICOM, 1999.

[9] H. Lim and C. Kim, “Multicast tree construction and
flooding in wireless ad hoc networks,” in MSWIM ’00:
Proceedings of the 3rd ACM international workshop on
Modeling, analysis and simulation of wireless and mobile
systems, 2000.

[10] C. Ware, J. Judge, J. Chicharo, and E. Dutkiewicz, “Unfair-
ness and capture behaviour in 802.11 adhoc networks,” in
Communications, IEEE International Conference on, 2000.

[11] F. Togabi and L. Kleinrock, “Packet switching in radio
channels: Part ii–the hidden terminal problem in carrier
sense multiple-access and the busy tone solution,” Com-
munications, IEEE Transactions on, vol. 23, no. 12, pp.
1417–1433, December 1975.

8 of 10



[12] OPNET Inc., “OPNET Modeler version 14.0. Discrete
Event Simulation API Reference Manual,” http://www.
opnet.com.

[13] P. Chou, Y. Wu, and K. Jain, “Practical network coding,”
in Allerton Conference on Communication, Control, and
Computing, 2003.

[14] M. Mitzenmacher and E. Upfal, Probability and Comput-
ing : Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press, January 2005.

[15] A. A. Hamra, C. Barakat, and T. Turletti, “Network coding
for wireless mesh networks: A case study,” in WOWMOM,
2006.

[16] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, “Code
torrent: content distribution using network coding in vanet,”
in MobiShare, 2006.

[17] J. Widmer and J.-Y. Le Boudec, “Network coding for
efficient communication in extreme networks,” in WDTN
’05: Proceeding of the 2005 ACM SIGCOMM workshop
on Delay-tolerant networking, 2005.

[18] M. Wang and B. Li, “Lava: A reality check of network
coding in peer-to-peer live streaming,” in INFOCOM, 2007.

[19] M. Ghaderi, D. Towsley, and J. Kurose, “Network coding
performance for reliable multicast,” in MILCOM, 2007.

[20] C. Gkantsidis and P. R. Rodriguez, “Network coding for
large scale content distribution,” in INFOCOM, 2005.

[21] One laptop per child. [Online]. Available: http://laptop.org/
laptop/hardware/specs.shtml

[22] P. Maymounkov, N. J. A. Harvey, and D. S. Lun, “Methods
for efficient network coding,” in Annual Allerton Confer-
ence on Communication, Control, and Computing, 2006.

9 of 10



t=70.00s
Total output =
2112.0 kbit/s

0% complete 100% complete 0.0 0.2 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7
Transmit rate over last 1s, in Mbit/s

Soldier's Field, Jun 29
6 cluster coded run

t=70.00s
Total output =
2112.0 kbit/s

0% complete 100% complete 0.0 0.2 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7
Transmit rate over last 1s, in Mbit/s

Soldier's Field, Jun 29
6 cluster uncoded run

t=80.00s
Total output =
2196.0 kbit/s

0% complete 100% complete 0.0 0.2 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7
Transmit rate over last 1s, in Mbit/s

Soldier's Field, Jun 29
6 cluster coded run

t=80.00s
Total output =
2424.0 kbit/s

0% complete 100% complete 0.0 0.2 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7
Transmit rate over last 1s, in Mbit/s

Soldier's Field, Jun 29
6 cluster uncoded run

t=90.00s
Total output =
2292.0 kbit/s

0% complete 100% complete 0.0 0.2 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7
Transmit rate over last 1s, in Mbit/s

Soldier's Field, Jun 29
6 cluster coded run

t=90.00s
Total output =
4632.0 kbit/s

0% complete 100% complete 0.0 0.2 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7
Transmit rate over last 1s, in Mbit/s

Soldier's Field, Jun 29
6 cluster uncoded run

t=100.00s
Total output =
2148.0 kbit/s

0% complete 100% complete 0.0 0.2 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7
Transmit rate over last 1s, in Mbit/s

Soldier's Field, Jun 29
6 cluster coded run

t=100.00s
Total output =
2952.0 kbit/s

0% complete 100% complete 0.0 0.2 0.4 0.6 0.8 0.9 1.1 1.3 1.5 1.7
Transmit rate over last 1s, in Mbit/s

Soldier's Field, Jun 29
6 cluster uncoded run

Figure 8. Snapshots of Coded (left panel) and Uncoded (right panel) content distribution protocols at time points 70 – 100s, 10
seconds apart. Under Coded distribution, only one sender tends to transmit at a high rate, while under Uncoded, several nodes are
active at once, causing collisions at receiving nodes. As a result, the Uncoded protocol is less effective at delivering data to the
right-most clusters.

10 of 10


