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ABSTRACT

A major challenge in the DoD’s next-generation
network-centric information systems concerns on-demand
provisioning of computation and network infrastructures
at tactical network edges (e.g., deploying wireless air-
borne or hybrid air/ground networks). To support this
vision, we present DWARF, a general distributed appli-
cation execution framework for wireless ad-hoc networks
which dynamically allocates computation resources and
manages failures. DWARF nodes each run a separate task
simultaneously, thereby achieving execution speed-up from
parallel processing. Failed tasks, e.g., due to fluctuating
wireless links to mobile nodes, are automatically detected
and reassigned, transparent to the application. Further, tasks
are executed in an order that satisfies dependencies given
by task dependency graphs. To use DWARF, application
programmers need only decompose their applications into
tasks and define the task dependency graphs.

In this paper, we describe DWARF and report its
benefits in running an important existing application—
speaker identification—over a 32-node wireless network
which supports fault-tolerant computation. We observed
two major performance gains: (1) a ten-fold speed-up in
identifying speakers due to parallelizing the application,
and (2) higher accuracy in speaker identification, made
possible by the increased sensor diversity provided by
geographically distributed nodes. While our nodes have
modest computing power individually, combined under
DWARF, they are able to execute speaker identification
with much greater speed and with improved accuracy.

1. INTRODUCTION

Environments at the tactical edge that require substantial
on-demand communication infrastructures pose significant
challenges to network-centric information systems. While
these areas may be of sufficient tactical interest to provision

with such traditional network technologies as satellite com-
munications or mobile base stations [1], these technologies
fail to adequately support a rising class of applications
at network edges, whose traffic patterns are intense but
constrained to a local area. Examples include peer-to-peer
applications or sensor data processing in the region. In such
cases, the narrow uplinks, which often have other higher
priority competing traffic, can only provide service with
much smaller bandwidth compared to the capacity of local-
area radio channels. By deploying local-area information
systems, computation can be pushed to the network edge,
allowing data processing and reduction to occur before
being transmitted over narrow back-haul links. Alterna-
tively, locally computed results that are locally consumed
are immediately available, thereby tightening the decision-
making loop in tactical situations. These opportunities
suggest that the development of local-area, wireless infor-
mation systems could yield many advantages at the tactical
edge.

But just as the dynamic and possibly extreme nature
of such environments hampers deployment of network
infrastructure, it also poses additional challenges to the
design of such systems. Fluid tactical situations require
the ability to provision computation resources on-demand.
Battery-powered computation devices and transient fluctu-
ations in link qualities and intermittent network disconnect
due to terrain, node mobility, or interference mean such
systems must be built with fault tolerance in mind [2].
We believe that distributed system architectures, rather
than centralized ones, can satisfy such requirements more
naturally, especially as the scale of information systems
and application demands at the edge continues to grow.

Traditional high-performance computing systems have
far different error characteristics compared to wireless
computation backplanes. Their error rates are exceedingly
low, owing to designs with high signal-to-noise ratios and
redundant encoding. At the same time, the throughputs
are higher due to higher signaling rates and indepen-
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dent parallel communication channels afforded by wired
interconnection. Achieving high-performance computing
over an ad-hoc wireless infrastructure without assuming
a traditional wired backplane therefore poses a challenge
to system designers. In this paper, we will discuss various
techniques, such as those based on wireless broadcast, in
addressing these issues.

Furthermore, as a greater number of increasingly ca-
pable commercial-off-the-shelf (COTS) wireless mobile
devices—replete with sensing components (e.g., GPS and
cameras)—find their way into the hands of users and
become embedded into the edge environment, new oppor-
tunities that deserve exploitation arise. For example, there
are increasing numbers of points at which the environment
can be sampled, and there is an increasing amount of
computation power lurking unused at the network edge.
These opportunities suggest that new types of distributed
wireless ad-hoc systems could be built which would har-
ness the locally available computation power and apply it
to processing of the plentiful sensor data.

More importantly, the growing abundance of sensors in
the field permits such systems to exploit sensor diversity
to enable a class of applications in which high quality
sensor data greatly reduces the complexity of the com-
putation required. In some applications, e.g., audio signal
processing, even the most sophisticated algorithms cannot
adequately process low quality input data. A distributed
system, coupled with sensor diversity, presents a natural
setting where the highest quality sensor data available can
be selected as input into a simpler computation. This is
a clear advantage, as only data most likely to yield good
results will consume any resources.

New distributed system architectures and tools based
on COTS components are needed to properly exploit
these opportunities and overcome the challenges outlined
above. In this paper we present one such architecture
and its prototype implementation: a framework to support
building distributed applications on 802.11 wireless ad-hoc
networks. We then describe how we applied the framework
to a particular local-area application of interest—speaker
identification [3]—and evaluate its performance compared
to that with a non-distributed version.

2. DISTRIBUTED WIRELESS APPLICATION
RUNTIME FRAMEWORK (DWARF)

In this section we describe DWARF, an execution system
built to support distributed applications in 802.11 wireless
ad-hoc networks. We consider DWARF to be a computa-
tional wireless network backplane. Conventional wisdom
suggests that backplanes connecting parallel processors are

required to have high reliability, bandwidth, and through-
put; an 802.11 wireless network could hardly fit the bill.
However, DWARF’s fault-tolerant design mitigates the un-
reliability of wireless links and its extensive use of wireless
broadcasts allows data to be sent to many nodes in one shot
(e.g., in input data distribution), thereby compensating for
the relatively low bandwidth of the wireless channel in
many situations.

We give a detailed description of DWARF in the sections
below. Overall, we assume that a node, termed “master,”
exists at any given time to drive the computation from
start to end. This need not be a single physical node, as
the participating nodes can monitor the status of the master
node and promote a backup node if the master fails.

Note that all wireless transmissions in DWARF are
broadcasts; none are point-to-point. We rely on the 802.11
MAC (CSMA) to handle transmission scheduling and
channel contention, and assume that all nodes reside in
a single collision domain.

2.1. Reliable Distribution of Input Data

Due to the nature of wireless channels multiple receivers
can listen to the same physical transmission, a property
referred to herein as broadcast advantage. Therefore, we
have focused attention on problems where the same input
data simultaneously serve a multitude of computation tasks
on separate nodes. This is more efficient than repeatedly
using the channel to independently transmit the input to
each node.

Our framework specifies a reliable broadcast mechanism
to distribute input data to the nodes participating in a
computation. In our implementation, we use a single-hop
reliable broadcast protocol based on acknowledgments and
retransmissions, structured as follows.

We divide input files of arbitrary size into fixed-size
generations, each consisting of some number G of link
layer packets. The master node then reliably transmits
generation by generation until the entire file is transmitted.
Within each generation, every TG seconds the master
resends all outstanding packets, where outstanding packets
are those that haven’t been received by at least one node.
Nodes acknowledge each received packet, or in the absence
of received packets periodically announce the subset of the
current generation they hold. This mechanism ensures that
the transmission will make progress even in lossy channels,
as long as the probability of success is non-zero.

This reliable broadcasting mechanism is relatively sim-
ple compared to some advanced techniques described in the
ad-hoc networking literature [4]. We discuss candidate re-
placement schemes based on network coding in Section 7.
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2.2. Task Decomposition

Our framework expects that applications are divided into
units of execution termed “tasks”. The definition of tasks
is up to application writers, but usually they are modules
with relatively few dependencies that can run concurrently,
thereby achieving parallel speed-up.

The dependency relationships between tasks are de-
scribed by application writers in dependency graphs. A
directed edge between nodes A and B in the graph
(A → B) specifies that task A must complete before B
starts, for reasons such as task B requiring input from A,
or to impose a certain ordering of side-effects.

In our implementation, task inputs and outputs are
opaque to the execution system, and are considered to be
files of arbitrary format. In the future we will extend this
interface to allow formal data types; with this, the system
can inspect application results and perform task pruning,
an optimization discussed further in Section 7. The output
of each task is reliably broadcast to the whole computation
group for increased system reliability in the face of node
and link failures. Note that since any transmission is
likely to be overheard in a wireless medium by nearby
nodes, adding a reliability mechanism does not increase the
resource demands as much as with point-to-point channels.
The reliable output broadcasting mechanism is similar to
that used for inputs as described in the previous subsection.

2.3. Distributed Fault-tolerant Task Scheduler

In an environment prone to faults, nodes are not guar-
anteed to finish their tasks within a predetermined time
and may even exit the computation abruptly. Fault-tolerant
schemes [5] [6] [7] must be used to ensure all tasks
eventually complete. While allowing repeated task execu-
tion for fault tolerance, such schemes need to minimize
unnecessary redundancy in task execution.

DWARF satisfies these requirements by employing an
optimistic scheduler with fully-replicated control structures
at all nodes. These control structures (detailed below)
provide each node in the DWARF system with a view of the
global system state and, when kept consistent across nodes,
allow the scheduler to assign unfinished tasks efficiently,
while minimizing task redundancy. Such a strategy is
particularly well-suited to the wireless medium because
broadcast advantage significantly reduces the overhead of
control structure replication.

Based on this replicated control mechanism, the DWARF
scheduler tracks node liveness in order to detect and react
to node failure and reassign failed tasks. Each DWARF
node runs an instance of the scheduler and periodically

broadcasts a heartbeat message. Upon receipt of a heart-
beat, a DWARF node records the arrival timestamp in
a table, with one entry per node. Nodes are marked as
“failed” if subsequent heartbeats are not received after a
timeout period. If, at a later time, a heartbeat arrives from
a failed node, the scheduler will promote the node back to
“live” status.

The scheduler manages task execution by maintaing two
data structures: a dependency graph with all unfinished
tasks and a priority queue of ready-to-run tasks (i.e.,
tasks with completely satisfied dependencies). When the
scheduler starts, it performs a topological sort of the
dependency graph, resulting in tasks with the fewest depen-
dencies being given the highest priority. This maximizes
the number of independent tasks available at any given
time and minimizes node idle time.

To minimize redundant work, multiple nodes should
avoid scheduling and invoking the same task. To do so,
each scheduler broadcasts notifications of task scheduling
and completion events and monitors which tasks have
been scheduled or completed by other nodes, placing tasks
currently being executed by any node at the end of the
queue and removing them upon completion. If node failure
is detected by the scheduler and results in a task being
unfinished, that task is moved back into its original position
in the queue.

The scheduler makes use of a distributed advisory lock-
ing mechanism [8] in order to avoid the situation where
multiple nodes schedule the same task at exactly the same
time. In this mechanism, node IDs are sorted and placed
into a virtual ring topology. In an N -node system, the
scheduler on each node adheres to the following lock
request policy. A scheduler requests a lock for task t from
node i, where i = t mod N . If node i has failed, a new
request is made to node (i + 1) mod N instead. If this
too has failed, (i + 2) mod N is tried, and so on, until a
live node is found. Any scheduler receiving a lock request
for task t will grant it, provided that it has no outstanding
locks on t and has not recently heard another scheduler
grant a lock on t. Once granted, a lock must be refreshed
periodically as it is automatically released after a certain
period of time q. This prevents deadlock when a node
holding a lock fails.

Note that each node in the system updates its own lock
table when it overhears a lock being granted by another
node. As a result, any given node has the most complete
picture of current system state possible in the presence
of faults. In the case where inconsistencies in notions of
node liveness exist, multiple locks for the same task may
still be granted by different maintainers, resulting in some
redundancy in task execution. However, this is kept to a
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Figure 1: The DWARF fault-tolerant task scheduler algo-
rithm.

minimum by the control structure replication.
The fault-tolerant task scheduler algorithm running on

each DWARF node is summarized in Figure 1. On in-
vocation, the scheduler initializes its control structures,
and immediately enters the main loop. First, the scheduler
checks if all tasks are finished. If so, then all computation
is done and the scheduler exits. If not, the scheduler pops
the highest priority task from its task queue, immediately
begins execution and then sends a lock request. Note that
this is why DWARF’s scheduler is optimistic – it does not
wait for a task lock before beginning execution. During
execution, the scheduler keeps track of the task’s lock
status. If the lock is granted, a timer on the lock is started.
When the lock is about to expire, but the task has yet to
finish, the scheduler refreshes the lock by sending another
lock request. If a lock request is eventually refused, the
scheduler terminates the task, pushes it onto the tail of
the task queue, and returns to the beginning of the main
loop. When a task completes, the scheduler broadcasts a
completion notification and returns to the beginning of the
main loop. On receipt of a task completion notification, the
scheduler removes the task from its own task queue.

2.4. Result Aggregation

Our framework assumes that a parallel computation
will end at a single node, which collects any pending
outputs and combines them into a final result for the entire
computation. Due to the broadcast mechanism used for
all task outputs, however, it is possible that all nodes that

receive a complete set of outputs can play this role. Such
nodes broadcast the final result to the network, so that
it can be received right away at the node which initiated
the computation. In this way, our framework exploits the
communication and computation diversity present in the
distributed system.

3. DISTRIBUTED SPEAKER
IDENTIFICATION: A BENCHMARK

APPLICATION

To showcase the capabilities of DWARF, we use open-set
speaker identification—a computationally-intensive task—
as a benchmark application. Speaker Identification (SID)
is the task of determining a person’s identity from her
voice sample, independent of the words or language she
speaks. Typically, SID systems enroll a set of speakers
of interest (e.g., authorized personnel). An open-set SID
system is capable of identifying a non-enrolled speaker as
“out-of-set”, rather than simply reporting the best “in-set”
match. Such systems have military applications including
fratricide reduction, enhanced force protection by blue
force tracking, or surveillance target identification.

Our open-set SID system is a Gaussian Mixture Model
(GMM) classifier based on [3]. Models are trained from
Mel-cepstra acoustic features, which capture snapshots of
dominant vocal resonances. The first stage of training
creates a speaker-independent GMM, called the Universal
Background Model (UBM) [9]. Speaker-dependent GMMs
for each enrolled speaker are then trained by performing
maximum a posteriori adaptation (MAP) of the UBM to a
speaker’s Mel-cepstra training features. The MAP-adapted
speaker models are then finalized via the Minimum Clas-
sification Error method, for added discriminative training.
For training, we divided the NIST TIMIT corpus [10] of
630 speakers, into two sets: 530 in-set speakers and 100
out-of-set. Of the out-of-set speakers, 50 were included
in UBM training. Once 530 speaker models were trained,
we scored the models against a separate group of in-set
and out-of-set speaker utterances and adjusted a decision
threshold value to equalize the number of false acceptances
and false rejections.

In the recognition phase, feature vectors are extracted
from an unknown speaker’s utterance and scored against
each speaker model. If the maximum normalized score
is greater than the decision threshold, then the unknown
speaker is declared to be in-set and her identity is the
speaker whose model produced that maximum score. Oth-
erwise, the unknown speaker is declared to be out-of-set.

This recognition computation grows linearly with the
number of enrolled speakers and is computationally
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intensive—with 530 speaker models, computing the result
for one 5-second audio clip on a single 1GHz node in our
wireless testbed takes 11 seconds on average. Our goal
here is to significantly speed up SID, and we do so via
parallel processing. A simple and natural decomposition of
this problem is to divide the database of speaker models
across a set of computation nodes. For example, if there are
10 nodes, we divide the 530 speaker models into 10 disjoint
subsets, each with 53 speaker models. When presented with
a speaker utterance, each node is responsible for scoring
it against a different speaker model subset in parallel.
Subsequently, each node reliably broadcasts its calculated
scores to all other nodes. Once a node has received all 530
scores, it can perform adjudication locally.

We have implemented a distributed version of SID
as described and have deployed it on DWARF. Using
the experiment scenario and system setup described in
Sections 4 and 5, we present performance measurements
under various conditions in Section 6.

4. EXPERIMENT SCENARIO FOR THE
DISTRIBUTED SPEAKER IDENTIFICATION

APPLICATION

Consider a set of 16 microphone sensors arbitrarily
placed in a square area of 10-ft unit length. Each sensor
is connected to a computation node that is equipped with
a 802.11b/g Wi-Fi network interface, modest computing
resources and is a participant in DWARF. At an arbitrary
location within this area is a single, stationary speaker (i.e.,
no co-channel speech present), whose sound pressure level
is 30dB at the source. At a second arbitrary location is a
stationary audio noise source, emitting pink noise (10dB
at the source). Nodes do not know their own locations, nor
those of the speaker or noise source. For our experiments,
we have chosen speaker, noise source and sensor locations
as shown in Figure 2.

Each node is responsible for monitoring its acoustic
neighborhood for speech. We assume that each node dig-
itizes and segments its audio stream into homogeneous
speaker segments but, due to the arbitrary locations of
the speaker and noise source, each node may capture such
segments with varying signal-to-noise ratios (SNRs). The
open-set SID algorithm will perform poorly when pre-
sented with a speech segment that has low SNR. However,
with multiple nodes distributed at various geographical
locations, we are able to exploit sensor diversity by first
determining which node has the highest SNR and using
only that node’s speech segment as input for all the other
nodes.

Specifically, our distributed SID method adheres to the
following task pipeline:
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Figure 2: Speaker, noise source and sensor locations in our
experimental configuration. The speaker is located at (1,1)
and the noise source is located at (0.5, 0.5). Each of the
16 sensors, denoted by triangles, is shown at its location
in red.

1) Each node calculates the SNR of the first 250ms
of the speech segment generated by its own micro-
phone.

2) All nodes participate in a distributed SNR election
that determines the node with the highest SNR.

3) The election winner calculates a speaker feature
matrix from its input speech segment and reliably
broadcasts this matrix to all other nodes.

4) Upon receipt of the feature matrix, each node scores
the input against its subset of speaker models in
parallel. When complete, the resulting score vector
is reliably broadcast to all other nodes.

5) When a node has aggregated all the score vectors, it
performs adjudication on the scores and returns the
SID result.

By deploying the application on DWARF, we demon-
strate: (1) significant reduction in execution time; (2) fault
tolerance against node failure; and (3) ability to support
on-the-fly addition of mobile nodes to speed computation.
We describe these results in the rest of the paper.

5. EXPERIMENTAL WIRELESS SYSTEM
SETUP

We deployed DWARF and our distributed SID applica-
tion on a wireless ad-hoc network of 32 nodes (Figure 3).
Each node is a 1GHz VIA C7 processor with 1GB RAM,
a 1GB flash drive, and a USB 802.11b/g wireless network
interface (VIA chipset), running Ubuntu Linux 7.04. We
have modified the VIA Wi-Fi driver such that IBSS bea-
coning is disabled and variable rate broadcast is enabled.
For all our experiments, we use 11Mbps modulation for
broadcast packets.
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Figure 3: Our wireless ad-hoc network consists of 32
computation nodes, each running DWARF. Given the area
(10ft × 10ft) considered in our speaker identification
application scenario, rack-mounting the nodes instead of
placing them in the configuration as shown in Figure 2
represents a reasonable approximation in terms of link
quality and contention characteristics.

For practical reasons, we simulated the noisy speech
segment heard at each of the 16 sensor locations (see
Figure 2) by adding pink noise to a noise-free sample.
The amount of noise added reflects the expected SNR at
each sensor location. Thus, the input into the distributed
SID application running on each DWARF node is a WAV
file containing a simulated noisy speech segment.

The computation nodes we use in our experiments were
not geographically distributed as shown in Figure 2, but
were instead rack-mounted as shown in Figure 3. We
have previously verified that the configuration of nodes on
the rack produces link qualities that are very similar to
nodes placed at random within a 10ft × 10ft area. While
simplified, this configuration still employs a true wireless
environment in which to measure DWARF performance. In
contrast, had we instead emulated wireless channel charac-
teristics over wired Ethernet, it would have been difficult to
achieve the timing accuracy required to accurately model
collisions.

Note that while the experiment scenario specifies 16
simulated sensors, our testbed consists of 32 computation
nodes. This gave us the opportunity to increase the level of
parallelism during computation by simply connecting up to
two computation nodes to each sensor.

To stress our system, we required a larger speaker model
set than the TIMIT corpus could provide. We artificially
inflated the size of the speaker model set by duplicating
each model, thus requiring the distributed SID application
to compute scores for 1060 speaker models (530 unique).

Figure 4: Graphical front-end for managing our distributed
speaker identification application on DWARF.

We have also implemented a graphical front-end (Fig-
ure 4) to control the distributed SID application. The
front-end allows us to pick the number of nodes to use
in the computation, play the audio as spoken by the
speaker and the noisy audio heard at each of the 16 sensor
locations, launch the distributed SID application, record the
overall running time, and inspect the returned results by
playing a representative speech segment of the speakers
corresponding to the top-, middle- and bottom-scoring
models. For fault-tolerant experiments, the front-end also
allows us to pick the number of nodes to fail. With this
graphical console, we have a convenient way of checking
the correctness of the DWARF system in executing the
distributed SID application.

6. PERFORMANCE RESULTS AND
DISCUSSION

Using the experiment scenario and setup described
above, we evaluated our system according to three major
criteria: (1) speed-up due to parallelization, especially
under faulty conditions; (2) the amount of system overhead
resulting from DWARF; and (3) the speed-up due to mobile
nodes rejoining a computation after a period of departure.

6.1. Speed-up Due to Parallelization

Since one major goal in our work is to reduce the
execution time of speaker identification, we are interested
in measuring the speed-up due to parallel processing on
DWARF. To do so, we measured the average running time
(20 trials) of the distributed SID application, as shown in
Figure 5. Note that since all nodes listen for a complete set
of score vectors before performing local score adjudication,
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Figure 5: A comparison of average running time (20 trials)
of distributed speaker identification over DWARF, under
different conditions.

transient fades in the wireless links can result in different
adjudication start times. This, in turn, leads to different
completion times. As a result, we define “running time”
as the time elapsed until the first adjudication result is
reported by any node.

We compare three experiment conditions to a simple
simulation model (purple line) in which we take into
account our implementation overhead (audio input pre-
processing, timeouts) and data transmission time under
10% packet loss. The simple model represents the optimal
speed-up that can be achieved with our implementation in
the absence of node failures (i.e., no faults present).

Our baseline measurement in the experiments is the run-
ning time of the distributed SID application over DWARF
without the fault-tolerant scheduler (see Section 2.3) in the
loop or any faults. To show speed-up, we vary the number
of nodes in the computation group from one to 32 (red
line). Next, we establish that the fault-tolerant scheduler
does not introduce significant overhead. To do so, we
performed the same experiment, but with the fault-tolerant
scheduler handling the invocation of the computation tasks
(green line).

Finally, we measured system performance under faulty
conditions (blue line). Starting with 32 nodes in the com-
putation group, we inject synthetic faults by terminating
the fault-tolerant scheduler on k randomly selected nodes
immediately after it has broadcast its first scheduled task.
For the blue line in Figure 5, the x-axis represents the
number of nodes that remain alive after fault injection
(i.e., n = 32 − k). Since the system initially starts
with 32 nodes, the computation is decomposed into 32
tasks; as faults occur, the scheduler detects which tasks
were interrupted and reassigns these to run on the nodes
that remain in service. In this way, we demonstrate that
DWARF successfully recovers and drives the computation
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Figure 6: Average running time (20 trials) of distributed
SID over DWARF with a varying number of nodes and
the FT scheduler enabled, but with no faults present.

to completion. However, because there are fewer working
nodes, we expect the average run-times to increase with
the number of faults and indeed, we observe this behavior.

6.2. Overhead in the DWARF System

In all three cases, the results in Figure 5 show an
approximately ten-fold speed-up when using 32 nodes, as
compared to using a single node. While we show that our
implementation matches well with our simple model, the
speed-up grows only marginally beyond ∼20 nodes and is
short of being linear. Investigating further, we decomposed
our running times into their two major constituent parts—
the SID computation (green line) and DWARF overhead
(blue line)—as shown in Figure 6. We can see that the
DWARF overhead (blue line) eventually begins to dominate
the SID computation time (green line), even though we
still observe a marginal speed-up as the number of nodes
increases. This is because the rate of change of overhead
is lower than that of the computation time of a task.

In general, the cost of reliably broadcasting data to
every node over lossy wireless links is the time the sender
requires to detect a lost packet at the receiver(s) and
to retransmit. This cost rises with the number of nodes
because, with more nodes, the probability that any one
node loses a particular packet increases. Retransmission
efficiency decreases in tandem, further increasing overhead.
For example, if only 1 out of 32 nodes lost the packet, then
its retransmission is useless to the other 31. Meanwhile, as
we increase the number of nodes, the task size per node
decreases as we decompose the overall computation into
smaller units. The overall effect is that the computation-
to-I/O ratio decreases, implying a reduction in parallel
speed-up. One possible method for alleviating this general
problem is to relax the condition of reliable broadcast.
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Figure 7: A breakdown of average overhead (20 trials)
incurred by distributed speaker identification over DWARF.

For instance, if 90% of participating nodes completely
receive the data being broadcast and immediately start
computation, they may return a result more quickly than
if they wait for the remaining 10% to finish receiving. We
will explore this trade-off in the future.

Figure 7 further decomposes DWARF overhead into
its constituent parts, allowing us to identify the specific
I/O bottlenecks. It is important to note that the election
overhead (red line) remains low as the number of nodes
increases, meaning that the cost of exploiting sensor diver-
sity is quite low.

In contrast, the speaker feature matrix broadcast time
(green line) and result aggregation time (purple line) in-
crease. The broadcast time experiences a 1.4-fold increase
from two nodes to 32 nodes; aggregation time shows a 2.9-
fold increase over the same range. While both are partially
due to the increasing number of nodes contending for the
channel, differences in computation task completion time
also contribute to the increase in aggregation time. By
definition, result aggregation cannot complete until the last
remaining task finishes. With 32 nodes, we have observed
as much as a 250ms difference between the first and last
task completing, suggesting that the actual amount of time
spent communicating results is comparatively small and
that much of the overhead can be attributed to waiting for
the last result to become available.

6.3. Results for Mobile Nodes

Finally, we show that DWARF can support node mobil-
ity. Consider a scenario where an unmanned aerial vehicle
(UAV) loaded with computation nodes participates in a
distributed computation with nodes on the ground. The
UAV may become connected or disconnected to the ground
nodes, depending on its current location. We demonstrate
that DWARF can support and take advantage of this depart-

Figure 8: A diagram of a simple mobility experiment. The
red line indicates the tour route of the mobile node. The
gray area, labeled “dead zone”, indicates the region in
which the mobile node can no longer communicate with
the stationary node.

and-return mobility model. In this experiment, we employ
two indoor nodes running distributed SID on DWARF, as
illustrated in Figure 8. The computation is divided into 32
tasks and, initially, the two nodes are within range when the
computation starts. Subsequently, one node moves along
the tour circuit shown, departing from communications
range and then returning. We vary the duration of the
mobile node’s tour and show that, upon return, the node
is automatically re-incorporated into the distributed com-
putation by DWARF. Note that in this single experiment,
we address two distinct mobile scenarios: node exit and
node entry. The latter case demonstrates DWARF’s ability
to add mobile computing resources on-the-fly.

Figure 9 shows the average running time (3 trials) of
our SID application across different tour durations. First,
we present two control measurements which supply the
bounds to the running time: with a single node, the job
takes 23.7 seconds to complete (upper bound; pink bar);
with two nodes, it takes 13.5 seconds to complete (lower
bound; green bar). The blue bars represent the running
times across various tour durations, and show that running
time decreases with faster tours (i.e., earlier return of the
mobile node). This demonstrates that, upon return, the
mobile node was able to help speed the computation. Note
that even for the longest tour (41s), where the mobile node
returned after the stationary node had finished the entire
computation, we still experience speed-up. This is because
the mobile node remains in range at the beginning of the
tour and is able to complete some tasks and report their
results before moving out of range.
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Figure 9: Average running time decreases with faster
tours of the mobile node in Figure 8. The mobile node
helps the computation even after it returns from beyond
communication range.

7. FUTURE WORK

There are several areas of work we plan to address
in the future. First, the reliable broadcasting primitives
used by our implementation leave room for efficiency
improvements in two ways. First, the protocol overhead
can be reduced by using an advanced coding scheme such
as network coding, which, according to recent results by
Ghaderi et al. [11], provides on the order of log n reduction
in transmission attempts with a broadcast group size of
n. We have done experiments demonstrating the use of
network coding in speeding up content distribution over
ad-hoc wireless networks [12]. Secondly, in some cases
the full reliability of broadcast may be unnecessary—say,
when only a subset of nodes is used to provide a degree
of redundancy or parallelism for an operation.

The DWARF framework currently assumes the set of
tasks to be completed is static. This means that all of
the tasks making up an application are computed by
the distributed system. However, in some cases, once an
application arrives at some result, it becomes unnecessary
to complete any remaining tasks; therefore, a mechanism
taking advantage of wireless broadcast is needed whereby
an application can quickly communicate such stopping
conditions to the runtime system in order to let it prune
any redundant work scheduled for execution. For example,
in the aggregation phase of our speaker ID application, a
node will not need to broadcast its scores when it has heard
better scores from other nodes. In some parallel computing
problems such a mechanism could reduce the running time
by orders of magnitude, leading to superlinear speed-up.

Further work is needed on managing the computation
group memberships, that is, discovery of the set of nodes
that participate, arrive, and leave from a computation.
Protocols to address this issue would be based on neighbor-

hood discovery schemes along with heuristics to determine
when poorly connected nodes ought to be shed from the
computation group.

An important, little-explored avenue of future work
involves the use of location information in distributed
computing. For example, node locations obtained via a
GPS receiver available on mobile nodes or a multi-sensor
geolocation scheme could be used to track mobility pat-
terns and then form more reliable computing groups. Other
uses could involve location-aware scheduling, where node
cluster structure could drive the assignment of tasks to
nodes such that small cuts of the task dependency graph
fall between well-connected node clusters.

There are several areas in the security arena that need
to be addressed, distinguished by the type of attack they
defend against. To protect against eavesdropping on the
system, all protocol communications would need to be
encrypted. Padding would be needed to defend against
traffic analysis. Routing schemes that employ detailed
wireless channel state information could help resist jam-
ming attacks, in case that the jamming only affects a part
of the network. Lastly, a group authentication scheme is
needed to admit new nodes to the system.

The task scheduling algorithm of DWARF should be ex-
panded to take into account additional resource constraints,
such as battery power, CPU power, or communication
bandwidth. For example, it might be desirable to place
a heavier load on nodes with more energy reserves, or
an external power source, and omit nodes whose energy
reserves fall below a certain critical threshold.

Finally, we plan to expand our experimental activities to
a testbed with a larger number of mobile handheld nodes,
such as the recent MID devices based on the Intel Atom
platform [13]. Such devices are small enough to support
interesting application scenarios, while still equipped with
powerful wireless computation networking components
such as several radios, GPS, cameras, and touch screen
interfaces.

8. CONCLUSION

In this work, we present a Distributed Wireless Appli-
cation Runtime Framework (DWARF) and demonstrate its
capabilities via an example distributed speaker identifica-
tion application. Our major contributions are as follows.

First, we have shown that such applications, when
deployed on DWARF, can experience significant speed-
up due to parallelization. In general, applications that
require data broadcasts are particularly well-suited to our
framework, since DWARF’s wireless backplane utilizes
the medium’s broadcast advantage to reduce I/O overhead
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in data distribution. Further, we have demonstrated that
802.11b/g at 11Mbps is more than sufficient to support
compute-bound applications such as the distributed speaker
identification problem considered in this paper. Addition-
ally, application porting or development on DWARF is
simple for application programmers, requiring only task
binaries and a task dependency graph be supplied.

Second, DWARF-based applications automatically gain
the fault-tolerant capabilities inherent to the framework.
DWARF’s fault-tolerant task scheduler enables computa-
tions to complete in spite of node failures (e.g., resulting
from battery depletion in mobile nodes or traveling out of
radio range) while making efficient use of the available
parallelism to decrease running time. DWARF recovers
from transient failures of wireless links resulting from
fading and radio interference by automatically detecting
task interruption. Moreover, DWARF can reassign tasks to
other nodes upon node departure and re-tasking nodes upon
return. The fault-tolerant scheduler accomplishes all these
while honoring task dependency conditions and giving
priority to critical tasks whose completion will allow a
relatively larger number of tasks to be run in parallel in
the future.

Third, and most importantly, we demonstrate two im-
portant interactions between our architecture and the al-
gorithms it can support. First, the distributed nature of
DWARF naturally lends itself to algorithms where sensor
diversity can be exploited. In our distributed speaker iden-
tification implementation on DWARF, the SNR election
plays a critical role in calculating accurate results. Without
leveraging this advantage of sensor diversity, even the most
cleverly-designed signal processing algorithm would be
ineffective if sensor data with very low SNR were used as
input data. DWARF is architected such that applications
can easily capitalize on such diversity. Second, sensor
diversity coupled with local wireless ad-hoc networking
enables nodes to share sensor data and to quickly make
local decisions without the need for communicating with
a centralized arbiter over a slower, possibly unreliable or
unavailable, long-haul connection (e.g., satellite). This is
particularly advantageous to applications at the tactical
edge, where computation results must be quickly produced
and are typically consumed locally. Where data transmis-
sion over a long-haul link is necessary, DWARF can be
used to pre-process and reduce the data, making more
effective use of such narrow, shared uplinks.
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