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ABSTRACT

In this paper we introduce a spectral-based method
for validating sensor nodes in the field via clustering of
sensors based on their measurement data. We formalize
the notion of peer consistency in measurement data by
introducing a notion called “sensor indexing” and model
the problem of identifying bad sensors as a problem of
detecting peer inconsistency. Suppose all sensors have
peers. Then by examining a certain number of leading
eigenvectors of the measurement data matrix, we can
identify those bad sensors which are inconsistent to peer
sensors in their reported measurements. Further, we show
that by deemphasizing or removing measurements obtained
from these bad sensors we can improve the performance
of sensor-based applications. We have implemented this
spectral-based peer validation method and measured its
performance by simulation. We report the effectiveness of
the method in identifying bad sensors, and demonstrate
its use in deriving accurate solutions in a localization
application.

I. INTRODUCTION

In a distributed sensor application, the goodness of
a sensor in the field may change due to a number of
reasons. For example, sensors may malfunction or become
damaged, get blown by the wind to a position where radio
reception is poor, enter into a function-reducing mode due
to low battery power, or even be maliciously compromised.
This means that we may need to validate sensors periodi-
cally, in order to identify those which no longer function as
expected. Then in the associated sensor-based applications,
we can discount or remove measurements from these bad
sensors.

In many circumstances it would be impractical to bring
calibration instruments to the field for conducting sen-
sor validation procedures on the spot. Fortunately, in a
distributed sensor application, there are potentially many
sensors in the environment, so they can check each other’s
validity.

In this paper, we present a spectral clustering approach
to validating sensors by peers in the field. We show that
by clustering sensors based on their measurement data we
can identify bad sensors with a high degree of reliability.

Once we remove these bad sensors, we end up with a
smaller sensor set and also more appropriate sensor data
for applications. Consequently, the sensing results may
become more accurate while eliminating the wasted com-
puting and communication with bad sensors. Furthermore,
this could lead to a stealthier sensing environment and
also improved protection against malicious tampering. Our
approach of validating sensors in the field, followed by
proper deemphasis or removal of measurement data from
bad sensors departs from other approaches in distributed
sensor applications where no attempts are made to remove
bad sensors or discount their data, and emphasis is instead
placed on being tolerant against erroneous measurements
from bad sensors (e.g., those in localization with MDS [1]
and SISR [2]).

At the heart of our approach is a new formulation,
captured by the notion of “sensor indexing,” that allows
us to express formally measurement consistency expected
from “peer” sensors. We will first describe this formulation
and give an overview on our peer-based approach of
identifying bad sensors in Section II. In Section III we
will describe the basic idea of spectral-based clustering and
illustrate it with a simple example. In Section IV we will
present a one-dimensional (1D) application of identifying
bad sensors using 1D sensor indexing. Then, in Section V
we will present a two-dimensional (2D) localization ap-
plication using a 2D sensor indexing, along with some
simulation results on performance improvements resulting
from discounting identified bad sensors. We will conclude
in Section VI.

II. MODELING EXPECTED MEASUREMENT
CONSISTENCY OF SENSORS

In this section, we formalize the expectation that those
sensors which have similar sensing and system character-
istics and are situated in close proximity with a similar
environment will report similar measurement data. To this
end, we use “sensor indexing” to capture these similarities
in sensors. More precisely, we summarize below some
concepts, assumptions and terms used in this paper.
• There are a number of reference targets, or simply

targets, on which sensors report measurements. We
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call the measurements of a sensor on a target the
weight for this sensor-target pair.

• Sensors can be clustered based on their measurements
so a cluster contains those sensors which report simi-
lar measurements. We call these clusters measurement
clusters.

• Sensors can be mapped into an index space. Peer
sensors or simply peers, are those which have nearby
indices according to some distance metric for index
pairs.

• Sensors can be clustered based on their indices so a
cluster contains sensors with nearby indices, i.e., peer
sensors. We call these clusters peer clusters.

• It is assumed that the indexing scheme satisfies the
property that peer sensors will report similar measure-
ments on the targets. Moreover, for any given mea-
surement cluster, there is a corresponding peer cluster,
and vice versa. (Sections III, IV and V describe some
1D and 2D indexing schemes.)

• It is assumed that each sensor has sufficiently many
peers.

• A sensor whose measurement and peer clusters coin-
cide is called a good sensor. Otherwise the sensor is
called a bad sensor.

Choosing a proper granularity of measurement clusters
(and the corresponding peer clusters) is a design choice.
One may divide a measurement cluster into smaller ones,
by recognizing finer measurement differences among sen-
sors. (The method of Section IV-A examines additional
leading eigenvectors for finer measurement clustering).
Generally speaking, based on finer-grain measurement
clusters, we can increase the success rate of catching
bad nodes, but possibly at the expense of more false
positives. After a certain point, decreasing the cluster size
will have diminishing returns. When this point is reached,
we may use other methods of identifying additional bad
sensors without decreasing cluster sizes. For example, in
Sections IV and V we identify sensors on the edge of a
measurement cluster as bad sensors.

To illustrate this concept of sensor indexing, we con-
sider a simple example described in [3], where the sensor
property utilized as the sensor index is the sensors’ antenna
polarization angle. In this case, peer sensors are those
which have similar antenna polarizations. Suppose that the
received signal strength (RSS) values reported by a sensor
on some target correlate with the matching degree of the
antenna polarizations of the sensor and the target. Then,
those peer sensors which are in good working conditions
are expected to report similar RSS measurements on the
same targets.

Like granularity of measurement clusters, choosing a
proper sensor indexing scheme is a design choice. For
a given sensor-based application the indexing scheme

should be related to sensing metrics used so peer sensors
can be expected to perform similarly for the application.
For example, for a 2D localization application using RF
ranging measurements, it would be appropriate to index
sensors based on their 2D geographical locations.

Next, we describe our spectral-based method for form-
ing measurement clusters of sensors and how we use these
sensor clusters to identify bad sensors. We will first form
a measurement matrix A where entry aij of A is the mea-
surement weight for the sensor-target pair (sj , ti) defined
above. We will then perform spectral analysis on ATA,
since the eigenvectors of ATA characterize similarities
among sensors in their measurement data. Based on the
eigenvectors of ATA, we will cluster sensor nodes using
methods such as those described in Section IV-A.

From the above, it follows that, to identify bad sensors,
we will form the measurement cluster to which a sensor
belongs, and then determine if the measurement cluster
agrees with the corresponding peer cluster. We assume
that there are plentiful sensors so that each sensor has a
sufficient number of peers for the bad sensors identification
method. It follows from the above discussion that a sensor
is deemed to be bad if the sensor satisfies one of the two
conditions:

(C1) the sensor is in a small unique measurement cluster,
or

(C2) the sensor is in a small out-of-place component (in
the index space) of a large measurement cluster.

Therefore the essence of the clustering problem studied
in this paper is to identify these two conditions for sensors.
In the rest of the paper, we show that we can achieve this
objective by examining leading eigenvectors of ATA.

III. EXAMPLE OF SPECTRAL CLUSTERING OF SENSORS

To illustrate our approach of computing measurement
clusters of sensors based on spectral clustering we present
a simple example where sensors and targets are placed
on a line, and sensors report RF measurements on the
targets. We deliberately simplify the problem to permit
easy visualization and interpretation of clustering results,
while still capturing essential issues of interest. When
extending this result to real-world applications, various
details may need to be added, such as more detailed path
loss models or antenna radiation patterns.

In this example there are 19 sensors and 3 reference
targets, numbered 0-18 and 0-2, respectively. Further, sen-
sor i and target j are at locations 5i and 45j, respectively.
We model sensor measurements of targets as a function
of the location difference; that is, the measurement of
target j obtained at sensor i is a function of the difference
between their location values. In particular, we use a step
function shown in Figure 1. (Use of a step function makes
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Fig. 1: Function of location difference used to create
sensor-target weights in the example of Section III.
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Fig. 2: The measurement matrix A used in example of
Section III.

measurement similarities among sensors more visible.)
Based on this function we give a measurement weight for
each sensor-target pair, making up the measurement matrix
A shown in Figure 2. (This example is a parallel to one
used in [3] where the RF measurement of a sensor on a
target is a function of their antenna polarization difference
rather than location difference.)

Given a measurement matrix A, we will examine a
certain number of leading eigenvectors of ATA to cluster
sensors in terms of their measurement similarities with
respect to the targets. The number of leading eigenvectors
needed is related to the number of leading eigenvalues
of ATA which are significantly larger than the rest. For
example, for the weight matrix A in Figure 2, the leading
three eigenvalues are 4.04, 2.52 and 2.52, and the rest are
zero. It turns out that these leading eigenvalues are related
to the structure of A, such as its hub structure, which
dictates how quickly the leading eigenvalues drop in their
magnitude [4]. For matrix A of Figure 2, ATA has three
leading eigenvalues because there are three targets in the
system.

We now consider the first and second eigenvectors of
ATA, as shown in Figures 3 and 4, respectively. (The first
eigenvector is also called the principal eigenvector.) At first
glance, it may be difficult to see immediately how these
two eigenvectors relate to sensor measurements which
are functions of location differences between sensors and
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Fig. 3: The principal eigenvector of ATA, with values of
its elements (also called components) shown.

targets. This will become clear when we look at the
bipartite sensor-target graph of Figure 5, where the colored
edges represent measurement weights of Figure 1. That is,
color-coded scores are blue = 1, green = 0.5 and red = 0.1.

First, let us look at the principal eigenvector of Fig-
ure 3. A common way to interpret its components is that
they represent the stationary probabilities that a random
traversal of the graph of Figure 5 will land at any given
sensor node. Indeed, one can show (e.g., by the Perron–
Frobenius theorem [5]) that the components of the princi-
pal eigenvector of ATA are all positive (or equivalently, all
negative) as in Figure 3. The values of these components,
which correspond to sensor nodes, reflect connectivity as
well as edge weights of the graph. However, there could
be “aliases” in the sense that multiple clusters may attain
the same component value in the principal eigenvector. For
example, in Figure 3, sensors 4, 5, 13 and 14 all have value
.05, and thus the eigenvector implies that {4, 5, 13, 14} is
a cluster. However, in Figure 5 we see that sensors 4 and 5
should form a cluster separated from that of sensors 13 and
14, since the former has a connection to target 0 while the
latter has a connection to target 2. Similarly, the principal
eigenvector of Figure 3 mistakenly identifies clusters {2,
3, 15, 16} and {0, 1, 17, 18}.

Next, we look at the second eigenvector of Figure 4.
It has seven distinct values. These imply seven clusters:
{0, 1}, {2, 3}, {4, 5}, {6, 7, 8, 9, 10, 11, 12}, {13,
14}, {15, 16}, and {17, 18}. One can check that the
second eigenvector has now fixed all the mistaken clusters
identified by the first eigenvector, except for mistakenly
identifying {6, 7, 8, 9, 10, 11, 12} as a cluster due to
aliasing. We see from Figure 5 that although all these seven
nodes connect to target 1, sensors 8, 9 and 10 connect to
target 1 with blue connections, while sensors 6, 7, 11 and
12 with green connections. Thus {8, 9, 10} and {6, 7,
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Fig. 4: The second eigenvector of ATA with values of
its elements (also called components) shown. Note that
components here correspond to sensor nodes.
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Fig. 5: Bipartite sensor-target measurement graph, where
color-coded scores are blue = 1, green = 0.5 and red =
0.1. The seven sensor clusters shown are those found by
the second leading eigenvector of Figure 4. Note that with
the help of the principal eigenvector of Figure 3, cluster
4 will be correctly partitioned into the two clusters {8, 9,
10} and {6, 7, 11, 12}.

11, 12} should form two clusters. One can check that this
partition of {6, 7, 8, 9, 10, 11, 12} into these two clusters
is actually implied by the principal eigenvector of Figure 3,
as the two groups attain two distinct values 0.25 and .5.
Thus, for this example, by using both the principal and
second eigenvectors together, we have correctly obtained
all the eight clusters: {0, 1}, {2, 3}, {4, 5}, {8, 9, 10},
{6, 7, 11, 12}, {13, 14}, {15, 16}, and {17, 18}.

We have seen in this example that the first and second
eigenvectors complement each other, in the sense that each
can fix the alias problems of the other. This phenomenon is

not an accident. Without loss of generality, we consider the
case that eigenvectors are computed by the power method.
Note that because the matrix A has non-negative entries,
using a positive initial vector for the power method results
in the principal eigenvector having aliased values when
the underlying graph is a symmetric bipartite graph, as in
Figure 5. Being orthogonal to the principal eigenvector,
the second one must contain both positive and negative
components. As a result, the second eigenvector, computed
by the power method starting with an initial vector of both
positive and negative values, does not suffer from the same
alias problems as the first one. However, due to cancella-
tion resulting from combining positive and negative values,
the second leading eigenvector may suffer from other alias
problems, which the first one does not share since all
its values are positive. This means that the principal and
second eigenvectors can fix each other’s aliases. (We note
that the use of leading eigenvectors in this manner is
a technique also known to multidimensional scaling, a
statistical method for computing data similarity. [6])

Using this joint approach of principal and non-principal
eigenvectors, we have a general method of automatically
finding measurement clusters of sensors from the measure-
ment matrix.

IV. APPLICATION 1: IDENTIFYING BAD SENSORS
USING 1D INDEXING

To illustrate our approach of using spectral clustering
for identifying bad sensors, we consider a model 1D
scenario. There are 80 sensors on a line performing RF
measurements of each other; thus, the set of sensors
themselves also serves as the set of reference targets. A
sample placement with four 20-node clusters is depicted in
Figure 6. Among this set of sensors we wish to identify the
bad ones. We will index the sensors by their 1D locations
computed by some localization algorithm, making this an
example of 1D indexing.

We use a standard path loss function, 1/d4, to model
the measurement of a target by a sensor, where d gives
the distance from the sensor to the target. Furthermore,
to model the measurement errors we modify the path
loss by a random factor α ∼ N (µ, σ). We denote the
distribution parameters µ and σ as either µgood, σgood, or
µbad, σbad, representing good and bad links, respectively.
Given the sensors’ ground truth positions we generate
a measurement for each pair of sensors, and form the
measurement matrix A. For instance, Figure 7 shows the
subset of measurements obtained by just one sensor.

As described in Section III we will examine a certain
number of leading eigenvectors of ATA to identify mea-
surement clusters of sensors in terms of their measurement
similarities with respect to the targets. The number of lead-
ing eigenvectors needed is related to the number of leading
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Fig. 6: Depiction of a 1D sensor placement scenario with 4 clusters of 20 sensors each.
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Fig. 7: The signal strength measurements taken at sensor
1 of all other sensors placed in four clusters. These
measurements constitute the first row of the measurement
matrix A.

eigenvalues of ATA which are significantly larger than the
rest. For example, for the weight matrix A corresponding
to Figure 6, assuming no error, the leading four eigenvalues
of ATA are 117, 104, 97 and 93, while the rest are
38.6 or smaller. Matrix ATA has four significant leading
eigenvalues due to the presence of the four clusters in
the sensor placement. Three of the corresponding leading
eigenvectors of ATA are depicted in Figure 8.

A. Sign-based Spectral Clustering

Building on our arguments in Section III, we now de-
scribe a sign-based spectral clustering, which will provide
a straightforward way to compute measurement clusters of
sensors given a set of leading eigenvectors of ATA. Sup-
pose that we use the k leading eigenvectors. Then multiple
sensors will be clustered together if their corresponding
components in these k eigenvectors have matching signs.
(Note that k leading eigenvectors can specify no more than
2k−1 clusters, given that the principal eigenvector always
contains components of the same sign.) As an example,
consider the sign-based process of clustering sensors in
Figure 6 with k = 3; the 3 leading eigenvectors are in turn
shown in Figure 8. Indeed, we can see that the component
signs over the 3 eigenvectors are unique for each of the
four sensor clusters identified. It is expected that the sign-
based clustering generally gives coarse clustering, since
only signs of component values rather than their actual
values are used.

In practice, sign-based clustering is robust against those
sensor measurements which may have significant variation.
In this case, component values of eigenvectors will have
large variance so their precise values cannot be used in
determining clustering. Sign-based clustering is a method
to address this uncertainty in sensor measurements.

B. An Illustrative Sensor Validation Example

In this section, we first illustrate how our spectral
clustering method can identify a bad sensor for the model
1D application. We then discuss some considerations in
designing a spectral clustering scheme for detecting bad
sensors.

Suppose that one of the sensors in Figure 6 malfunc-
tions, and obtains measurements of other sensors polluted
with noise α ∼ N (µbad, σbad) larger than for the other
sensors. An instance of the weights from just sensor 1 to
all other sensors, including the bad sensor, are shown in
Figure 9.
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x
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10-1
Weights for sensor #1, range=0-0.0504313

Fig. 9: The signal strength measurements taken at sensor
1 of all other sensors placed in four clusters, where one of
the other sensors (around x=27) is malfunctioning.

Let A be the measurement matrix including bad mea-
surements of the bad sensor. Applying the sign-based
spectral clustering method of Section IV-A to the ATA,
we obtain measurement clusters shown in Figure 10b.

We assume that the sensors do not know their own
locations; instead, they must compute them via localization
from the ranging measurements. Figure 10a shows the
ground truth locations and the position of the malfunc-
tioning sensor, while Figure 10b shows the result of
localization using the MDSR [6] algorithm.
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(a) Elements of the first eigenvector.
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(b) Elements of the second eigenvector.

0 20 40 60 80 100 120 140
x

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15
Eigenvector #3; value range: [-0.156451, 0.120824]

(c) Elements of the third eigenvector.

Fig. 8: Elements of the 3 leading eigenvectors of ATA for the sensor placement of Figure 6.

(a) Actual sensor placement (ground truth). The single malfunctioning sensor is indicated by an arrow.

(b) Four measurement clusters (green, yellow, blue and red) determined by the sign-based spectral clustering. Sensors are shown at locations
computed by MDSR from ranging measurements. Note the poorly localized bad sensor on the far left.

Fig. 10: Depiction of a 1D sensor placement scenario with 4 clusters.

Let us use the computed sensor location as the index.
Given the computed sensor locations and measurement
clusters shown in Figure 10b, we now apply conditions
C1 and C2 of Section II to classify bad sensors as follows.
For condition C1, we deem a sensor bad if it resides in
a standalone cluster smaller than a certain threshold size
Smin. For condition C2, we classify a sensor as bad if it is
one of the τ % sensors furthest away from the centroid of
the measurement cluster which contains the sensor, where
τ is some small threshold. As we can see in Figure 10b,
the bad sensor indicated by the arrow is at the edge of its
cluster, so it can be correctly identified even with a minimal
τ . Note that the distance metric used here is that of the
index space as described in Section III. In this example,
the distance for a pair of sensors is the absolute difference
of their locations computed by MDSR.

This specific way of detecting bad sensors based on
condition C2 relies on the following two assumptions.
First, measurement clusters are stable under a few bad sen-
sors. Second, caused by measurement errors the computed
location of a bad sensor is normally pushed to the edge of
its measurement cluster in the index space. We will have
further discussion on this in Section V.

C. Simulation Results on Large Systems

In this section, we present simulation results on the
model application with 400 sensors. We assume that the
sensors are evenly partitioned into four groups of 100.
We further assume that some randomly selected sensors
are bad sensors, in the sense that all their measurements

of other sensors have a random measurement error α ∼
N (µbad, σbad). That is, if the true measurement for a
sensor-target pair is w, then the observed one is αw. We
used the error parameters µbad = 10 and σbad = 3.2.
For all other links where both transmitting and receiving
sensors are good, we omitted the error term; that is,
µgood = 0 and σgood = 0. The purpose of the simulation is
to assess the effectiveness of our spectral clustering method
in identifying these bad sensors. In the simulation, there
are 50 bad sensors.

Let B be the ground truth number of bad sensors input
to the simulator, T the total number of sensors deemed as
bad sensors by our clustering method, and B∗ the number
of sensors that the clustering method correctly identified
as bad. Hence, B∗ ≤ B and B∗ ≤ T . The higher the
detection rate B∗/B is, the better the method is. Note that
T −B∗ is the number of false positives. We are interested
in raising the detection rate B∗/B, without raising the
false positive rate (T − B∗)/T significantly. But usually
there is a tradeoff between the two factors.

We study performance under varying numbers k of
leading eigenvectors used in the spectral clustering method.
In the simulator we assume that the minimum cluster size
Smin from Section IV-B is 2. Meanwhile, we explore a
range of values for the parameter τ , or the fraction of
sensors furthest from a cluster center which we will declare
bad. Increasing τ leads to identifying more bad nodes, but
usually at the expense of more false positives.

The following observation supported by simulation re-
sults in the rest of this section (see Figure 13) and in
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Section V, is worth mentioning. Before a certain threshold
(e.g., 6) on the number k of leading eigenvectors used in
spectral clustering is reached, when we increase k, we can
catch more bad sensors while keeping the τ value constant.
This means that by increasing k, we can increase the bad
sensor detection rate, without increasing the false positive
rate. This result follows from the fact, noted earlier in
Section III, that use of more eigenvectors (before reaching
some threshold on k) will give finer-grained measurement
clusters, which in turn will allow us to identify bad sensors
which have smaller errors in their computed locations.

Figures 11 and 12 show results on two performance
metrics: the bad sensor detection rate and false positive
rate, respectively, with respect to the τ threshold. Addi-
tionally, Figure 13 shows the effect of the number k of
leading eigenvectors used on detection and false positive
rates. We note the following from the figures:

1) When k increases, the detection performance im-
proves for each value of τ . When k is at its highest
value of 14, the best performance is achieved (see
Figure 11).

2) For certain values of k, the false positive rates as a
function of τ exhibit a minimum; in Figure 12 these
minimums are reached around τ = 10% to 15%.

3) For a fixed τ , there are values of k which give
minimal false positive rates; for example, for τ =
10%, the lowest false positive rate in Figure 13 is
reached for k = 6.

4) Increasing k past that giving the minimum false
positive rate only provides a minor increase in detec-
tion rate. Given that the false positive rate increases
rapidly, the best value for k is close to the number of
major sensor clusters, or, equivalently, the number of
leading eigenvalues significantly larger than the rest.

V. APPLICATION 2: 2D LOCALIZATION WITH 2D
SENSOR INDEXING

After having described in the previous section the
method of detecting bad sensors using 1D indexing, we
now have enough context and terminology to describe
Application 2, where we extend the method to 2D indexing
and show its utility in improving the performance of a 2D
localization application.

We again assume that there are N ranging sensors
which take measurements of received RF signal strength
at each other, but are now placed in a 2D space. As in
Application 1, we will form the measurement matrix and
use spectral clustering methods to identify bad sensors
whose measurements are inconsistent with those of peer
sensors.

Since received signal strength reflects geographical lo-
cations of sensors, it would be natural to define the 2D
index of a sensor to be its geographical 2D location. But
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Fig. 11: Number of bad sensors, out of 50, identified for
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for the number of leading eigenvectors k used for spectral
clustering.
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Fig. 12: False positive rate of the spectral clustering
method under increasing threshold τ , for a range of number
k of leading eigenvectors used for spectral clustering.

we cannot assume that we know sensors’ 2D locations, for
otherwise we would not need to do the localization applica-
tion in the first place. Also, if we know the 2D locations
of the sensors, we could have simply used this location
information to check if signal strength measurements are
compatible with transmission distances and, accordingly,
validated or invalidated the associated sensors.

Instead, like the 1D indexing in Section IV, we will
define the 2D index of a sensor to be its computed
2D location, obtained from a localization method (e.g.,
MDSR) using the given measurement matrix as input.
Consider a bad sensor, X , which belongs to a measurement
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cluster of sensors. Suppose that most of the other sensors
in the measurement cluster are good. Being in the same
measurement cluster, these good sensors will have similar
measurements with respect to sensors outside the cluster.
Thus we can expect that a localization method will place
these good sensors close to each other, resulting in a peer
cluster in the index space. But for X , being a bad sensor,
the computed location tends to be pushed away from those
of the good nodes. Thus in the index space, the bad sensor
X is likely to be on the edge of the measurement cluster
containing X .

By this reasoning, our method of identifying bad sen-
sors for the 2D localization application works as follows:

1) Based on the measurement matrix, localize sensors
using some standard localization method.

2) Each sensor is given a 2D index which is its com-
puted location obtained from Step 1.

3) Based on the measurement matrix, compute mea-
surement clusters of sensors using a spectral cluster-
ing method as described in Section IV-A.

4) Identify bad sensors by examining how measurement
clusters are distributed in the 2D index space of
sensors. More specifically, check conditions C1 and
C2 of Section II; for this purpose, we again employ
the techniques from Section IV-B using thresholds
Smin and τ to catch bad sensors.

It is important to note that for the purpose of providing
sensor indexing, the localization method for step 1 is only
required to preserve measurement clusters for good nodes.
Other metrics, such as absolute accuracy of computed
locations are not important. Thus computed measurement
clusters could be displaced, rotated or flexed from the their
ground-truth locations. Well-known localization methods,

such as MDS [1], normally perform well under this relaxed
criterion, and thus can be successful in providing the 2D
sensor indexing.

A. Simulation Results on Using Measurement Clusters of
Sensors in Identifying Bad Sensors

We performed a simulation study on the effectiveness of
using measurement clusters of sensors in identifying bad
nodes. We created four groups of 100 nodes in the corners
of a square region. Within each group the 100 sensors had
locations chosen uniformly at random, resulting in node
locations such as those depicted in Figure 14.

0 5 10 15 20
0

5

10

15

20

Fig. 14: 100 nodes each are placed uniformly at random
into 7× 7 regions in each corner.

From these ground truth locations we computed syn-
thetic RF ranging measurements using an empirical two-
ray propagation model trained on real-world data [2]. Then,
we chose a random sample of B = 50 sensors to be bad
nodes. The error behavior of bad nodes was identical to
that in Section IV, that is, measurements in both directions
involving a bad node would be attenuated by a random
variable α ∼ N (10, 3.2). Such errors represent some
persistent effect such as the attenuation due to lossy cables
or antenna connectors, shadowing, etc. The ground truth
measurements combined with bad node errors constituted
the measurement matrix A.

We performed the 4 steps of identifying bad nodes listed
earlier in this section as follows.

1) Based on the measurement matrix A, we com-
puted relative sensor locations using the MDSR [1]

8 of 10



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  10  20  30  40  50  60  70  80  90  100

N
u

m
b

e
r 

b
a

d
 n

o
d

e
s
 f

o
u

n
d

 (
o

u
t 

o
f 

5
0

)

Parameter τ

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8
k = 9

k = 10
k = 11
k = 12
k = 13
k = 14

k=4

k=3

k=2

k=1

Fig. 15: Number of bad sensors, out of 50, identified for
increasing values of parameter τ and a range of values
for the number k of leading eigenvectors used for spectral
clustering.

method. MDSR operates in two steps; first, a classic
multi-dimensional scaling (MDS) step [6] computes
an approximate solution from the measurement ma-
trix A. This step requires no initial solution. The
outcome of MDS then serves as an initial solution for
the second step, least squares optimization (LSQ)1,
which produces a more accurate final result. For the
purpose of indexing, we only performed the first,
MDS step.

2) The computed location of each sensor was used as
its 2D index.

3) Using sign-based spectral clustering on matrix
ATA, we computed measurement clusters of sen-
sors. We varied the number of eigenvectors k used
in this process between 1 and 14.

4) We identified bad sensors as those sensors which are
either (1) in a measurement cluster of size 1, or (2)
within each measurement cluster, in the subset of
τ% of sensors furthest from the cluster centroid. We
varied the parameter τ% between 0 and 100%.

We measured the performance of each 4-step run using
similar metrics as in Section IV-C, that is, the detection
and false positive rates. We present performance results in
these metrics in Figures 15 and 16 with respect to the τ
parameter. Additionally, in Figure 17 we plot results on
the same metrics with respect to k.

The most notable property of these results are the large
increases in the number of bad sensors detected as τ

1In fact, MDSR performs a weighted least-squares optimization, but for
the results reported in Table I, we chose not to use it since it performed
worse than unweighted LSQ on our input.
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Fig. 16: False positive rate of the spectral clustering
method under increasing threshold τ for a range of number
k of leading eigenvectors used for spectral clustering.
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Fig. 17: Detection rate and false positive rate plotted
against number k of leading eigenvectors used for spectral
clustering for three representative values of τ .

increases in the region τ ≤ 20, especially for the first few
smallest values of k (see Figure 15). This indicates that
the density of bad nodes is indeed larger on the edge (in
the index space) of the measurement clusters. Furthermore,
just like in the 1D scenario of Section IV, Figure 17 shows
that, at first, increasing k decreases the false positive rate;
the reason is that the clustering with too few eigenvectors
generates too few clusters, and consequently fails to expose
some cluster border areas with high densities of bad nodes.
Finally, increasing the k parameter starts to increase the
false positive rate once the bad node-rich border areas
have been exhausted. The minimum false-positive rate is
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again achieved near the number of significant eigenvectors
induced by the clustering structure of the sensor placement.

The bad node classification can be useful to applica-
tions; for example, a localization algorithm might weight
down those measurements associated with bad nodes to
avoid excessive distortion of the results. We tested this
process by modifying the LSQ step of MDSR to use
weighted least squares optimization, where any distance
constraints involving a bad node are weighted down by
some factor β < 1; we used β = 1/100 in our simulations.
We evaluated the performance of unmodified MDSR and
the weighted MDSR (denoted WMDSR for short) at the
known good nodes only; we report the outcomes in Table I.

#Bad Nodes 5 10 15 20 25
% Improvement WMDSR over
MDSR

15.3 10.6 15.6 6.8 5.6

TABLE I: The percent decrease in localization error of
MDSR of known good nodes achieved by WMDSR,
where the nodes identified as bad by sensor clustering
are weighted down. The values are averages over 10
runs. Results are reported for the number of bad nodes
increasing from 5 to 25.

VI. CONCLUSION AND FUTURE WORK

We have presented a spectral clustering approach to
validating sensors via their peers. The work is motivated
by the fact that it is often difficult to use instruments to
validate equipment in the field and, as a result, peer-based
validations can be important in these situations. We have
modeled the problem as a clustering problem in the sense
that sensors in the same environment will be clustered
together and will behave similarly as far as the reference
targets are concerned, while a bad sensor must be on the
edge (in the index space) of the same cluster, or in a
different measurement cluster. Thus, we can identify bad
sensors through the clustering structure.

A key result of this paper is on the use of leading
eigenvectors in forming measurement clusters of sensors.
Although spectral-based clustering is well known in the
literature [7], our use in validating sensors in the field
appears to be novel. More specifically, to the best of our
knowledge, our formulation of sensor indexing and our
method of identifying bad sensors using conditions C1 and
C2 of Section II, are new. Our application of sign-based
spectral clustering to finding measurement clusters of
sensors also appears to be new. As shown in our simulation
experiments involving 1D and 2D indexing, the method
can identify bad sensors with high accuracy and low false
positive rate. Furthermore, in the 2D indexing example,
we have shown that the performance of the corresponding

sensor-based application improved when nodes invalidated
by our method are weighted down.

The sensor validation methodology proposed in this
paper is quite general, and opens up a number of avenues
of future work. For instance, there is the question of which
specific sensor properties to use for indexing. In addition
to the straightforward ones such as those we used, there
might be additional ones based on other sensor modalities,
or certain transforms of the sensing data such as the Hough
transform [8]. Secondly, there could be other potential
clustering methods in addition to the spectral clustering
we used in this paper. For this purpose we plan to evaluate
methods such as k-means clustering, or spectral clustering
using k-means to cluster eigenvectors. Finally, there are
potentially many other sensor-based applications where the
proposed sensor validation approach could be effective;
we are exploring candidate applications such as cognitive
radio spectrum allocation.
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