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Abstract—Spectral analysis is a popular mathematical tool in 
analyzing a variety of network and distributed systems. For a 
special class of networks, called cluster ensembles, which are 
made of interconnected clusters, we can characterize those which 
exhibit strong dominance of the leading eigenvalues in terms of 
the cluster structure. For such systems, only these leading 
eigenvalues and their corresponding eigenvectors will need to be 
examined in studying important properties of the underlying 
system. This paper establishes several bounds on eigenvalue 
separation ratios in terms of the number of clusters, their sizes 
and cluster interconnection topologies. 
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I.  INTRODUCTION 
Spectral analysis is a widely used mathematical tool in 

analyzing network and distributed systems (see, e.g., [2]). 
Given such a system, e.g., a sensor-target measurement system 
(see, e.g., [5]), it's often sufficient to examine only those 
dominating eigenvectors for which the corresponding 
eigenvalues are much larger than the rest of eigenvalues. That 
is, these dominating eigenvectors alone can reveal important 
properties of the system, e.g., its clusters (see, e.g., [5]). From 
the resulting clustering structure one can detect, for example, 
malfunctioning or malicious sensor nodes in sensor network 
applications [5]. 

More precisely, for a given system, let A denote the 
adjacency matrix of the graph reflecting the underlying 
network topology. We are interested in the eigen structure of 
ATA, and in particular, the dominance of the leading 
eigenvalues of AT

In this paper we consider a class of network-based systems, 
called cluster ensembles, which are collections of clusters 
connected via some cluster interconnection network as 
depicted in 

A. 

Figure 1. We show that for some cluster ensembles 
with regular structures, such as alpha-beta cluster ensembles 
defined in Section III, we can characterize those ensembles 
which exhibit strong dominance of the leading eigenvalues in 
terms of their underlying network topologies. These 
characterizations can provide guidelines in designing cluster 
ensembles where such strong dominance is desired. 

 

 
Figure 1.  Cluster ensemble 

 

II. AN EXAMPLE OF CLUSTER ENSEMBLE 
To provide a concrete example, we consider a cluster 

ensemble composed of three clusters interconnected via a 
clique network, as shown in Figure 2. We call those cluster 
nodes which are part of the cluster interconnection network hub 
nodes. Thus, in this example, nodes 10, 11 and 12 are hub 
nodes.  

 
Figure 2. A three-cluster ensemble, where the cluster 

interconnection network is a clique 
 

A more readable drawing of the same cluster ensemble is 
depicted Figure 3, where the cluster interconnection network is 
placed in the center. 

 

III. ALPHA-BETA CLUSTER ENSEMBLE 
We focus on a special class of cluster ensembles, called 

alpha-beta cluster ensembles, which satisfy the following 
properties: 

P1. The cluster ensemble is composed of α identical 
clusters. 
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P2. Each cluster contains one hub node and β non-hub 
nodes. This means that the size of each cluster is β + 
1. 

P3. In the adjacency matrix C of each cluster, columns of 
non-hub nodes are orthogonal to each other. It is 
possible to relax this orthogonality condition so CT

[4]

C 
goes from a diagonal matrix to a diagonally dominant 
one as described in . 

The alpha-beta clusters represent a natural model of 
connecting multiple clusters. Figure 3 depicts an instance of an 
alpha-beta cluster ensemble with α = 3 and β = 3.  

 
 Figure 3. Another drawing of the cluster ensemble in Figure 2. 

It is an alpha-beta cluster ensemble with α = 3 and β = 3.  
 

In what follows, the eigenvalues iλ  of a symmetric matrix
nxn∈P R  are always ordered such that 2 ... nλ λ λ1 ≤ ≤ ≤ . 

When it is useful to indicate that they are the eigenvalues on a 
specific matrix P, we write 2( ) ( ) ... ( )nλ λ λ1 ≤ ≤ ≤P P P
instead. 

 

IV. PREVIEW OF AN EXEMPLAR RESULT 
To have a quick reading on the work of this paper, we 

preview an exemplar result here.  

Note that for an alpha-beta cluster ensemble, the total 
number of nodes is α(β+1). We use m to denote α (β + 1). 
Moreover, we use μ to denote the largest in-degree of a non-
hub node. For the network topology in Figure 3, we can check 
that nodes 2, 5 and 8 are those non-hub nodes which have the 
largest in-degree value of 2. Thus in this case μ = 2. 

Let A be the m×m adjacency matrix of the entire ensemble. 
Then we can show the following (Corollary 4 of Section VI): 

Exemplar Theorem.  

 1( )
( )

m
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We describe some system implication of the Theorem. 
Suppose that we increase β, while keeping α and μ fixed. 
Then, by the Theorem, the separation ratio of the α leading 

eigenvalues and the rest of non-zero eigenvalues will increase 
by a factor of at least β/u. This means that when β is large, 
there are α dominating leading eigenvalues and the number of 
these leading eigenvalues is exactly equal to the number of 
clusters in the alpha-beta cluster ensemble. Thus we have 
succeeded in relating dominance of the leading eigenvalues to 
cluster size. 

To establish the Theorem and other similar results of this 
paper, we will carry out the following steps: 

S1. Consider a general m-node, k-cluster ensemble. 

S2. Partition the adjacency matrix A of the cluster 
ensemble and introduce the cluster interconnection 
submatrix B. 

S3. Derive bounds for the eigenvalues of AT

S4. Consider the special case of alpha-beta cluster 
ensembles, and derive bounds for the eigenvalues of B 
in terms of α and β. 

A in terms of 
those of B. 

S5. Derive bounds on the separation ratio for the α leading 
eigenvalues of an alpha-beta cluster ensemble, 
including the result of the Exemplar Theorem described 
above. 

In the rest of the paper, we present our work in the order of 
these steps. 

V. PARTITIONING AT

For a given m-node, k-cluster ensemble, we consider its 
adjacency matrix A. Since the eigenvalues of A

A AND CLUSTER INTERCONNECTION 
SUBMATRIX 

TA are 
invariant under similarity transformations, we can permute the 
columns of A so that its last k columns correspond to the k hub 
nodes. We express AT

 
A in a partitioned form:  

  
 

=  
 

T
T

T X
A A

X B
 

where T, X and B are (m-k)×(m-k), (m-k)×k and k×k, 
respectively. The B submatrix is of particular interest, as it 
reflects the interconnections among the hub nodes and those 
between the hub nodes and other nodes in their respective 
clusters. We call B the cluster interconnection submatrix. In 
the rest of this section, we will show that the eigenvalues of B 
can contribute to upper and lower bounds for those of AT

 

A 
(see Corollary 1). 
Theorem 1. (Cauchy’s Interlacing Theorem). Let U be an 
m×m symmetric matrix and V a (m-k) × (m-k) principal 
submatrix of U, for 1 ≤ k < m.  Then, for j = 1,… , m-k,  
 

( ) ( ) ( )j j k jλ λ λ +≤ ≤U V U  
 
Proof [3]:  See, for example, page 189 of . 
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Theorem 2.  Let G be an m×m positive semi-definite 
symmetric matrix partitioned as 
 

 
 

=  
 

T

H X
G

X F
 

where H is (m-k) × (m-k) for some 0 < k < m.  Then, for j = 0, 
…, k–1, 
 

( ) ( ) ( ) ( )k j m j k j m kλ λ λ λ− − − −≤ ≤ +F G F H  
 
Proof: ( )m jλ − G  The stated lower bound on follows from 

Theorem 10.1.1 of [6].  The stated upper bound on ( )m jλ − G
can be derived from Aronszajn's inequality on page 64 of [1]. 
 
Corollary 1. Suppose that AT

 

A is an m×m symmetric positive 
semi-definite matrix and that T and B are (m-k) × (m-k) and k 
× k sub-matrices, respectively, defined by 

 
 

=  
 

T
T

T X
A A

X B
  

 Then for   j = 1, …, m–k, 
 

( ) ( ) ( )j j k jλ λ λ +≤ ≤T TA A T A A   
and for j = 0, …, k–1, 

( ) ( ) ( ) ( )k j m j k j m kλ λ λ λ− − − −≤ ≤ +TB A A B T  
 
Proof: The first inequality follows from Theorem 1. The 
second inequality follows from Theorem 2.   
 
Corollary 2. Suppose that 
 

 
 

=  
 

T
T

T X
A A

X B
 

where AT

1 1( ) ( )
( ) ( )

m k

m k m k

λ λ
λ λ

− +

− −

≥
T

T
A A B

A A T

A, T and B are m × m, (m - k) × (m - k) and k × k  ̧
respectively. Then 

 

 
Proof:  By letting j = m – k in the first inequalities expression 
of Corollary 1, we have 

( ) ( )m k m kλ λ− −≤TA A T  
By letting j = k –1 in the second inequalities expression of 
Corollary 1, we have 

1 1( ) ( )m kλ λ − +≤ TB A A  
Corollary 2 follows from the above two inequalities. 

 
Corollary 3. Suppose that 
 

 
=  
 

T
T

D X
A A

X B  
 

where AT

(1) ( )( , ..., )m kd d −=D diag

A, D and B are m × m, (m - k) × (m - k) and k × k 
matrices, respectively, and D is a diagonal matrix 

with (1) ( )... m kd d −≤≤ . Then  

1 1
( )

( ) ( )
( )

m k
m k

m k d
λ λ
λ

− +
−

−

≥
T

T
A A B

A A
 

 
Proof: The result follows from Corollary 2, by noting that

( ) ( ) m k
m k dλ −
− =T in this case. 

VI. ALPHA-BETA CLUSTER ENSEMBLES AND THEIR 
CLUSTER INTERCONNECTION NETWORKS 

 
To establish further bounds on eigenvalues of AT

III
A, we 

consider alpha-beta cluster ensembles as defined in Section .  
Note that an alpha-beta cluster ensemble is a m-node, k-cluster 
ensemble with m = α(β+1) and k = α. Let A be the adjacency 
matrix. Then AT

 
=  
 

T
T

D X
A A

X B

A is α(β+1) × α(β+1), and can be written as: 

 
 

where D, X and B are αβ × αβ, αβ × α, and α × α matrices, 
respectively, and D is a diagonal matrix

(1) ( )( ,..., )d d αβ=D diag with (1) ( )...d d αβ≤≤ .  Since each 
diagonal element of D is the in-degree of a non-hub node, we 
have 

( )  d αβ µ=  
 
where μ is the largest in-degree of a non-hub node. 
 
The cluster interconnection submatrix B reflects the topology 
of the interconnection network connecting hub nodes of the 
clusters. We consider here two specific structures, which 
represent two design extremes. In the first case, hub nodes are 
densely connected as a clique, i.e., every hub node has a 
directed edge to every other hub node, including itself.  In the 
second case, hub nodes are sparsely connected as a ring, i.e., if 
the clusters are labeled as cluster 1 through α then, for each i = 
1, … α, the hub node in cluster i has a directed edge to the hub 
node in cluster (i+1) mod α, and also a directed edge to itself. 
These two cases are depicted in Figure 4. 
 



 

4 
 

 
 

Figure 4. Two cluster interconnection networks: (a) clique and 
(b) ring. Note that the alpha-beta cluster ensemble of Figure 3 

uses the clique interconnection network 
 
 
Theorem 3. Suppose that the hub nodes are connected as a 
clique. Then, for j = 1,… ,α-1, 
 

( )jλ β=B  
and 

2( )αλ α β= +B  
 
Proof: When the hub nodes are connected as a clique, we 
have: 
 

,α αα β= +B J I  
 

where each entry of xα α
α ∈J R is equal to one and 

xα α
α ∈I R is the identity matrix.  

 
Note the vector u = (1, 1, … , 1)T

2α β+

 with all of its components 
equal to 1 is an eigenvector of the cluster interconnection 
submatrix B with the corresponding eigenvalue being 

. Let v be any other eigenvector of B. Since v must 

be orthogonal to u, we have 0ν =C  whereC  is a α × α 
matrix with all its components being α. Since -B C  is a 
diagonal matrix with all its diagonals being β, we have 

( ) ( ) .ν ν ν ν βν= − + = − =B B C C B C  Thus, the 

eigenvalues of B are ( )jλ β=B for 1,..., 1j α= − and
2( )αλ α β= +B .  

 
Theorem 4. Suppose that the hub nodes are connected as a 
ring. Then, for j = 1,… ,α,  
 

( ) 4jβ λ β≤ ≤ +B  
 
Proof: When the hub nodes are connected as a ring, we have 

 

1 1
1 1

1 1
1 1

β
β

β
β

 
 
 
 =
 
 
  

  

2 +
2 +

B
2 +

2 +

 

By the Gershgorin Disc Theorem, eigenvalues of B are 
bounded below by (2 ) 2β+ − and above by (2 ) 2β+ + . 
 
From Theorems 3 and 4, we note that when the clusters 
increase their size β, 1( )λ B will increase and thus, by 
Corollary 2, also the eigenvalue separation. More precisely, 
we can establish the corollaries below. .  
 
Corollary 4. Suppose that the hub nodes in the system are 
connected as a clique or ring. Then 
 

1( )
( )

m k

m k

λ β
λ µ

− +

−

≥
T

T
A A

A A
 

 

Proof: The result follows from Corollary 3 and Theorems 3 
and 4, while noting that ( )d αβ µ= . 
 
Corollary 5.  Suppose that the hub nodes in the system are 
connected as a clique. Then 

2

1

( )
( )

m

m

λ α β
λ β µ−

+
≥

+

T

T
A A
A A

 

 
Proof: From Theorem 2, we note that, for 
j = 0, ... , k–1, 

( ) ( ) ( ) ( )k j m j k j m kλ λ λ λ− − − −≤ ≤ +TB A A B D  
For j = 0, we have 

( ) ( )k mλ λ≤ TB A A  
For j = 1, we have 

1 1( ) ( ) ( )m k m kλ λ λ− − −≤ +TA A B D  
By Theorem 3, we have 

2( )kλ α β= +B and 1( )kλ β− =B   
It follows that  

2( ) ( )m kλ λ α β≥ = +TA A B  
and 

1 1( ) ( ) ( )m k m kλ λ λ β µ− − −≤ + = +TA A B D  

by noting that ( )m kλ µ− =D . The Corollary follows from the 
above two inequalities. 
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Corollary 6.  Suppose that the hub nodes in the system are 
connected as a ring. Then 
 

1

( ) 4
( )

m

m k

λ β µ
λ β− +

+ +
≤

T

T
A A

A A  
 
Proof: From Corollary 1, we note that, for 
j = 0, …, k–1, 

( ) ( ) ( ) ( )k j m j k j m kλ λ λ λ− − − −≤ ≤ +TB A A B D  
For j = 0, we have 

( ) ( ) ( )m k m kλ λ λ −≤ +TA A B D  
For j = k–1, we have 

1 1( ) ( )m kλ λ − +≤ TB A A  
By Theorem 4, we have 

( ) 4k Bλ β≤ + and 1( )λ β≥B  
It follows that 

( ) ( ) ( ) 4m k m kλ λ λ β µ−≤ + ≤ + +TA A B D  
and 

1 1( ) ( )m kλ λ β− + ≥ ≥TA A B  
The Corollary follows from the above two inequalities.  

VII. SYSTEM IMPLICATION 
We can design a cluster ensemble system which will lead to 

a desired eigenvalue separation ratio of the leading eigenvalues 
and the rest of the non-zero eigenvalues. For example, we can 
form an alpha-beta cluster ensemble with a relatively large β, 
so that β/μ will be large, where μ is the largest in-degree of a 
non-hub node in a cluster. Then, when the hub nodes are 
connected as either a clique or ring, Corollary 4 implies that the 
resulting system will exhibit strong dominance by the α leading 
eigenvalues. This means that the overall system behavior will 
essentially be governed by the corresponding α eigenvectors. 
For example, the values or signs of the components in these 
eigenvectors will reveal clustering structures of the system [7].  
The resulting clusters, for example, can help detect 
malfunctioning or malicious sensors in a sensor network 
application [5]. 

Furthermore, suppose that values for α and μ are fixed and 
the hub nodes are connected as a ring. Corollary 6 implies that 
separation ratios among the largest α eigenvalues will be 
bounded above by a quantity which will approach 1 when β 
increases. Thus, for large β, there will be large separations 
between the α leading eigenvalues and the rest of eigenvalues 
(Corollary 4), but there are no significant separations among 
the α leading eigenvalues themselves (Corollary 6). This means 
that when the hub nodes are connected as ring all the 

corresponding α eigenvectors will be of equal significance in 
characterizing the system. 

As a contrast, consider the case when hub nodes are 
connected as a clique. Assume that the values for β and μ are 
fixed. Then, by Corollary 5, when (α2

From the above discussion, we see that by choosing proper 
values for α, β and μ in the design of a cluster ensemble, we 
can tune the dominance properties of its leading eigenvalues. 

 + β)/(β +μ) is large (e.g., 
when α is large relatively to β and μ), the principal eigenvalue 
will exhibit strong dominance. Thus, for example, component 
values of the principal eigenvector alone will basically 
characterize the clustering structure of the system [7].  

VIII. SUMMARY AND CONCLUDING REMARKS 
We have motivated the problem of designing distributed 

systems which exhibit strong dominance of the leading 
eigenvalues, in terms of underlying network topologies.  We 
have introduced a special class of networks called cluster 
ensembles, and established some fundamental mathematical 
results of ensuring such dominance for this class of networks.  
As future work, we plan to generalize these characterizations 
by allowing more general topology than the alpha-beta 
ensemble and develop applications in system design based on 
spectral properties established in this paper. 
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