
Achieving High Throughput Ground-to-UAV
Transport via Parallel Links

Chit-Kwan Lin, H. T. Kung, Tsung-Han Lin, Stephen J. Tarsa, Dario Vlah
Harvard University

Cambridge, MA 02138
{cklin, htk, thlin, tarsa, dario}@eecs.harvard.edu

Abstract—Wireless data transfer under high mobility, as found
in unmanned aerial vehicle (UAV) applications, is a challenge due
to varying channel quality and extended link outages. We present
FlowCode, an easily deployable link-layer solution utilizing mul-
tiple transmitters and receivers for the purpose of supporting
existing transport protocols such as TCP in these scenarios.
By using multiple transmitters and receivers and by exploiting
the resulting antenna beam diversity and parallel transmission
effects, FlowCode increases throughput and reception range.
In emulation, we show that TCP over FlowCode gives greater
goodput over a larger portion of the flight path, compared to
an enhanced TCP protocol using the standard 802.11 MAC. In
the process, we make a strong case for using trace-modulated
emulation when developing distributed protocols for complex
wireless environments.

Index Terms—antenna beam diversity; 802.11; link layer;
transport layer; UAV; network coding

I. INTRODUCTION

In this paper, we focus on improving wireless data transfer
from the ground to an unmanned aerial vehicle (UAV), a
generic task of rising importance and interest for many UAV
applications, e.g., in sensing and emergency rescue operations.
Data transmission is challenging in this environment [1] since
the ground-to-UAV wireless channel can experience long-lived
outages and unpredictable, transient fades due to UAV mobil-
ity. Thus, one of our goals is to achieve high throughput and
provide greater reception range under such adverse conditions.
One approach would be to tailor a clean-slate protocol stack
or modify existing protocols to fit these environments. We
present an alternative: FlowCode, a link layer designed for
the UAV environment that does not require modification of
higher-layer protocols. This solution is near-term deployable,
and supports existing transport protocols such as TCP (which
was not designed to operate in such conditions, but is relied
upon by many current applications of interest, e.g., database
applications and MapReduce data processing). As an added
advantage, our link layer approach is simple and requires no
recasting of complex transport-layer semantics (e.g., TCP con-
gestion control/fairness). Furthermore, our solution is easily
deployable since it requires no tight synchronization amongst
transmitters or receivers.

FlowCode exploits the antenna beam diversity present in
multi-transmitter/multi-receiver (multi-Tx/Rx) systems. De-
spite wireless being a shared medium, each transmitter-

Tx2Tx1

Rx2

Rx1

*
Fig. 1: An idealized scenario showing how antenna patterns and
orientation can allow parallel transmissions to be received.

receiver pair in these systems can act as a parallel, inde-
pendent link [2], thereby increasing aggregate throughput.
Such situations arise when the signal strengths from multiple
transmitters differ at each receiver (due to geometry and
differing antenna orientations), enabling different receivers
aboard the UAV to capture different transmitters. Furthermore,
diversity in antenna orientation can extend radio range: at
a distance where the channel between one Tx-Rx pair is
incoherent, another pair’s antenna orientations may still permit
reception. To realize these gains, we employ random linear
network coding (1) to allow opportunistic packet delivery over
any Tx-Rx link, (2) to ensure that every packet delivered is
useful (i.e., innovative) with high probability, and (3) to do
this without substantial control overhead.

Developing and debugging our solution directly in our in-
tended operating environment—where the UAV flies at 20m/s
and covers a >800m range, in unpredictable weather and wind
conditions—is untenable. Instead, we adopt trace-modulated
emulation to aid development and devote precious flight time
to collecting packet traces for use by an emulator.

The main contributions of this paper are as follows: (1)
we present FlowCode, a link-layer solution that exploits the
spatial diversity in multi-Tx/Rx systems to increase reception
range and goodput of higher layer transport protocols; (2) we
show a significant performance boost when using FlowCode
underneath TCP in ground-to-UAV bulk data transfers; and (3)
we demonstrate the advantages of trace-modulated emulation
in distributed wireless protocol development/evaluation and
present several lessons learned. While we focus on ground-
to-UAV data transport in this paper, we plan to adapt our
approach to the air-to-ground direction in the future.

‐65 

‐63 

‐61 

‐59 

‐57 

‐55 

‐53 

‐51 

0 
10  20 

30 
40 

50 

60 

70 

80 

90 

100 

110 

120 

130 
140 

150 
160 170 

180 
190 200 

210 
220 

230 

240 

250 

260 

270 

280 

290 

300 

310 
320 

330 
340  350 

Transmi4ed Signal 
Direc<on 

0o 

90o 

180o 

Fig. 2: The measured antenna radiation pattern of one of our UAV
Rx nodes.

II. MULTI-TX/RX ANTENNA BEAM DIVERSITY

As mentioned in the previous section, the gains due to
antenna beam diversity in our multi-Tx/Rx UAV system arise
largely due to geometry and antenna patterns. To illustrate,
Figure 1 shows an idealized scenario where two Rx nodes
aboard a UAV pass over two ground Tx nodes. Since the lobes
of the Rx antenna patterns exactly interleave, the received
signal strengths of packets from Tx1 and Tx2 will differ signif-
icantly when the transmitters are separated by an appropriate
distance. This enables the UAV to receive packets in parallel
from Tx1 and Tx2. Though realistic scenarios are not as clean,
the radiation patterns of the “omni-directional” antennas used
in our field experiments (Figure 2) exhibit sufficiently different
SNRs at various angles that a significant parallel transmission
effect can be observed. Looking ahead, in Figure 6 (top, grey
line), the parallel transmission effect allows throughput to
momentarily exceed the 1Mbps single link rate, e.g., between
275s–300s. Note that this was achieved without purposeful
placement or orientation of the Rx nodes on the UAV, which
is in contrast to steerable antenna methods that require explicit
synchronization and tuning. Our ad-hoc method is well-suited
to the UAV environment where the dynamic channel makes it
difficult to optimize antenna directions.

Besides increasing throughput, multi-Tx/Rx systems can
also help extend reception range. Suppose that Tx2 in Figure 1
is instead located at the green asterisk (*). With Rx2, the UAV
effectively extends its reception range to receive from a more
distant Tx2; with only Rx1, Tx2 would have been out-of-range.

For the purpose of supporting transport protocols over
multiple nodes, realizing the above two gains is insufficient.
We must further address three issues in transporting a packet
stream: (1) what to send, (2) when to send it, and (3) how
to ensure it arrives. First, we perform random linear network
coding [3] of transport layer flows (hence “FlowCode”) so
that all parallel transmissions will be useful with high prob-
ability, without explicit agreement between transmitters on
which packets to send. This is important because parallel
transmissions are only advantageous if they increase goodput,
not simply throughput; we draw this distinction here and

!"# !"#

!"#

$"#
$"#

$"#

$"#
%&!#

&$'#

!"#

Fig. 3: Our canonical UAV scenario—a destination node is connected
via wired Ethernet to four wireless receiver nodes on-board a low-
altitude UAV. The UAV flies a circuit above a set of four wireless
ground transmitter nodes connected to a source node via wired
Ethernet.

use the more precise goodput metric going forward. Second,
transmissions should be coordinated to maximize parallelism.
In the field, we have observed packet-level synchronization
to be sufficient to induce the parallel transmission effect, and
thus use a scheduling mechanism based on broadcast triggers.
Finally, to improve delivery, we use an end-to-end retransmis-
sion scheme between the link-layer source and destination.
Together, these three components comprise FlowCode and are
detailed in the next section.

III. FLOWCODE DESIGN AND IMPLEMENTATION

To motivate FlowCode’s design, we employ a canonical
scenario that broadly captures various aspects of the UAV
application environment. As shown in Figure 3, a source node
on the ground is connected via wired Ethernet to four ground
transmitters (Tx). To permit parallel transmissions, the ground
nodes have CSMA disabled, either via software or through
geographic separation. A UAV flying a circuit overhead carries
a payload consisting of four wireless receiver (Rx) nodes
connected to an on-board destination node via wired Ethernet.
All nodes in the system speak the FlowCode protocol at
the link layer, enabling the source to transfer data to the
destination by relaying through the Tx’s and Rx’s.

The specific configuration presented above is easily gen-
eralized to accommodate more (or fewer) Tx or Rx nodes.
The source and destination nodes can even be thought of as
link-layer gateways in a larger network that are transparent
to higher-layer protocols such as TCP. In the case of TCP,
FlowCode offers an improved ground-to-UAV link without
altering TCP semantics, a feature essential to applications that
rely on TCP congestion control.

A. The FlowCode Protocol

With the above scenario in mind, we now describe Flow-
Code, a simple and lightweight link layer protocol comprised

of three mechanisms that work in concert: random linear net-
work coding, transmission triggering, and link-layer retrans-
mission. For brevity, we describe the protocol in the source-to-
destination direction, but note that the reverse direction works
the same way.

1) Random Linear Network Coding: Where multiple trans-
mitters and receivers give rise to parallel links, we can gain
from diversity: at the instant when one link is poor, another
may be good. Independent random linear network coding at
multiple transmitters, coupled with the broadcast nature of
the wireless medium, allows us to automatically exploit these
opportunities. Coded packets delivered along parallel network-
coded links all have a high probability of increasing the rank
of the decoding matrix at the destination, meaning links can
individually convey useful information and together provide
robustness against fluctuations in the channel.

At the source node, FlowCode groups k transport layer
packets traveling outbound to the destination node into gen-
erations, each with a unique generation ID. These k packets
are packed into a coding matrix, from which random linear
combinations (RLCs) are generated by choosing random co-
efficients over a finite field. For each generation, each node
transmits coded frames containing a coefficient vector along
with the corresponding summation term. Network coding is
carried out at all network nodes by choosing new random
coefficients and combining RLCs. At the destination, once
k linearly-independent RLCs have been received, the gener-
ation is decoded via Gauss-Jordan elimination to recover the
transport-layer packets, which are then passed up the protocol
stack. Transport packets moving in the opposite direction,
from destination to source, are similarly encoded but in a
different generation ID space. Thus, FlowCode does not seek
the traditional network coding capacity gain due to intersecting
packet streams [4]; we have found that behaviors of complex
transport protocols like TCP (e.g., delayed ACK) present few
opportunities to achieve this type of gain in practice.

2) Transmission Triggering: The random linear network
coding scheme described above operates under the following
transmission rubric. At the source, when k transport packets
are available, a generation is packed immediately. When at
least one but fewer than k packets are available, FlowCode
waits a short time commensurate with the estimated round-
trip time (RTT) before using dummy packets to fill the
generation. This ensures that transport layer packets are not
severely delayed so as to cause timeout for protocols like TCP.
Once a generation is packed, the source broadcasts k coded
frames, each containing a RLC, to the Tx nodes over its wired
interface.

On arrival, RLCs are inserted into the corresponding gen-
eration’s coding matrix. Reception of the broadcast RLC that
gives the coding matrix full rank is simultaneous across Tx’s
and triggers each to send out s new RLCs from the same
coding matrix over its wireless interface, where s = dk/nTxe
and nTx is the number of Tx nodes. That is, we (1) employ
a jitter buffer of one generation at each Tx, ensuring that the

RLCs generated are linearly independent with high probability
and (2) in aggregate, we send as few RLCs as necessary to
decode the generation at the destination, assuming no packet
loss.

Rx nodes perform exactly the same coding operations as
Tx nodes but are triggered to send a RLC to the destination
for each one they receive from a Tx. While this one-to-
one triggering can result in redundant RLCs arriving at the
destination under low loss, it is necessary to ensure that
innovative RLCs are pushed to the destination under high loss.
At the destination, once enough RLCs are received to decode
a generation, subsequent RLCs received for that generation are
simply ignored.

3) Generation ARQ and Link-Layer Resend: To ensure
that a transmitted generation is received at the destination,
we employ two retransmission mechanisms. First, to recover
from minor losses that antenna beam diversity and coding
cannot mitigate, FlowCode uses a generation ARQ scheme,
analogous to the 802.11 MAC ARQ. In FlowCode, a decoded
generation is acknowledged via a link-layer ACK broadcast
frame containing the decoded generation’s ID; this ACK is
relayed through the Rx and Tx nodes to the source. If the
source does not receive an ACK within the ARQ timeout
period, tARQ, it will trigger an additional RLC for the gener-
ation to be sent and will do so for up to kr RLCs, where r
is the tunable maximum number of generation retries. Since
FlowCode knows the maximum link rate and thus the frame
transmission time, it knows to set tARQ to the transmission
time of the number of generations in-flight (up to a maximum
of f generations). We chose to have an end-to-end ARQ
scheme between the source and destination rather than one
that spans the wireless hop because only these nodes have
complete status information on generation delivery.

The second retransmission mechanism is engaged in an
extended outage, after ARQ retries have been exhausted, e.g.,
when the UAV flies out of range. This link-layer resend
scheme seizes the first reception opportunity the moment the
UAV returns within range by repeating, in sequence, un-
ACKed generations at the full link rate whenever no new
generations can be packed (e.g., when the transport layer is
blocked or timed out). Such responsiveness can be important to
the transport layer—e.g., after an extended outage, completing
and decoding a resent generation brings TCP out of timeout.
We can adopt this aggressive resend strategy because, in our
scenario, there is no contention for the medium by multiple
clients, as in a traditional 802.11 network. Instead, clients
obtain fair share in relaying through the ground Tx nodes.

B. Implementation and Tuning Hints

We implemented FlowCode as a Linux userspace daemon,
with an instance running on each node. At the source and des-
tination, we use ipqueue to intercept and redirect transport
layer packets from kernel space into the FlowCode daemon
for encoding. Coded frames are implemented by encapsulation
inside UDP broadcast packets sent out via the 802.11 wireless

!"#$# !"#%#

!"#&#

!"#'#()#*+*,-(.##

!"#$/#%#

!"#&#

Fig. 4: Mounting positions of four receiver nodes on the UAV. All
four nodes have antenna radiation patterns in different orientations.

interface. At the destination, decoded packets are injected into
the network stack through a raw socket.

FlowCode’s tunable parameters should be set as follows.
Small generation sizes have the benefit of shorter decoding
times and higher packing efficiency (i.e., fewer dummy packets
used for padding); we use a generation size k = 4 throughout
our experiments. Next, the maximum number of generations
in flight f should be set depending on the generation RTT,
which in turn depends upon processor speed of the nodes,
since slow Gaussian elimination can cause the RTT to increase
dramatically. Roughly, f should equal the number of genera-
tions that can be sent within the RTT at the aggregate link rate
(f = tRTTnTx/tpktk, where tpkt is transmission time of one
packet at a Tx’s individual link rate). Finally, the maximum
number of generation retries r should be set according to the
expected loss characteristics of the receiving regions of the
UAV flight path. For our flights, described in Section IV-A,
r = 10 is sufficient.

IV. TRACE-MODULATED EMULATION FOR PROTOCOL
DEVELOPMENT

Distributed protocol development for the UAV environment
is a special challenge because the high complexity of such pro-
tocols (due to timing, bottlenecks and faults) is compounded
by the environment and logistics. First, flight tests are at
the mercy of nature: poor weather grounds UAVs and wind
can blow them off course. Second, UAVs require significant
manpower to keep aloft and flights are limited in duration
due to power constraints (our platform gives a maximum of
15min [5]). We therefore adopt trace-modulated emulation
to facilitate protocol development and evaluation, and opt to
devote precious flight time to packet trace acquisition instead.

Packet traces capture all the complexities of the wireless
channel during flight, e.g., fades, collisions and capture effects.
In trace-modulated emulation, such traces are used to modulate
a packet stream, providing a controlled yet realistic emulation
environment for protocol development and evaluation. By
carefully designing acquisition campaigns, traces can capture
a broad range of conditions, allowing for a simple emulator
implementation. This is in contrast to model-based simula-
tion [6], [7] and emulation [8], [9], where the complexity of

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 200 400 600 800

48s - 66s
76s - 111s

Ground nodes

A

B
Fig. 5: A clockwise flight path (black) gives two regions of connec-
tivity, A and B, as the UAV flies over the ground nodes.

the underlying model governs the realism of the emulation.

A. Trace Acquisition in the Field and Emulator Design

For trace acquisition, we use nodes with Marvell SD8686
802.11b/g radios set at the 1Mbps modulation. Figure 4 shows
the mounting positions of the Rx nodes on our UAV. Figure 5
(black) shows the UAV flight path and the ground Tx locations
(these were separated by ∼45m, effectively disabling CSMA).
The UAV follows the flight path in a continuous loop passing
through two regions of connectivity (A and B, in Figure 5) near
the ground nodes. More details on the UAV, environment, and
GPS/autopilot systems can be found in our previous work [5].

For each flight, Tx’s continuously broadcast 1472-byte UDP
packets at 1Mbps. Rx’s log the sender, reception time, and
sequence number of each packet received. In post-processing,
these logs are converted into traces (essentially, binary strings:
1 indicates reception and 0 indicates loss). We collected traces
from two configurations: one ground Tx broadcasting to one
UAV Rx (1x1), and four ground Tx’s broadcasting simulta-
neously to 4 UAV Rx’s (4x4). With the 1x1 configuration,
we used the best Tx (determined from previous flights) and
collected four traces, one for each UAV Rx.

As the complexities of the ground-to-UAV channel are
already captured in traces, our emulator is simple and consists
of just three components: emulation machines, redirectors, and
a modulator. Each emulation machine corresponds to a node
in our field setup. A redirector daemon on each emulated node
captures FlowCode’s outgoing frames and redirects them to a
central server running the modulator daemon. The modulator
maintains, for each emulated link, a schedule with time slots
corresponding to the packet transmission times in our traces.
Frames arriving at the modulator are modulated, i.e., scheduled
on the appropriate link if that link’s corresponding trace
allows. The modulator advances all schedules at the emulated
link rate, forwarding scheduled packets to the intended recip-
ients. This procedure is accurate when the modulated frames
are equal in size to the packets in the trace; in our ensuing
experiments, frames sent from the ground to the UAV are
sized to fit this requirement. As a simplification, the modulator
does not subject small packets (e.g., link-layer ARQ ACKs or
transport layer control packets) to trace modulation. Instead,

small packets sent within Regions A and B, in either direction,
are always successfully delivered; outside of these regions,
they are always dropped.

V. EVALUATION

The design philosophy behind FlowCode is to improve the
link layer to support existing, unmodified transport protocols
such as TCP in the UAV environment. As a point of compar-
ison, we adopted the contrasting approach and implemented a
minimalist modification to TCP that enables it to work over a
single ground-to-UAV link, using the standard 802.11 MAC.
Aside from misinterpreting wireless link loss as a congestion
signal [10], standard TCP cannot cope with the extended
outages in our UAV scenario because exponential back-off
increases TCP’s retry timeout so much that transmission
opportunities are missed when the UAV returns within range.
We solve this problem by having TCP repeat the last un-
ACKed packet at a low rate (e.g., 10kbps) whenever TCP
releases no new sequence numbers. We call this enhancement
TCP with low-rate retry (TCP+LRR).

Our evaluation compares the performance of unmodified,
standard Linux TCP over FlowCode against that of TCP+LRR
over the standard 802.11 MAC with ARQ. For TCP over Flow-
Code, we use parallel links in a 4-Tx/4-Rx configuration and
set the following FlowCode parameters: nTx = 4, k = 4, f =
2, r = 10. For TCP+LRR, we use a single link setup and set
the maximum number of 802.11 MAC retries to 15. In both
cases, we emulate the wireless links with the corresponding
collected trace—for TCP over FlowCode, we use the 4x4 trace
and for TCP+LRR, we use the best 1x1 trace out of the four
collected. As a load generator drives the two experiments with
infinite offered load, we measure the following metrics: (1)
goodput; (2) range, or the length of the flight path segment
over which the UAV can receive; and (3) efficiency, or the
percentage of the maximum achievable goodput achieved over
the entire flight. The maximum achievable goodput for each
second of flight time is derived by calculating the total UDP
goodput over that 1s window in the UDP packet trace (or, in
the 4x4 case, across multiple traces).

Figure 6 shows the measured per-second goodput of TCP
over FlowCode (top) and TCP+LRR (bottom) over 4.5 laps of
the emulated flight, as compared to the maximum achievable
goodput calculated from the traces. Here, we should keep in
mind that the maximum achievable goodput is an optimistic
measure; since TCP is sensitive to specific sequences of packet
runs and gaps, it may not be able to always achieve the
maximum goodput in practice.

First, observe that parallel transmissions boost the maximum
achievable goodput in the 4-Tx/4-Rx configuration above
1Mbps, the modulation rate of a single link. Second, in both
runs, each burst of delivery is labeled with the corresponding
portion of the flight path (Regions A or B, in Figure 5).
Note that, in both panels, almost all bursts commence with
a large spike in goodput; this is due recovery from loss and
subsequent in-order delivery of a large number of buffered

packets. More importantly, observe that the burst lengths for
TCP over FlowCode are noticeably longer than those for
TCP+LRR, meaning FlowCode improves receiving range.

To better quantify these differences in performance, we
present average goodput and range statistics over Region A
and Region B in Table I. TCP over FlowCode wins decisively
over TCP+LRR in Region A in both goodput (+31%) and
range (+28%), but shows just modest gains in Region B
(goodput: +2%, range: +3%). This is due to asymmetry in
the flight path. In Region A, the UAV experiences better link
quality since it passes closer to the ground Tx nodes. This is
further improved by FlowCode, which presents TCP with an
even more stable link. In contrast, Region B is farther from
the ground nodes and experiences greater signal attenuation.
FlowCode gives modest gains here because it has less with
which to work.

Closer inspection of the statistics in Table I reveals a
seeming discrepancy. Even though the range covered in Region
B (544.71m) is significantly shorter than that covered in
Region A (639.12m), according to Figure 6 the time it takes to
traverse Region B is significantly longer. This is explained by a
forceful headwind that blew continuously from the west (left,
in Figure 5) the day we collected the traces. Consequently,
the UAV traveled slower in Region B and faster in Region
A. That our emulator revealed this is not only evidence of its
correctness but also of its utility.

Finally, Figure 7 shows that the median efficiency of TCP
over FlowCode (72.40%) was comparable to that of TCP+LRR
(76.35%). Still, there remain optimization opportunities for
FlowCode. At present, FlowCode’s major performance bottle-
neck is the Gaussian elimination performed whenever a new
RLC is inserted into a coding matrix. These operations amount
to a processing delay of 1.5ms per generation on our current
hardware. At a 1Mbps link rate, this accounts for ∼12%
less goodput. Hand optimization of the Gaussian elimination
routine should remedy this.

In summary, TCP over FlowCode exhibited better perfor-
mance than TCP+LRR. In some cases, it might seem that the
gains were modest. However, recall that the trace we used
for TCP+LRR was from the best Tx-Rx pair available. In
practical applications, it is generally difficult to know a priori
which Tx-Rx pair is best; choosing incorrectly can lead to
disastrously poor performance. Thus, in a sense, FlowCode is
attractive because it renders choosing unnecessary: the system
automatically uses all links as best it can.

A. Emulation: Lessons Learned

We lack space to present a full validation of our emulator,
but note that TCP goodput in Figure 6 tightly tracks the
maximum achievable goodput from the traces. This is strong
evidence of correctness since it can only be achieved at such
a fine granularity when the emulator introduces no artifacts.

We found that emulation was an indispensable tool in
developing FlowCode. In particular, the repeatability afforded
by trace modulation was especially useful in flushing out

 0
 1
 2
 3
 4

 50 100 150 200 250 300 350 400 450 500

G
oo

dp
ut

 (M
bp

s)

Time (s)

Max achievable
TCP over FlowCode

B B B BAA A A A

 0
 1
 2
 3
 4

 50 100 150 200 250 300 350 400 450 500

G
oo

dp
ut

 (M
bp

s)

Time (s)

Max achievable
TCP+LRR

A A A A AB B B B

Fig. 6: Measured goodput as compared to the maximum achievable over emulated flights. Each burst of delivery occurs in the correspondingly
labeled region of the flight path (see Figure 5). Top: TCP over FlowCode, using four Tx’s and four Rx’s. Bottom: TCP+LRR, using one Tx
and one Rx.

Max Achievable Emulated

Goodput (Mbps) Range (m) Goodput (Mbps) Range (m)

Region A
TCP over FlowCode (4-Tx/4-Rx) 0.74± 0.04 748.99± 49.80 0.55± 0.04 639.12± 59.97

TCP+LRR (1-Tx/1-Rx) 0.49± 0.07 673.30± 81.99 0.42± 0.12 497.54± 119.39

Region B
TCP over FlowCode (4-Tx/4-Rx) 0.77± 0.07 697.17± 31.35 0.57± 0.04 544.71± 28.38

TCP+LRR (1-Tx/1-Rx) 0.62± 0.02 674.87± 12.63 0.56± 0.01 530.10± 30.61

TABLE I: Mean and standard deviation of goodput and range over Regions A and B.

 0

 0.25

 0.5

 0.75

 1

 50 100 150 200 250 300 350 400 450 500

E
ff
ic

ie
n
c
y

Time (s)

TCP over FlowCode
TCP+LRR

Median TCP+LRR
Median TCP over FlowCode

Fig. 7: Efficiency of TCP over FlowCode vs. TCP+LRR over their
respective emulated flights. TCP over FlowCode median efficiency =
72.40%. TCP+LRR median efficiency = 76.35%.

problems due to timing and unexpected bottlenecks. For ex-
ample, FlowCode was initially unable to achieve instantaneous
goodput above 300kbps, even though the maximum achievable
was >1Mbps. Under repeated trace emulation, we ultimately
discovered that our emulation hardware had slow processors
which were spending 10ms on Gaussian elimination per
generation. Moving to faster machines immediately boosted
goodputs to 1Mbps. Had this been a flight test, we would not
have even known that we were underperforming at 300kbps.

Yet another benefit of trace-modulated emulation is found

in parameter tuning. We settled on a FlowCode generation
size of k = 4 after testing TCP behavior under other values.
Larger generation sizes, e.g., k = 16, gave poor goodput due to
low packing efficiency. This occurred when TCP experienced
loss and cut its sending window size such that an insufficient
number of packets was available to fill a generation. The larger
the generation size, the more likely this was to occur.

VI. CONCLUSIONS AND FUTURE WORK

FlowCode is an easily-deployable link-layer solution that
enables high throughput ground-to-UAV data transport by
higher-layer protocols such as TCP. It exploits the antenna
beam diversity in multi-Tx/Rx systems arising from geom-
etry and differences in antenna orientations. FlowCode uses
random linear coding to enable opportunistic transmissions
without requiring substantial control overhead or complexity.

We show that with FlowCode, TCP achieves goodput that
approximates best-case performance, despite the fact that
channel loss is well-known to cause TCP to underutilize wire-
less links. FlowCode also extends the effective communication
range and increases the duration of high-rate transmission.

Additionally, we have shown the effectiveness of trace-
based emulation in distributed protocol development and eval-
uation, especially for scenarios where field experimentation is
difficult and the environment is fast-varying. By capturing the

behaviors of the communication channel (fading, collisions,
and capture effects) in traces, we simplified emulator design
while retaining a realistic emulation environment.

Our design enables a wide range of airborne applications
that rely on TCP for data transmission. In the near future,
and as the weather improves in our flight areas, we plan
to further improve and validate system performance by run-
ning TCP over FlowCode in flight tests. Finally, the channel
stability introduced by FlowCode makes TCP performance
more tractable, suggesting that, for the UAV scenario, we
can develop models and predict TCP performance with high
accuracy via traces.

VII. RELATED WORK

Work related to ours can be categorized into three areas:
(1) improving communication performance over wireless net-
works with network coding, (2) increasing throughput by using
multiple routing paths in parallel, and (3) improving TCP
performance over lossy wireless links by adding reliability
mechanisms.

Area 1 saw a surge in activity recently, starting with the
seminal work of Ahlswede et al. [11], and followed by many
protocol design and system implementations [3], [4], [12].
Area 2 is a classic networking problem. Interest in Area
3 surged after adoption of wireless LAN communications,
starting with early protocols such as Snoop [13].

Combining Areas 1 and 2 are the CodeTorrent [14] and
Rainbow [15] protocols, which employ network coding for
data dissemination across wireless mesh networks, using
multiple paths in the process. However, these protocols are
tailored for a specific mode of transport and do not aim to
support general transport layer protocols. There have also been
more theoretical studies examining, e.g., optimal rate selection
for network coding over parallel routing paths in wireless
networks [16]. However, these works do not support non-trivial
transport protocols like TCP.

Falling under Areas 2 and 3 are, e.g., the Multipath
TCP [17] and PATHHEL [18] projects, which aim to allow
TCP to take advantage of multiple routing paths. However, this
comes at the expense of modifying TCP, either by terminating
connections in the middle, or by changing the congestion con-
trol mechanisms to be multi-path aware. Alternative transport
protocols specifically designed to aggregate multiple links [19]
have also been put forth.

Finally, combining Areas 1 and 3 is work that couples
network coding with TCP [20] by using equation rank instead
of sequence numbers to identify segments and measure data
transfer progress. To mask wireless network loss, the authors
introduce an explicit retransmission mechanism underneath the
network coding. Although the protocol improves performance,
the tight coupling with TCP restricts its scope. Furthermore,
the work does not explore the use of this mechanism over
parallel transmission paths.

There exists a large body of work covered by strict subsets
of the three areas. However, we are unaware of work that

addresses all three, as we do.

ACKNOWLEDGMENTS

This material is based on research sponsored by Air Force
Research Laboratory under agreement number FA8750-10-2-
0180. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force
Research Laboratory or the U.S. Government. The authors
would like to thank the Office of the Secretary of Defense
(OSD/ASD(R&E)/RD/IS&CS) for their guidance and support
of this research.

REFERENCES

[1] T. Brown, B. Argrow, C. Dixon, and S. Doshi, “Ad Hoc UAV Ground
Network (AUGNet),” in AIAA 3rd “Unmanned Unlimited” Tech. Conf.,
2004.

[2] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Morris, “Capacity
of ad hoc wireless networks,” in MobiCom, 2001.

[3] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. Ann.
Allerton Conf., 2003.

[4] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the air: practical wireless network coding,” ACM TON, vol. 16,
pp. 497–510, 2008.

[5] H. T. Kung, C.-K. Lin, T.-H. Lin, S. J. Tarsa, D. Vlah, D. Hague,
M. Muccio, B. Poland, and B. Suter, “A location-dependent runs-and-
gaps model for predicting tcp performance over a uav wireless channel,”
in MILCOM, 2010.

[6] http://www.opnet.com.
[7] S. McCanne, S. Floyd, K. Fall, K. Varadhan et al., “Network Simulator

ns-2,” 2000.
[8] G. Judd and P. Steenkiste, “Repeatable and realistic wireless experi-

mentation through physical emulation,” SIGCOMM Comp. Comm. Rev.,
vol. 34, pp. 63–68, 2004.

[9] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz, “Trace-
based mobile network emulation,” in SIGCOMM, 1997.

[10] R. Caceres and L. Iftode, “Improving the performance of reliable
transport protocols in mobile computing environments,” IEEE J. Sel.
Areas in Comm., vol. 13, no. 5, pp. 850–857, 1995.

[11] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Trans. Inf. Theory, 2000.

[12] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in SIGCOMM, 2007.

[13] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, “Improving TCP/IP
performance over wireless networks,” in 1st Ann. Int’l Conf. on Mobile
Computing and Networking, 1995.

[14] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, “Code torrent: content
distribution using network coding in VANET,” in Mobishare, 2006.

[15] C.-M. Cheng, H. T. Kung, C.-K. Lin, C.-Y. Su, and D. Vlah, “Rainbow:
A wireless medium access control using network coding for multi-hop
content distribution,” MILCOM, 2008.

[16] X. Zhang and B. Li, “Optimized Multipath Network Coding in Lossy
Wireless Networks,” in ICDCS, 2008.

[17] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley,
“MultiPath TCP: A Joint Congestion Control and Routing Scheme to
Exploit Path Diversity in the Internet,” ACM TON, vol. 14, pp. 1260–
1271, 2006.

[18] A. Baldini, L. D. Carli, and F. Risso, “Increasing Performance of TCP
Data Transfers Through Multiple Parallel Connections,” in ISCC, 2009.

[19] H. Hsieh and R. Sivakumar, “A transport Layer Approach for Achieving
Aggregate Bandwidth on Multi-Homed Mobile Hosts,” in Mobicom,
2002.

[20] J. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher, and J. Barros,
“Network coding meets TCP,” in INFOCOM, 2009.

