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Abstract—The process of detecting logical faults in integrated
circuits (ICs) due to manufacturing variations is bottlenecked
by the I/O cost of scanning in test vectors and offloading
test results. Traditionally, the output bottleneck is alleviated by
reducing the number of bits in output responses using XOR
networks, or computing signatures from the responses of multiple
tests. However, these many-to-one computations reduce test time
at the cost of higher detection failure rates, and lower test
granularity. In this paper, we propose an output compression
approach that uses compressive sensing to exploit the redundancy
of correlated outputs from closely related tests, and of correlated
faulty responses across many circuits. Compressive sensing’s
simple encoding method makes our approach attractive because
it can be implemented on-chip using only a small number of
accumulators. Through simulation, we show that our method
can reduce the output I/O bottleneck without increasing failure
rates, and can reconstruct higher granularity results off-chip than
current compaction approaches.

I. INTRODUCTION

Detecting faults in integrated circuits (ICs) that arise due to
manufacturing variations is a notoriously difficult and costly
problem. Colloquially, large chip design projects employ far
more engineers working on IC verification than initial circuit
design. In the case of military-grade ICs, reliability and secu-
rity demands are a significant barrier for manufacturers [1]: in
the past, the cost of testing MIL-SPEC ICs has led, in part, to
some large companies leaving the marketplace and focusing
solely on consumer electronics [2]. Going forward, battlefield
dependence on devices driven by increasingly complex ICs
means that fast accurate fault detection is becoming even more
difficult and critical.

In practice, the logical-fault detection process proceeds by
exercising the logical states of newly manufactured ICs using a
sequence of test vectors, then verifying test responses against
simulated fault-free responses. The steps of this process re-
quire first identifying a minimal set of test vectors whose
application will reveal a near-total percentage of possible faults
[3] [4] [5]. Second, the desired tests are applied by shifting
test stimuli into the circuit using an industry standard (JTAG)
interface [6]. And third, test responses must be shifted out of
the circuit for examination. When faults are detected, the pro-
cess may be repeated with a second set of more expressive test
vectors to collect additional information on circuit behavior.
Since the number of states taken on by VLSI circuits is huge,
the volumes of input test data and output response data make
testing I/O a bottleneck to the manufacturing process.

In addition to past efforts to reduce scan-in time for test
vectors (e.g. [7], [8], and [9]), researchers have also devel-

oped methods for compacting test-responses on-chip to reduce
output. Lossless compression circuitry is generally considered
too costly, so lossy compaction methods are preferred. While
current compaction methods improve test time, they lead to
reduced test response granularity and increased false negative
detection rates. Such detection failure is termed aliasing, since
faulty test responses incorrectly appear fault-free due to the
compaction process.

The most widely applied compaction method is space
compaction, which uses XOR networks to reduce many bits
from a single test response down to a few bits to be used for
detection [10] [11] [12]. XOR networks are easy to implement,
but can have high aliasing rates, since any even number
of faulty response bits will lead to an erroneously fault-
free detection bit when XORed together. Furthermore, space
compaction detects faults to test vector granularity, and cannot
distinguish between multiple faults expressed in the same test;
this behavior can occur unexpectedly, or by design in order to
reduce total test time.

The second compaction method used is time compaction, in
which a signature is computed from multiple sequential test
responses using a Multiple Input Signature Register (MISR).
MISRs can yield larger reductions in output with fewer false
negatives than XOR networks, but they also severely reduce
detection granularity. With this method, faults are detected
to one-in-many tests based on a single signature, and little
diagnostic information is made available to designers. MISRs
are also intolerant to test responses with unknown ‘X’ values,
which arise from uninitialized flip-flop states. Additional cir-
cuitry must typically by included to mask off these ‘X’ values,
increasing hardware cost [13].

We instead propose to apply the techniques of compressive
sensing (CS) [14] to implement lossless output compression
with only simple on-chip circuitry. With CS, we compress
response data using a small number of accumulators that
collect linear combinations over batches of test responses.
The resulting reduced-dimension measurement vectors are
then shifted out of the circuit, and results are reconstructed
off-chip using a sparse signal recovery algorithm. This has
several advantages over current methods:

1) Lossless compression of test responses is possible with
simple on-chip circuitry

2) Successful signal reconstruction yields pin-level data
off-chip, a result that is impossible with current lossy
compaction methods



3) Aliasing rates are lower than both XOR networks, and
MISRs that compact small numbers of test responses for
highest granularity results

We first formulate the fault detection problem in the com-
pressive sensing framework. Since CS requires that signals be
expressible with a small number of non-zero components (i.e.
sparse), we present a method for finding bases that sparsely
express faults. Our technique works by ordering input test
vectors to promote the locality of correlated test responses,
and exploiting the resulting correlations between successive
tests using the Karhunen-Loève transform (KLT). We then
show how faulty behaviors decoded from previously examined
circuits can also be encoded in this basis, to exploit redundancy
among circuits. We compare our method to both time and
space compaction to show gains in compression rate, output
granularity, and false negative rate. Finally, we simulate the
testing process to demonstrate performance.

II. COMPRESSIVE SENSING OUTPUT COMPRESSION
FORMULATION

Compressive sensing states that sparse signals encoded, or
measured, via linear combination can later be reconstructed
using a small number of these measurements, provided the
measurement coefficients satisfy a Restricted Isometry Prop-
erty (RIP). Reconstruction is possible using algorithms for `-1
minimization by linear programming [15], or basis pursuit [16]
[17]. Furthermore, any basis for sparse representation can be
used for decoding, provided the number of measurements
is approximately proportional to the number of non-zero
components required to represent the signal in that basis. Suffi-
cient measurement matrices satisfying RIP include those with
normally distributed or Bernoulli random entries, and those
whose rows are chosen from the Fourier basis functions [18].

Using these facts, we can express test response compression
for fault detection in terms of CS’s encoding and decoding
steps. Defining Xt to be a batch of n test responses collected
at time t, we write the encoding process as:

yt = ΦXt (1)

where Φ is an m × n (m � n) matrix with randomly
distributed entries that have been predetermined prior to test
time. m is chosen to be approximately proportional to k, the
number of non-zero values expected in the decoded signal
vector. When Φ contains Bernoulli {0, 1} entries, m ≈ 4k.
Recovering test outputs off chip requires solving the following
minimization problem:

min ||Xg
t −Xt||1 s.t. ygt − yt = ΦΨt(X

g
t −Xt) (2)

where Xg
t is a vector of simulated gold circuit outputs,

ygt the corresponding simulated measurements, and Ψt is a
sparsifying basis for (Xg

t − Xt). Since a single fault may
cause the values of many test outputs to deviate from the
gold circuit, we are interested in finding an appropriate Ψt so
that faults are represented with only a few components.

III. SPARSIFYING BASES FOR TEST OUTPUTS

A. Exploiting Correlations Between Related Tests

Consider batches of test outputs collected at times t =
1, 2, ..., T . The KLT basis is spanned by the eigenvectors of
their autocorrelation matrix: A =

∑T
t=1(Xg − Xt)(Xg −

Xt)
′ [19]. When circuit outputs in multiple batches are cor-

related, the KLT is a sparsifying basis that represents these
correlated outputs with common components. For example, at
the extreme when all Xt’s are linearly dependent, then they
can be represented by a single component in the KLT basis.

Observe Figure 1(a), in which input test vectors for one
of our benchmark circuits are placed in an alignment matrix,
according to their Gray Code ordering. Based on the expec-
tation that two tests will share many of the same sensitized
paths when their test vectors only differ by a few bits, then the
rows of the corresponding output response matrix will show
correlation. This will hold when faults occur in gates along
those shared paths, or when the paths are fault free, as Figure
1(b) shows for our test circuit.

We therefore take advantage of these correlations using the
KLT by arranging test vectors in an n-row alignment matrix,
and applying tests in batches according to the columns of the
matrix. As batches of m measurements are offloaded and test
responses are decoded, we use the trailing T column vectors
to calculate the KLT basis. The result, Ψt, is used to sparsely
represent the next batch, Xt at time t.

The alignment parameters T and n are circuit specific
– if T is too large, then Ψt will likely do a poor job
of sparsely representing Xt because it may include batches
with uncorrelated test results. In general, Ψt is a sparsifying
basis for Xt whenever Xt can be written as a small linear
combination of the preceding batches’ KLT components. In
practice, simulations of the fault-free gold circuit outputs can
be used to determine the appropriate values for T , n, and m.

B. Exploiting Correlations Among Circuits

Unavoidably, test outputs will arise that are not sparsely
represented based on the behavior of prior tests. This can
occur when circuit architecture makes finding an alignment
matrix that is successful for all batches difficult, or when
unexpected faulty responses occur that deviate substantially
from prior test outputs. In this case, off-chip decoding will
fail due to insufficient measurements. However, once these
test responses are retrieved, they can be incorporated into
future Ψt’s by adding the observed vector to the KLT: A =∑

c∈C
∑T

t=1(Xg−Xc
t )(Xg−Xc

t )′ where C denotes an index
set of previously examined circuits. Therefore, when decoding
fails, we offload the current vector at full rate, paying a one-
time penalty in order to sparsely represent the faulty responses
in future tests.

IV. IC TESTING PROCESS FLOW

In order to implement the sparsification procedures of
Section III, Figure 2 shows an IC testing flow that includes
two phases: training and circuit testing. The training stage is
used to capture common faulty test responses in initial Ψt
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Fig. 1. (a) In order to promote locality of correlated test output values among
adjacent columns, input vectors are ordered in increasing order by their integer
representation across rows in a alignment matrix. They are then applied to the
circuit in batches by column, denoted It. (b) For our benchmark circuit, rows
of output responses do indeed show high correlation that can be exploited for
compression.

bases so that they are compressible when the testing phase
begins. In practice, designers model expected faulty behavior
in simulation (e.g. to ensure that a high percentage of faults are
detected by a set of test vectors), and we use these simulated
faulty responses as training data. During the testing phase, test
vector batches are applied as described in Section IIIA, and
results are decoded off-chip based on m measurements. When
decoding fails due to insufficient measurements, we offload
the current vector at full rate, and add it to the autocorrelation
matrix for future circuit tests.

V. PERFORMANCE ANALYSIS & COMPARISON

We compare our method to space and time compaction
by analyzing output reduction rates, aliasing rates, off-chip
response granularity, and hardware cost.

A. CS-Based Output Compression

For a circuit with Lout output pins, the output compression
factor using our method is given by:

1−
m log2( 1

2n2Lout)

nLout
(3)

Raw output requires nLout bits to offload n outputs. In
contrast, our compressive sensing method requires only m
measurements for a batch of n results. The maximum value
in each accumulator is 1

2n2Lout since half of the Bernoulli
random coefficients will be 1’s on average, and the maximum
value of each test output is 2Lout .

Aliasing occurs when the measurement vector of a faulty
batch of test responses matches that of the simulated fault-free
responses. This probability is given by:
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Fig. 2. Basis training is used to bootstrap output compression, and is
conducted by simulating known fault behavior then calculating the KLT from
batches of simulated test responses. Circuit testing proceeds by applying tests,
offloading measurements, and decoding the results. Upon decoding failure, test
responses are offloaded from the circuit at full rate in order to compress those
responses in future circuits.

Pr(ygt = yt|Xg
t 6= Xt) =

2(n−m)∗Lout − 1

2n∗Lout − 1
(4)

This expression is derived as follows: with Lout bits-per-
response, all but one of the 2n∗Lout possible batch vectors are
faulty. Since the system is under-determined by n−m degrees
of freedom, 2(n−m)∗Lout vectors satisfy the measurement
vector ygt , and all but one of these is faulty.

The granularity of offloaded measurements is always to
the pin-level. Either the vector is sparsely represented by m
measurements, in which case it is successfully decoded, or it
is offloaded at full rate upon decoding failure.

B. XOR Network Compaction

We next compare to space compaction using the X-
Compact [12] method for XOR networks. Test responses with
Lout bits are reduced to Lsig detection bits by XORing
together Lsig distinct combinations of response bits. The
output reduction rate is therefore 1− (Lsig/Lout).

Whenever an even number of faulty bits are XORed to-
gether, the result will be erroneously fault-free; aliasing occurs
when this happens at all Lsig outputs. The overall aliasing rate
is therefore driven directly by the output reduction rate, since a
greater number of unique XOR combinations for a fixed Lout

reduces the probability that all detection bits will be erroneous.
We quantify this aliasing rate by simulating the response

of random X-Compact networks to faults in the benchmark



circuit shown in Figure 5. The results are shown in Figure
3, and we see that aliasing increases sharply when fewer
distinct XOR combinations are used. For this circuit, the best
achievable compaction with an aliasing rate below 1% is only
a 35% reduction. While an XOR network can be engineered
for lower aliasing in response to known faults, unanticipated
faults will cause unpredictable aliasing, potentially increasing
the overall rate.

At all output rates, detection occurs to the test-vector
level, since the Lsig bits only provide redundancy against
aliasing. This method cannot distinguish between multiple
faults exercised by a single test.

C. MISR Compaction
We next compare to MISR time compaction, assuming no

unknown ‘X’ values. Combining s test responses with Lout

bits into a single signature of Lsig bits leads to an output
reduction of:

1− Lsig

s ∗ Lout
(5)

Adopting the model in [11], the aliasing rate can be calcu-
lated by the probability of hash collision:

Pr(Collision) =
2sLout−Lsig − 1

2sLout − 1
(6)

For a fixed Lout, MISRs achieve best output reduction and
lowest aliasing rate when s is large. However, this reduces
fault detection granularity to 1-in-s tests. In Figure 3, we show
what happens when we set s = 2, in order to maximize the
granularity of off-chip results. In this case, 60% compaction
can be achieved before aliasing rises above 1%.

In contrast, our CS-based method similarly achieves best
compression and aliasing performance when n is large, how-
ever it suffers no such loss in granularity. Figure 3 shows
that the aliasing rate decreases significantly when we increase
the batch size to 32 and offload the maximum number of
measurements given a fixed output budget. Achieving these
low aliasing rates without a granularity penalty is unique to
our CS-based method.

D. Required Circuitry
We next examine the hardware cost of our method, using flip

flop count as a comparison metric. Our on-chip architecture is
illustrated in Figure 4(b). Encoding requires m accumulators
with a maximum value of log2( 1

2n2Lout). We use m seeded
random {0, 1} number generators to store each row of mea-
surement coefficients. Since m < n, n−1 unique initialization
states are required. Flip flop count is then:

m

[
log2(n− 1) + log2(

1

2
n2Lout)

]
(7)

Both X-Compact and MISR methods require only Lsig flip
flops, meaning that our method has a higher hardware cost,
especially when m is large. However, it is possible to reduce
the number of accumulators in exchange for a higher decoding
failure rate in order to meet cost or area budgets.

VI. EVALUATION

To evaluate our methodology, we simulate the fault detec-
tion process using a benchmark circuit from the ISCAS-85
suite [20], shown in Figure 5. We simulate both the training
and testing phases described in Section IV, testing 10,000 ICs.
IC’s have a 10% probability of a fault occurring, and for these
circuits, the number of faults present is normally distributed
over the range 1 to 6. During the training phase, we set aside
5% of faults as “unanticipated” behaviors during testing.

For our CS method, we tune parameters n = 512 and
T = 16. Given that at most 6 faults should occur in any circuit,
we test with m = 24 and m = 16. This second parameter
value has a lower hardware cost, but a higher probability of
decoding failure when many faults occur. To compare with
time compaction, we use two signature methods: MISR-2,
which takes in 2 8-bit test responses and outputs a single 6 bit
signature, and MISR-4, which takes 4 8 bit test responses and
outputs a single 7 bit signature. The first is chosen for highest
granularity results, and the second for better comapction and
aliasing performance. For both methods, the characteristic
polynomial is defined by a randomly generated bit stream,
fixed for each circuit. To compare with space compaction, we
randomly generate X-Compact networks that output 5 bits, the
best reduction for sub 1% aliasing based on Section III B.

The results are shown in Table I. Our CS method delivers
output reduction rates of 90.68% and 93.64%, respectively.
Though taking only m = 16 measurements increases the
number of decoding failures by 7x, the total output is reduced
since fewer measurements are taken for compressible faults.
The CS method achieves an 8% output reduction improvement
over MISR-4, and a 56% improvement over the XOR net-
work approach. Additionally, we observe no aliasing with our
method, while all compaction methods have non-zero aliasing.

The gains of our CS implementation come at the cost of a
45x increase in the number of flip flops over MISR-4, the sec-
ond best compaction method. This may be a prohibitive cost

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
lia

s
in

g
 P

ro
b
a
b
ili

ty

Output Reduction

X-Compact
MISR

CS

Fig. 3. Aliasing rate is plotted against output reduction rate for the three
methods considered. For X-Compact, aliasing increases as the number of
detection bits decreases. This leads to a maxmium output reduction of only
35% for an aliasing rate below 1%. For an MISR taking two input signatures,
aliasing performs better than X-Compact, and 60% compaction is achieved
at 1% aliasing. With compressive sensing, we can reduce aliasing by using
larger batches without reducing off-chip result granularity: when n = 32,
95% compaction can be achieved with 1% aliasing.



Circuit	  
Under	  
Test	  

TVG	  

Output	  Compac5on	  Circuitry	  Using	  	  
Space	  and	  Time	  Compac5on	  

Space	  Compac5on	  
XOR	  Network	  

Circuit	  
Under	  
Test	  

TVG	  

Time	  Compac5on	  
MISR	  

(a)

Circuit	  
Under	  
Test	  

TVG	  

CS	  Accumulators	  

Compressive	  Sensing-‐based	  Output	  
Compression	  Circuitry	  

(b)

Fig. 4. (a) Circuitry for space and time compaction methods using XOR
networks and MISR registers, respectively. (b) Our CS compression circuitry
requires m accumulators to form compressive measurements from batches of
test outputs. Our method requires more flip flops, but has significantly lower
aliasing rates and higher off-chip granularity.

increase for testing small ICs, and we propose to investigate
improvements based on analog domain encoding in the future
work section.

VII. FUTURE WORK

A major avenue for future work will be extending our
evaluation to additional circuits with varying size, gate count,
path length, and fan-in properties. Beyond the examples in

Figure 4: The DISTROY front-end applies N randomly cho-
sen test vectors to a CUT, measures corresponding leakage cur-
rents, and compresses to M linear combinations.

again. 4) Repeat steps 2 and 3 until both error rates are
at acceptable levels.

4 DISTROY

DISTROY consists of the front-end scanner and back-
end analyzer. In this section we describe these compo-
nents of DISTROY in detail.

4.1 The Front-end

Figure 4 depicts the DISTROY front-end. The front-
end applies N test vectors v1, v2, . . . , vN to a CUT,
obtaining corresponding leakage current measurements
x1, x2, . . . , xN . We next use the compressive sensing
matrix � to reduce the measurements xi down to M lin-
ear combinations yj . Thus, instead of outputting N mea-
surements from the chip, we now output only M mea-
surements, with M << N . Unlike a typical data pro-
cessing (e.g., compression) scheme that performs a sig-
nificant amount of processing at acquisition, DISTROY
handles the incoming data in a relatively light-weight
manner by simply multiplying with �.

4.2 The Back-end

The back-end performs the decoding of compressive
measurements yi using the minimization of Equa-
tion (1). However, as noted in Section 2, to make de-
coding work with high probability, the variables under
optimization must be K-sparse. But neither the ex-
pected measurements nor those of the CUT are sparse
by themselves; how can we recover them using com-
pressive sensing decoding?

Note that we are interested in finding the measure-
ments which significantly deviate from the expected
ones. Let us define a new set of variables, d1, d2, . . . , dN
describing these deviations; more specifically, di =

xi � gi. We can see that the deviations are going to
be relatively more sparse; for example, in the ideal case
without process variations, we would expect di = 0 un-
less a Trojan circuit is present. Normalizing by the stan-
dard deviation � of leakage current, we can decode di
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using Equation (1)’s minimization as follows:

min

X����
di

�i

���� subj. y = �

2

66664

g1 + d1

g2 + d2

. . .

gN + dN

3

77775
(2)

The normalization is needed because of the “largest-
first” decoding property of compressive sensing. With-
out the 1/�i factor in the objective function, the largest
values we decoded might not be Trojan power consump-
tion outliers, but merely largest power consumptions oc-
curing in test vectors with high variance.

Having obtained the deviations di, we can now use the
same types of statistical tests as in the baseline case of
Section 3.

5 Evaluation
Our evaluation features a benchmark circuit that con-
tains 100 NAND gates. We performed a logic simula-
tion of the circuit and applied the Fernandes and Vemuri
method [5] to model log-normal leakage current distri-
butions. This section explains our evaluation methodol-
ogy and discusses empirical results.

5.1 Benchmark Circuit and Trojans
The original c17 circuit from the ISCAS-85 benchmark
suite [6] consists of 6 NAND gates; we combine two
c17 blocks to create double-c17, which contains 20
NAND gates as depicted in Figure 5. Lastly, we use
five double-c17 blocks to produce double-c17x5
shown in Figure 6.

Fig. 5. Our benchmark circuit combines multiple c-17 circuits from the
ICAS-85 suite, pictured above.

Method Flip Flop Output Aliasing Granularity CS Decoding
Count Reduction Rate Rate Failures

CS m=16 320 93.64% 0% pin-level 77,166
CS m=24 483 90.68% 0% pin-level 10,146
MISR-4 7 78.12% 5% 1-in-4 tests –
MISR-2 6 62.50% 6% 1-in-2 tests –
XOR 5 37.50% 1% 1-in-1 tests –

TABLE I

the ISCAS-85 and ITC-99 benchmark suites, the work of
[21] has developed methods for Monte Carlo simulation by
analyzing prototype circuits for the above properties, and
randomly generating similar circuits. Of particular interest is
the analysis of our method under test sequences that exercise
the internal states of flip flops in sequential circuits. With a
larger number of tests to run, and sets of output results that
toggle only internal memory states, we expect the amount of
output correlation to increase, leading to better performance
for our method.

A second major avenue of work is to investigate encoding
pin outputs using analog circuitry. Analog circuitry exists for
computing Fourier transforms, and as noted in Section II,
it may be possible to piggyback off these components to
encode signals at minor hardware cost. In addition, analog
domain encoding would capture more information, including
real-valued voltage readings that are useful for detailed circuit
analysis.

VIII. CONCLUSION

In this paper, we presented a method for lossless output
compression for the fault detection process that uses simple
IC-independent test circuitry. We introduced new techniques
for calculating bases that represent faults with a few non-zero
coefficients. These techniques capture correlations between
related fault tests and across circuits in the testing pipeline.
Using the random linear encoding process of compressive
sensing on-chip, and sparse signal recovery off-chip, we
showed that we can reduce the size of test outputs without
sacrificing granularity or increasing detection failure rates.
This improves significantly upon current industry-standard
methods of compaction in these respects. As a result, our
CS-based compression method yields orders of magnitude
more data to designers for fault isolation. Given the criticality
of fault detection for MIL-SPEC ICs, where strict detection
requirements are enforced, these gains have the potential to
greatly improve the efficacy of testing and verification for
designers and manufacturers.
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