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Abstract—We propose a spectrum analyzer that leverages
many networked commodity sensor nodes, each of which sam-
ples its portion in a wideband spectrum. The sensors operate
in parallel and transmit their measurements over a wireless
network without performing any significant computations such
as FFT. The measurements are forwarded to the backend of the
system where spectrum analysis takes place. In particular, we
propose a solution that compresses the raw measurements in a
simple random linear projection and combines the compressed
measurements from multiple sensors in-network. As a result,
we achieve a substantial reduction in the network bandwidth
requirement to operate the proposed system. We discover that
the overall communication cost can be independent of the number
of sensors and is affected only by sparsity of discretized spectrum
under analysis. This principle founds the basis for a claim that
our network-based spectrum analyzer can scale up the number
of sensor nodes to process a very wide spectrum block potentially
having a GHz bandwidth. We devise a novel recovery algorithm
that systematically undoes compressive encoding and in-network
combining done to the raw measurements, incorporating the
least squares and `1-minimization decoding used in compressive
sensing, and demonstrate that the algorithm can effectively
restore an accurate estimate of the original data suitable for fine-
grained spectrum analysis. We present mathematical analysis and
empirical evaluation of the system with software-defined radios.

I. INTRODUCTION

A spectrum analyzer measures electrical signals present in
a radio frequency (RF) channel and computes their magnitude
across the channel frequency range. Spectral analysis provides
characteristic information about a signal such as dominant
frequency, power, bandwidth, and distortion, which are not
discernible in the time domain. Conventional spectrum ana-
lyzers are specialized hardware featuring a fast RF tuner that
sweeps through an analysis range or a dedicated Fast Fourier
Transform (FFT) device that computes frequency response in
real-time (known as FFT spectrum analyzers).

A key enabling element for emerging cognitive radio [1] and
dynamic spectrum assignment (DSA) [2] is spectrum sensing.
Especially, the ability for accurate, fine-grained analysis of
a target spectrum will be a critical requirement. Technically,
a spectrum analyzer can provide ideal assistance. A typi-
cal spectrum analyzer, however, is a bulky equipment, and
its analysis is restricted to a geographical location of the
equipment. Hence, it is impractical as a spectrum sensor
for cognitive radio on small mobile devices. Also, it would
be a prohibitively expensive solution, considering that the

equipment costs tens of thousands of dollars or more.
Departed from the conventional approach, we envision a

spectrum analyzer that operates over a network interconnecting
many wireless sensor nodes and leverages their measurements
to construct accurate power spectral estimates of a wideband
spectrum, which can potentially span hundreds of MHz to
a few GHz in bandwidth. The sensors are geographically
distributed, work in parallel measuring their respective regions,
and participate in a large-scale in-network data collection
scheme. We assume that the sensors are simple, general-
purpose commodity devices and need not be dedicated for
our spectrum analyzer (they may be user devices). Our aim is
different from contemporaries such as SpecNet [3] whose main
contribution is to provide an API to use networked conven-
tional spectrum analyzer equipments remotely. In this paper,
we focus on the acquisition of distributed RF measurements,
compressive sampling, and manipulation of the compressed
data for efficient transport to the distant system backend. We
describe a novel data recovery algorithm to systematically
undo all compressive and in-network processing done to the
original measurements.

A. Challenges

What is the communication cost of a fine-grained spectrum
analysis? In digital signal processing, the Nyquist-Shannon
sampling theorem [4] dictates ideal recovery of a measured
signal, which needs to be sampled at least twice as frequently
of its bandwidth. For example, a signal with 1-MHz bandwidth
has the Nyquist rate f?s = 2 × 1 MHz, which means that
any two successive measurements should be spaced in time
T ?s = 1/f?s = 1/(2 MHz) = .5µsec to prevent a loss of
information. For this case, the Nyquist sampling results in a
raw data rate of 2× 106 × sample sizebits/sec.

The majority of wireless technologies today is based on dig-
ital I-Q (in-phase and quadrature) modulation that represents
each sample in complex numbers. Assuming the use of a 32-
bit complex float data type—which could be 64-bit long in
many machines, uninterrupted plain Fourier analysis of a 1-
MHz spectrum needs to keep up with a 64-Mbps data stream.

Fast Fourier Transform (FFT), an efficient numerical al-
gorithm to compute Discrete Fourier Transform (DFT), is
at the heart of spectrum analyses. FFT running on a batch
of N samples in time produces N frequency components
where each component can be converted into a spectral energy
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around the corresponding frequency index in the spectrum.
Spectrum analyzers designate resolution bandwidth b = B/N
to refer the spacing between two consecutive frequency com-
ponents. Resolution bandwidth determines the granularity of
an analysis—that is, the smaller the resolution bandwidth, the
finer the granularity.

The computational complexity of an N -point FFT is in
O(N logN) time, and a few kHz resolution bandwidth for
the 1-MHz band will result N to be as large as 512 (FFT
commonly performed in a power of 2). Sometimes, creating
a new snapshot may not require full N measurements per
every analysis cycle if some prior knowledge on a channel
or signals is given. The real challenge would be analyzing a
wideband spectrum of several orders of magnitude larger than
the 1-MHz example. A naı̈ve solution could lead to a network
bandwidth requirement as large as hundreds of Gbps, which
is much beyond what a wireless networking technology can
support in the foreseeable future.

B. Problem Statement

Imagine sensor nodes in a wireless network with base
station as illustrated in Fig. 1. We use a term “system backend”
or simply “system” to designate a control entity responsible
to run the spectrum analyzer daemon. We denote “sensor”
a node that performs sampling in the time domain and pro-
vides measurements to the system, and there are P sensors
employed by the system. Suppose that a spectrum under
analysis has a total bandwidth Btot. The system partitions the
spectrum into J subchannels with bandwidths, B1, . . . , BJ ,
such that Btot =

∑J
i=1Bi. For simplicity, assume adjacent

subchannels do not overlap. (It is relatively straightforward
to extend our framework for overlapping scenarios.) There
is a communication protocol P used between the system
and a node to administer the node as one of the sensors.
The system dispatches a measurement assignment, denoted in
(fl, Bl), to sensor node l. This means that sensor l should
tune to fl, the center frequency of the assigned subchannel,
and start sampling according to its bandwidth Bl. Assuming
equipartition of the spectrum (i.e., Bi = B for all i), sensor l
yields a vector of time-domain measurements xl periodically
where dim(xi) = N .

In this system model, the sensor measurements can be first
transmitted to the base station before delivered to the system
backend. If there are exactly P = J sensor nodes with each
measuring one of J subchannels uniquely, we have a total of
L =

∑J
i=1 dim(xi) = J × N measurements constituting x

(all xi’s) for the entire spectrum. Our objective is to minimize
the total number of measurements L transmitted to the system
well under J ×N samples per each cycle.

We clarify that there are two types of nodes, a sensor or
network node, based on functionalities in the system. Sensor
nodes produce measurements in the time domain and transmit
either directly to the base station, for example, as depicted
by ‘white’ circles in Fig. 2(a) or to a network node that can
relay the measurements for others as in Fig. 2(b). We assert
that sensor nodes are end-nodes and not meant to forward

Spectrum under analysis with total bandwidth Btot 
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Fig. 1. A wideband spectrum (e.g., Btot ≈ a few GHz) under analysis
is partitioned for collective measurement efforts by multiple sensor nodes.
Spectral analysis on the measured data takes place at the potentially distant
system backend.

other nodes’ measurements. On the other hand, network nodes
can forward the measurements received from others, using
multi-hop relays to the base station as represented by ‘black’
circles in Fig. 2(b). Network nodes play a role that helps save
the uplink bandwidth to the base station by combining or
encoding multiple sets of measurements received from other
nodes to eventually reduce the total measurements to the
base station. Under this model, our goal is to recover almost
exact (i.e., incurring an error below some small threshold
ε) frequency response of the spectrum under analysis as if
the frequency response were constructed by running FFT on
Nyquist sampling.

We model the communication cost of our network-based
spectrum analyzer as the total number of measurements re-
ceived by (or transmitted to) the base station, consisting of all
measurements directly from sensor nodes and through network
nodes. Therefore, we wish to:

argmin
θ

J∑

i=1

dim(yi = θ(xi)) s. t. ‖X(fk)− X̂(fk)‖`2 ≤ ε,

where θ(.) is a size-reducing function we seek, which makes
dim(yi) � dim(xi) ∀i ∈ {1, · · · , J}. X(.) is the actual
frequency response of x, and X̂(.) the estimate reconstructed
from the compressed measurements yi. fk is a frequency
component index in J ×N -point FFT, where 0 ≤ k < J ×N .
The constraint is a performance requirement stipulating the
accuracy of the reconstructed frequency response such that the
Euclidean (`2) norm of the frequency response error should be
bound within some small constant ε.

C. Our Contribution

The main contribution of this paper is the practical, network-
based wideband spectrum analyzer system and in-network data
processing and recovery schemes. In particular, we propose
the use of compressive sensing [5] in each sensor node’s
sampling operation with pre-distributed sensing matrices. We
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have developed a method that enables a network node to mix
compressed measurements from multiple, arbitrary sensors.
Our mixing operation is just arithmetic addition, consequently
imposing little computational overhead to network nodes. The
data from the sensors are summed, and the combined data
size is held constant while propagating up the network nodes.
We have developed a special decoding algorithm for our data
mixing scheme and tested that the algorithm can effectively
separate the sum and recover the data approximately equivalent
to the original samples.

We highlight how the algorithm works:
1) Preparation phase. Identify the location of dominant vari-
ables that correspond to the largest eigenvalues of the sample
covariance matrix computed from measurements for each sen-
sor/subchannel. In this phase, network nodes simply forward
received measurements without mixing;
2) Initial approximation. Solve for an estimate of the dominant
variables from an overdetermined system constructed by con-
sidering only the dominant variables, using the least squares;
3) Iterative refinements. Refine the estimate from the initial
approximation by solving an underdetermined system via
the `1-minimization decoding used in compressive sensing
for remaining (non-dominant) variables of each sensor. This
refinement is iterated for all sensors.

We find that the locations of dominant variables (not their
values) in an RF subchannel can be stable over time. For such
stationary subchannels, the preparation phase needs to be per-
formed infrequently, and the network cost of preparation phase
can thus be ignored. It is reasonable to assume that the total
number of dominant variables is bounded by a constant and
independent of the number of sensors employed by the system.
We were able to verify this assumption empirically from our
analysis on real-world RF spectrums containing modulated
signals (e.g., cellular, UHF/DTV broadcast channels). Network
nodes are then assured to mix compressed measurements
to the maximal degree in the latter two phases, and the
communication cost can subsequently be held constant even
if the system admits more sensor nodes. Finally, the iterative
process in the algorithm reduces computational complexity by
at least a factor of P , the total number of active sensor nodes
in the system, and through relaxing variables for one sensor
at a time.

D. Related Work

This paper addresses similar problems considered by dis-
tributed compressed sensing [6], compressive wireless sam-
pling [7], data gathering for sensor networks [8], and collabo-
rative spectrum sensing [9], [10]. In particular, Polo et al. [10]
introduced an early wideband spectrum sensing framework
that uses multiple, distributed cognitive radios to simultane-
ously sense a block of radio subchannels with compressive
measurements. Wang et al. [11] extended the framework,
describing a complete system and decoding schemes that
rely on the combined use of analog-to-information conversion
(AIC) hardware and the SOMP algorithm [6]. Neither work
focused on manipulating compressed measurements directly

(a) Sensor nodes (in white) transmit measure-
ments directly to base station

(b) Network nodes (in black) relay measure-
ments of other network or sensor nodes

Fig. 2. In-network transmission of measurements

for further networking efficiency, which was critical for our
case. The essence of our approach is to relieve sensor nodes
from any significant computations other than linear projec-
tion. Similarly, network nodes operate in a care-free manner
to combine compressed measurements by doing arithmetic
additions only. Our recovery algorithm separates the mixed
measurements and refine each set in an iterative procedure,
which is another distinguishing remark for our work.

In recent work, Iyer et al. [3] proposed SpecNet, a network
of conventional spectrum analyzers, promoting a means to
share the expensive equipments and new ways of using them
such as remote spectrum measurement and learning primary
transmitter statistics in distant geographic regions. SpecNet,
however, is not a spectrum analyzer per se but an API or user
interface for remote usage, which is different from what this
paper addresses.

II. PRELIMINARIES

A. Notation

A boldfaced variable indicates that it is a vector or matrix.
We take the notational convention used in compressive sensing
to denote a sampled, uncompressed signal x ∈ CN , and
its compressive measurements y ∈ CM , where M � N .
Φ ∈ RM×N is a measurement or projection matrix used in
compressive sensing. x has a sparse representation s ∈ CN in
a basis Ψ ∈ CN×N such that x = Ψ s. We use Q ∈ CN×N to
represent the optimal sparsifying basis for x. Superscripted H
means Hermitian (conjugate) transpose. E[·] is the expectation
operator.

Subscripted variables represent that they belong to a group
of same kinds. For example, xi is the measurement of a signal
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by sampling i-th subchannel, and xk from k-th subchannel. A
parenthesized subscripted index means a sorted position. For
example, s(i) is an i-th sorted vector among all si’s according
to their magnitudes. Tilde ‘˜’ above a vector variable means
that the values of some elements in the vector are replaced
by zeros. Tilde ‘˜ ’ above a matrix variable also designates
the replacement by zeros. For a matrix, all elements in some
columns or rows are replaced by zeros. Hat ‘ ˆ ’ above a
variable means that it is an approximate (solution) of the
original variable.

B. Compressive Sensing

Compressive sensing [5] is a recent signal processing tech-
nique that compresses data into a random linear combination
stated in Definition 1. The recovery assumes a sparse structure
present in the data. The exploitation of sparsity is a common
theme behind many compression schemes, but compressive
sensing leverages it differently by directly capturing K signif-
icant components of size-N data in M measurements without
analysis (note K < M � N ). Conventional compression
schemes, however, would require an analysis of the data
commensurate with N or greater in computational complexity
before compression. Theorem 2 provides a lower bound of
M , the number of measurements required for the `1-minimum
compressive sensing decoder [12], [13] to achieve the exact
data recovery with high probability. While there are other
decoding strategies (e.g., [14]) and they also work under
our framework, we limit our discussion on sparse recovery
techniques to the `1-minimization throughout this paper.

Definition 1: (Compressive Measurements) A linear coding
scheme with an M×N measurement matrix Φ for M � N on
an N×1 vector x produces M×1 compressive measurements,
y = Φx.

Theorem 2: An N×1 x is K-sparse if there exists an N×N
basis Ψ such that x = Ψ s, and s has only K < N nonzero
elements. Provided that the matrix Φ satisfies the Restricted
Isometry Property and M ≥ cK log (N/K) for some small
constant c, an exact recovery of x from y = Φx can be
achieved with high probability by `1-minimization decoding
that chooses the solution minimizing `1-norm of s:

mins∈RN ‖s‖`1 subject to y = (ΦΨ) s (1)

Proof: See Candès [12].

C. Optimal Basis Decoding

For given N and K, the quality of compressive sensing
decoding depends on M . More interestingly, the decoding
is incremental—using a smaller M (than required for exact
recovery) does not disqualify the decoded result entirely. In
other words, the largest some number (corresponding to the
smaller M ) of decoded values should still be accurate. If
desired accuracy is not met, one can increase M . However,
this is not the only way to improve the decoding accuracy.
If there exists another basis that can sparsify the data with
fewer nonzero magnitudes, using such basis will also improve

the accuracy. Using such an optimally designed basis is the
approach we take in this paper.

But how can one systematically find such an optimal basis?
Consider x an N × 1 random variable corresponding to a
zero-mean (e.g., sinusoids), complex-valued, and wide-sense
stationary discrete random process. Its autocorrelation matrix
is Rx = E[x xH]:

Rx = E







x1

x2
...
xN




[x∗1 x
∗
2 · · · x∗N ]




(2)

Rx is real and symmetric, and the eigen-decomposition gives
Rx = Q Λ QH, where columns of Q are eigenvectors of Rx,
and Λ a diagonal matrix of eigenvalues. Q is orthogonal, thus
Q−1 = QH. What intrigues us is the representation s = QH x,
because Rs = E[s sH] = E[QH x xH Q] = QH Rx Q = Λ. In
other words, the correlation matrix of s is diagonal, making
all cross-correlation terms zero, which signifies that s is an
uncorrelated representation of x. So, there should be no
statistical redundancy in the elements of s, or s is the most
compact, non-lossy representation for x. This process is known
as Kahrunen-Loève Transform (KLT) [15], and we call Q
a KLT basis. We note that there is a computationally more
efficient algorithm by Coifman and Wickerhauser [16], which
can be used online for estimating or incrementally updating
an optimal basis.

For compressive sensing, Q is an ideal candidate for Ψ used
in decoding. To make this point clear, let us first consider the
time-domain representation of a real-world wireless spectrum
illustrated in Fig. 3. Carrier-modulated RF signals (sinusoids)
do not appear sparse in time domain, thus it is customary to
look for their frequency response by taking Fourier Transform.
Discrete Fourier Transform (DFT) takes N samples in time
domain to N samples in the frequency, computing the inner
products of x with sampled complex sinusoids. In matrix form,
it is X = Fx, where the DFT basis F has coefficients fnk =
e−j2πnk/N ∀n, k ∈ {0, 1, . . . , N − 1}. F is invertible, so we
also have x = F−1X.

In Fig. 4, we use the DFT basis to represent the time
samples from Fig. 3, whereas in Fig. 5 we use the adaptive
KLT basis. The KLT basis was estimated by averaging 10
prior measurement intervals—such estimation is the cost of
using KLT than a fixed basis like DFT. In this particular
example, KLT took approximately 10.5 times fewer nonzero
components to describe the time samples than DFT (i.e.,
10.5× sparsity gain). As a result, KLT basis can achieve a
better accuracy of decoding despite taking substantially fewer
measurements.

III. MINIMIZING NETWORK COMMUNICATION COST

The underlying principle for reducing the communication
cost is to take advantage of a measured signal’s sparsity and
simple encoding of multiple, parallel measurements by the
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Fig. 3. Time-domain representation of a real wireless spectrum (source: 512
samples from 6-MHz bandwidth UHF Ch. 21 at fc = 515 MHz measured in
Cambridge, MA on Saturday May 21, 2011 11:03pm EST, using USRP2)Why Search for Better Basis? (2) 
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Fig. 4. Same data from Fig. 3 represented in Fourier basis

sensors. This section explains two approaches integrated in
our system.

A. Exploiting Signal Sparsity with Compressive Measurements

Compressive sensing enables us to exploit a concealed
sparse structure of the measured signal blindly, provided that
there will be a suitable basis available for recovery. In the
exploitation of sparsity, compressive sensing provides a key
advantage for cases such as data collection in a mesh-styled
wireless sensor network [8]. As discussed in the next section,
multi-hop relays can gracefully embrace compressive measure-
ments with a substantially lower communication cost for large-
scale data collection. In contrast, conventional compression
schemes such as joint entropy coding [17] require solving a
complex optimization problem at nodes.

Optimal Basis via KLT: Finite Averaging 
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Fig. 5. Same data from Fig. 3 represented in estimated KLT basis
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Fig. 6. An example for P -way mixing of compressive measurements (note:
xi ∈ CN , yi ∈ CM , and the P -way sum y ∈ CM )

B. Combining Multiple Measurements

In Fig. 6, we illustrate an example how compressive mea-
surements independently captured by P sensors can be com-
bined over the network. We note that the combing operations
are purely arithmetic, keeping only track of which sensor
measurements are added. We define combined compressive
measurements from P different sensors.

Definition 3: (P -way Combined Compressive Measure-
ments) For P sensors u1, . . . , uP , the sum y = y1 + . . . +
yP =

∑P
i=1 yi mixes the sensor measurements P -way, where

yi = Φxi contains M compressive measurements of node ui.
The top black node in Fig. 6 will finally produce the sum

y and transmit it to the base station. The additive mixing pre-
serves the number of measurements, despite passing through
intermediate network nodes and aggregating more data. The
resulting save in bandwidth is roughly by a factor of P , the
number of sensor nodes whose measurements are combined
in the sum.

IV. SYSTEM OPERATION

We describe in detail the three phases outlined in Sec-
tion I.C.

A. Preparation Phase

In Section II.C, we mentioned the use of optimal basis for
decoding, which can significantly reduce the number of com-
pressive measurements without compromising the accuracy of
recovered results. Optimal bases, however, are data-dependent
and therefore need to be estimated (and re-estimated). Station-
arity of the data determines how frequently or infrequently a
basis should be updated.

During Preparation Phase, the system estimates optimal
bases to be used for each subchannel (a partition of the
spectrum) by performing Kahrunen-Loève expansion on the
measurements received from the sensors. Each sensor node
samples its assigned subchannel in some unit intervals. During
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the basis estimation, the system directs sensor nodes with a
longer measurement period. Preparation Phase needs not be
scheduled too frequently for analyzing modulated RF signals
as we can expect that the locations of dominant eigenvectors
(i.e., leading principal components) in the covariance matrix
of a subchannel change slowly or remain relatively stationary
over time.

How KLT basis can be estimated: We adopt a technique
that integrates compressive sensing with using optimal KLT
basis [18]. Here, we summarize the technique. The KLT basis
Q is computed from a sample autocorrelation matrix Rx =
E[xxH], where x contains discrete channel measurements over
time. Similarly, the autocorrelation matrix of the compressive
measurements y is: Ry = E[yyH]. By Definition 1, Ry =
E[ΦxxHΦT] = ΦE[xxH]ΦT. So, Ry = ΦRxΦT. Since ΦT

is not a square matrix, using its pseudo-inverse (ΦT)†, we
obtain:

Ry(Φ
T)† = ΦRx (3)

Eq. (3) suggests that we have been compressively sensing Rx

in Ry(Φ
T)†, which is already captured by y = Φx to encode

the original channel measurements x.
Following the above reasoning, we conclude that a KLT

basis Q can be recovered via compressive sensing, comprised
in four steps:

1) Decode X (DFT of x) from y = (ΦF−1)X where F−1
is the inverse DFT matrix;

2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1
l

∑l
i=1 xix

H
i ;

4) Obtain Q from the eigenvalue decomposition Rx =
QΛQH.

B. Initial Approximation via Least Squares Recovery

The KLT basis estimation can identify dominant eigen-
components by examining Λ whose diagonals are the eigen-
values of the channel autocorrelation Rx. When compressive
measurements arrive (as a P -way sum), the system first
sets up an overdetermined system of equations specified by
Definition 4, using only several dominant components per
each subchannel mixed in the P -way sum. To set up the
overdetermined equations, the system leverages its knowledge
on the locations of the leading eigen-components of the
subchannels. We compute the initial approximation by the least
squares, a method well-known for overdetermined equations.

Definition 4: The initial approximation determines a solu-
tion by the least squares method to an overdetermined system
of equations:

y = Φ [Q̃1 Q̃2 · · · Q̃P ]




s̃1

s̃2
...

s̃P




(4)

where y is the P-way sum of compressive measurements, Q̃i is
zero-filled truncated from the i-th KLT basis Qi such that Q̃i

contains only αi nonzero columns of dominant eigenvectors
corresponding to the first αi leading eigenvalues.

C. Iterative Refinement via Compressive Sensing Decoding

We refine the initial approximation through iterative relax-
ation(s) based on compressive sensing. We will relax only one
si at a time by systematically eliminating (P − 1) yi’s with
back-substituting (P − 1) s̃i’s from using the result of the
initial approximation. For example, we relax s1 by solving:

y = Φ [Q1 Q̃2 · · · Q̃P ]




s1
ˆ̃s2
...
ˆ̃sP




(5)

where the rest ˆ̃si’s are the back-substituted initial approxi-
mate. It is important to distinguish this system of equations,
which is underdetermined, from the overdetermined system in
Definition 4. We use the `1-minimization decoding, which is
popular in compressive sensing, and relax all N unknowns
in s1. After relaxing s1, we relax the next, say s2. For s2,
we back-substitute s1 with ŝ1 (which was just relaxed) and
s̃3, . . . , s̃P with ˆ̃s3, . . . , ˆ̃sP from the initial approximation:

y = Φ [Q1 Q2 Q̃3 · · · Q̃P ]




ŝ1

s2
ˆ̃s3
...
ˆ̃sP




(6)

This process iterates for all P si’s. Note that another stage
of P relaxations can take place. The new stage uses the result
of the relaxations from the previous stage.

V. ALGORITHMS

In this section, we first look into a joint decoding algorithm
that can recover the original signals from the sum of compres-
sive measurements. Next, we present our algorithms for initial
approximation and iterative refinement, which we described in
the previous section. We argue that the latter algorithms can
achieve better accuracy than the joint decoding while using
fewer measurements.

A. Joint Decoding Algorithm

For simplicity, consider 2-way combined compressive mea-
surements y = y1 + y2 = Φ x1 + Φ x2. Joint decoding is a
technique to recover x1 and x2 from y in one shot (hence,
the term joint). Decoding one of the signals, say x1, from y is
trivial if y2 is known, because we can decode y−y2 = Φ x1.
But how can we recover the original signals without explicit
availability of additional measurements to separate one signal
from another?

Simply put, joint decoding leverages the overcomplete
representation used in, for example, blind source separation
[19]. Using an overcomplete basis Ψ = [Ψ1Ψ2] for the
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joint representation s =

[
s1

s2

]
, we can rewrite the sum

y = Φ [Ψ1 Ψ2]

[
s1

s2

]
, which is in the standard compressive

sensing format y = (Φ Ψ) s. This can be decoded, and we
split the joint solution s by the dimensions of s1 and s2.
However, there is a drawback for joint decoding—it needs to
solve for an increased number of variables (i.e., 2N rather than
N ). We state the recoverability of P -way mixed compressive
measurements by joint decoding in Theorem 5.

Theorem 5: (Joint Decoding of Mixed Compressive Mea-
surements) For P-way combined compressive measurements
of Definition 3, signals x1, . . . ,xP with sparsifying bases
Ψ1, . . . ,ΨP can be recovered by first decoding an over-

complete representation y = Φ
[
Ψ1 · · · ΨP

]



s1
...

sP


, then

restoring xi from si, using xi = Ψisi. The recovery is exact
with high probability if M , the number of measurements in
y, is sufficiently large for si’s. That is, given total sparsity
Ktot =

∑P
i=1Ki where Ki is the number of nonzero elements

in si, if M ≥ cKtot log(
PN
Ktot

) for some small constant c.
Otherwise, the recovery will be lossy.

Proof: For yi = Φ xi, Mi ≥ cKi log(
N
Ki

). So,∑P
i=1Mi ≥

∑P
i=1 cKi log(

N
Ki

), and we want to examine
if M is at least

∑P
i=1 cKi log(

N
Ki

) or larger. For K1 =

K2 = . . . = KP ,
∑P
i=1 cKi log(

N
Ki

) = cKtot log(
PN
Ktot

). For
distinct Ki values, cKtot log(

PN
Ktot

) >
∑P
i=1 cKi log(

N
Ki

).
Therefore, taking M measurements suffices exact recovery of
xi’s with high probability.

B. New Decoding Algorithm
Joint decoding can be implemented easily, but because the

number of unknowns increases with the number of sensors in
the P -way sum, admitting new sensor nodes will add extra
variables in its one-shot decoding. This can be cumbersome
for the system, as it would occasionally require to monitor
and interfere on-going data collection paths that exceed some
max-hop limit. Joint decoding is a mismatch to in-network data
collection/compression schemes, and we need more efficient
decoding algorithm that fits to our P -way model.

Initial Approximation Algorithm. Fig. 7 depicts initial
approximation on the left.

1) Obtain Q̃i’s by keeping only the first αi leading eigen-
vectors of Qi’s and replacing other columns with zeros;

2) Construct Q̃ =
[
Q̃1 ‖ Q̃2 ‖ . . . ‖ Q̃P

]
;

3) Obtain ˆ̃s by solving the system y = Φ Q̃ s̃ for s̃ via the
least squares;

4) Let ŝ0i =
ˆ̃si;

5) Compute ŷ0
i = Φ Qi ŝ

0
i , and pass 〈ŷ0

i , ŝ0i 〉 to iterative
refinement.

Iterative Refinement Algorithm. In the rest of Fig. 7, itera-
tive refinement algorithm is explained. The algorithm requires
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representation of xi from Xi, which can be found using algorithms such as Kahrunen-Loève Transform [4]
or Coifman and Wickerhauser [5].

Compressive Sensing.
Optimal Basis Recovery.

3 Strategies

The basic idea to reduce the communication cost is to take advantage of statistical redundancy present in
measurements, which will lead to compression of measured samples.

3.1 Taking Compressive Measurements

We use compressive sensing that should provide two key advantages over conventional data compression.
First, we discussed earlier that multi-hop relays can reduce the number of uplink transmissions and sub-
stantially lower the communication cost. The use of multi-hop relays, however, could complicate the data
compression due to the need for join optimization of the compressive measurements passed on from the
previous hop at the current node. Otherwise, multi-hop relays will hardly save anything since after each
hop the size of data becomes additively larger. This joint optimization is a hard problem and will be (multi-
hop routing) path-dependent—indeed the problem is known NP-hard []. Thus, conventional compression
schemes such as joint entropy encoding are mostly undesirable for our purposes.

Secondly, the in-network measurement collection we consider depends heavily on communication and
computational costs. Conventional compression schemes likely require complex computations performed
on platform. We aim simple compressive encoding schemes that can be performed without burdening the
nodes.

3.2 Mixing Multiple Compressive Measurements from Heterogeneous Nodes

4 Recovery Algorithms

4.1 Separation-based Decoding

Relax sI
(i) using yI

(i) = ΦQ(i) s
I
(i)

ŷI
i = Qi ŝ

I
i

Q̃ = [Q̃1 � Q̃2 � . . . � Q̃P ]

Solve for s̃ in y = Φ Q̃ s̃

yI
(2) = y − Q(1) ŝ

I
(1) −

P�

k=3

ˆ̃y(k) (2)
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Figure 3: Compressive measurements combined

samples, xi, of size N . In the figure, uP , the node colored in black, will finally produce y and transmit it
to the base station. The number of measurements in any yi is N , and our additive combining preserves
the same number of measurements to y through all intermediate combinations (i.e., yA to yX in Figure 3),
resulting in the saving of bandwidth roughly by the factor of N .

4 Decoding of Original Signals

4.1 Joint Decoding Algorithm

We explain the conventional joint decoding algorithm that can separate and decode original signals from
combined compressive measurements taken by multiple sensors. Given The key intuition of joint decoding
is to construct

4.2 New Decoding Algorithm

s̃1 s̃2 s̃P

ˆ̃s1
ˆ̃s2

ˆ̃sP

sI
(1) sI

(2) sI
(P )

ŝI
(1) ŝI

(2) ŝI
(P )

We present an algorithm to recover almost exact original signals from P -way mixed compressive mea-
surements. The intuition underlying our algorithm is two-fold. First, we use the linear least squares jointly
with sparsifying bases of the original signals. The sparsifying bases we consider are optimal (e.g., KLT and
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samples, xi, of size N . In the figure, uP , the node colored in black, will finally produce y and transmit it
to the base station. The number of measurements in any yi is N , and our additive combining preserves
the same number of measurements to y through all intermediate combinations (i.e., yA to yX in Figure 3),
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samples, xi, of size N . In the figure, uP , the node colored in black, will finally produce y and transmit it
to the base station. The number of measurements in any yi is N , and our additive combining preserves
the same number of measurements to y through all intermediate combinations (i.e., yA to yX in Figure 3),
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samples, xi, of size N . In the figure, uP , the node colored in black, will finally produce y and transmit it
to the base station. The number of measurements in any yi is N , and our additive combining preserves
the same number of measurements to y through all intermediate combinations (i.e., yA to yX in Figure 3),
resulting in the saving of bandwidth roughly by the factor of N .
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joint representation s =

�
s1

s2

�
, we can rewrite the sum

y = Φ [Ψ1 Ψ2]

�
s1

s2

�
, which is in the standard compressive

sensing format y = (ΦΨ) s. This can be decoded, and we
split the joint solution s by the dimensions of s1 and s2.
However, there is a drawback for joint decoding—it needs to
solve for an increased number of variables (i.e., 2N rather than
N ). We state the recoverability of P -way mixed compressive
measurements by joint decoding in Theorem 5.

Theorem 5: (Joint Decoding of Mixed Compressive Mea-
surements) For P-way combined compressive measurements
of Definition 3, signals x1, . . . , xP with sparsifying bases
Ψ1, . . . ,ΨP can be recovered by first decoding an over-

complete representation y = Φ
�
Ψ1 · · · ΨP

�



s1

...

sP


, then

restoring xi from si, using xi = Ψisi. The recovery is exact
with high probability if M , the number of measurements in
y, is sufficiently large for si’s. That is, given total sparsity
Ktot =

�P
i=1 Ki where Ki is the number of nonzero elements

in si, if M ≥ c Ktot log( PN
Ktot

) for some small constant c.
Otherwise, the recovery will be lossy.

Proof: For yi = Φxi, Mi ≥ c Ki log( N
Ki

). So,�P
i=1 Mi ≥ �P

i=1 c Ki log( N
Ki

), and we want to examine
if M is at least

�P
i=1 c Ki log( N

Ki
) or larger. For K1 =

K2 = . . . = KP ,
�P

i=1 c Ki log( N
Ki

) = c Ktot log( PN
Ktot

). For
distinct Ki values, c Ktot log( PN

Ktot
) >

�P
i=1 c Ki log( N

Ki
).

Therefore, taking M measurements suffices exact recovery of
xi’s with high probability.

B. New Decoding Algorithm

Joint decoding can be implemented easily, but because the
number of unknowns increases with the number of sensors in
the P -way sum, admitting new sensor nodes will add extra
variables in its one-shot decoding. This can be cumbersome
for the system, as it would occasionally require to monitor
and interfere on-going data collection paths that exceed some
max-hop limit. Joint decoding is a mismatch to in-network data
collection/compression schemes, and we need more efficient
decoding algorithm that fits to our P -way model.

Initial Approximation Algorithm. Fig. 7 depicts initial
approximation at the left.

1) Obtain Q̃i’s by keeping only the first αi leading eigen-
vectors of Qi’s and replacing other columns with zeros;

2) Construct Q̃ = [Q̃1 . . . Q̃1];
3) Solve the system y = Φ Q̃ s̃ for s̃ via the least squares

and obtain solution ˆ̃s;
4) Let ŝ0

i = ˆ̃si;
5) Compute ŷ0

i = ΦQi ŝ
0
i , and feed ŷ0

i ’s and ŝ0
i ’s to

iterative refinement.

Iterative Refinement Algorithm. Fig. 7 illustrates the tran-
sition workflow from initial approximation to the first refine-
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representation of xi from Xi, which can be found using algorithms such as Kahrunen-Loève Transform [4]
or Coifman and Wickerhauser [5].

Compressive Sensing.
Optimal Basis Recovery.

3 Strategies

The basic idea to reduce the communication cost is to take advantage of statistical redundancy present in
measurements, which will lead to compression of measured samples.

3.1 Taking Compressive Measurements

We use compressive sensing that should provide two key advantages over conventional data compression.
First, we discussed earlier that multi-hop relays can reduce the number of uplink transmissions and sub-
stantially lower the communication cost. The use of multi-hop relays, however, could complicate the data
compression due to the need for join optimization of the compressive measurements passed on from the
previous hop at the current node. Otherwise, multi-hop relays will hardly save anything since after each
hop the size of data becomes additively larger. This joint optimization is a hard problem and will be (multi-
hop routing) path-dependent—indeed the problem is known NP-hard []. Thus, conventional compression
schemes such as joint entropy encoding are mostly undesirable for our purposes.

Secondly, the in-network measurement collection we consider depends heavily on communication and
computational costs. Conventional compression schemes likely require complex computations performed
on platform. We aim simple compressive encoding schemes that can be performed without burdening the
nodes.

3.2 Mixing Multiple Compressive Measurements from Heterogeneous Nodes

4 Recovery Algorithms

4.1 Separation-based Decoding
ˆ̃yi = Q̃ ˆ̃si

Sort {ˆ̃y1, . . . , ˆ̃yP } → {ˆ̃y(1), . . . , ˆ̃y(P )}

4.2 Least Squares with Iterative Decoding on Residuals

We present an algorithm to recover almost exact original signals from P -way mixed compressive measure-
ments. The intuition underlying our algorithm is two-fold. First, we use the linear least squares jointly with
sparsifying bases of the original signals. The sparsifying bases we consider are optimal (e.g., KLT and local
cosine bases) in the sense that most information about the signal is captured in the first α (for some small
number α) leading components, which correspond to the largest eigenvalues. Secondly, we perform the
�1-minimization decoding on each residual that is P − 1 self-excluding measurements estimated using the
least squares solutions subtracted from the mixed compressive measurements.

We write P -way mixed compressive measurements taken by nodes u1, . . . , uP :

y = y1 + y2 + . . . + yP =
P�

i=1

yi (2)

3
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number α) leading components, which correspond to the largest eigenvalues. Secondly, we perform the
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3 Strategies

The basic idea to reduce the communication cost is to take advantage of statistical redundancy present in
measurements, which will lead to compression of measured samples.

3.1 Taking Compressive Measurements

We use compressive sensing that should provide two key advantages over conventional data compression.
First, we discussed earlier that multi-hop relays can reduce the number of uplink transmissions and sub-
stantially lower the communication cost. The use of multi-hop relays, however, could complicate the data
compression due to the need for join optimization of the compressive measurements passed on from the
previous hop at the current node. Otherwise, multi-hop relays will hardly save anything since after each
hop the size of data becomes additively larger. This joint optimization is a hard problem and will be (multi-
hop routing) path-dependent—indeed the problem is known NP-hard []. Thus, conventional compression
schemes such as joint entropy encoding are mostly undesirable for our purposes.

Secondly, the in-network measurement collection we consider depends heavily on communication and
computational costs. Conventional compression schemes likely require complex computations performed
on platform. We aim simple compressive encoding schemes that can be performed without burdening the
nodes.

3.2 Mixing Multiple Compressive Measurements from Heterogeneous Nodes

4 Recovery Algorithms

4.1 Separation-based Decoding

Relax sI
(1) using yI

(1) = ΦQ(1) s
I
(1)

yI
(i) = y −

i−1�

j=1

Q(j) ŝ
I
(j) −

P�

k=i+1

ˆ̃y(k) (2)

4.2 Least Squares with Iterative Decoding on Residuals

We present an algorithm to recover almost exact original signals from P -way mixed compressive measure-
ments. The intuition underlying our algorithm is two-fold. First, we use the linear least squares jointly with
sparsifying bases of the original signals. The sparsifying bases we consider are optimal (e.g., KLT and local
cosine bases) in the sense that most information about the signal is captured in the first α (for some small
number α) leading components, which correspond to the largest eigenvalues. Secondly, we perform the
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or Coifman and Wickerhauser [5].

Compressive Sensing.
Optimal Basis Recovery.

3 Strategies

The basic idea to reduce the communication cost is to take advantage of statistical redundancy present in
measurements, which will lead to compression of measured samples.

3.1 Taking Compressive Measurements

We use compressive sensing that should provide two key advantages over conventional data compression.
First, we discussed earlier that multi-hop relays can reduce the number of uplink transmissions and sub-
stantially lower the communication cost. The use of multi-hop relays, however, could complicate the data
compression due to the need for join optimization of the compressive measurements passed on from the
previous hop at the current node. Otherwise, multi-hop relays will hardly save anything since after each
hop the size of data becomes additively larger. This joint optimization is a hard problem and will be (multi-
hop routing) path-dependent—indeed the problem is known NP-hard []. Thus, conventional compression
schemes such as joint entropy encoding are mostly undesirable for our purposes.

Secondly, the in-network measurement collection we consider depends heavily on communication and
computational costs. Conventional compression schemes likely require complex computations performed
on platform. We aim simple compressive encoding schemes that can be performed without burdening the
nodes.

3.2 Mixing Multiple Compressive Measurements from Heterogeneous Nodes

4 Recovery Algorithms

4.1 Separation-based Decoding

Relax sI
(i) using yI

(i) = ΦQ(i) s
I
(i)

ŷI
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4.2 Least Squares with Iterative Decoding on Residuals

We present an algorithm to recover almost exact original signals from P -way mixed compressive measure-
ments. The intuition underlying our algorithm is two-fold. First, we use the linear least squares jointly with
sparsifying bases of the original signals. The sparsifying bases we consider are optimal (e.g., KLT and local
cosine bases) in the sense that most information about the signal is captured in the first α (for some small
number α) leading components, which correspond to the largest eigenvalues. Secondly, we perform the
�1-minimization decoding on each residual that is P − 1 self-excluding measurements estimated using the
least squares solutions subtracted from the mixed compressive measurements.

We write P -way mixed compressive measurements taken by nodes u1, . . . , uP :

y = y1 + y2 + . . . + yP =
P�

i=1

yi (5)

where yi = Φxi represents a vector containing M compressive measurements computed by node ui. Note
Φ, a M × N random matrix used for compressive measurements, operates on the uncompressed Nyquist
samples, xi, of size N .

Stage 0: Least Squres. The least squares solve for {s̃1, . . . , s̃P } in:

y = Φ [0 Q̃1 | 0 Q̃2 | · · · | 0 Q̃P ]




0

s̃1

0

s̃2

...

0

s̃P




(6)

where s̃i has size αi. The system is overdetermined and its numerical solution can be computed stably using
the least squares via QR factorization.

Stage I and Beyond: �1-minimization on Residuals. With {s̃0
1, . . . , s̃

0
P }, the solutions of the least squares in

Stage 0, we compute the list {ỹ0
1, . . . , ỹ

0
P } using ỹ0

i = Qis̃
0
i . We then sort {ỹ0

1, . . . , ỹ
0
P } in ascending order

to obtain {ỹ0
(1), . . . , ỹ

0
(P )}, that is, ỹ0

(1) ≤ ỹ0
(2) ≤ . . . ≤ ỹ0

(P ). The purpose of the �1-minimization decoding
is to relax each si with all N elements. This is different from Stage 0 solving for s̃0

1, which is truncated
from si to only contains its largest αi leading components. In other words, the purpose of the Stage 0 least
squares is coarse relaxation of si that can be refined in Stages I and beyond by the �1-minimization decoding
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or Coifman and Wickerhauser [5].

Compressive Sensing.
Optimal Basis Recovery.

3 Strategies

The basic idea to reduce the communication cost is to take advantage of statistical redundancy present in
measurements, which will lead to compression of measured samples.

3.1 Taking Compressive Measurements

We use compressive sensing that should provide two key advantages over conventional data compression.
First, we discussed earlier that multi-hop relays can reduce the number of uplink transmissions and sub-
stantially lower the communication cost. The use of multi-hop relays, however, could complicate the data
compression due to the need for join optimization of the compressive measurements passed on from the
previous hop at the current node. Otherwise, multi-hop relays will hardly save anything since after each
hop the size of data becomes additively larger. This joint optimization is a hard problem and will be (multi-
hop routing) path-dependent—indeed the problem is known NP-hard []. Thus, conventional compression
schemes such as joint entropy encoding are mostly undesirable for our purposes.

Secondly, the in-network measurement collection we consider depends heavily on communication and
computational costs. Conventional compression schemes likely require complex computations performed
on platform. We aim simple compressive encoding schemes that can be performed without burdening the
nodes.

3.2 Mixing Multiple Compressive Measurements from Heterogeneous Nodes

4 Recovery Algorithms

4.1 Separation-based Decoding

Restore original
order ŝI
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Figure 3: Compressive measurements combined

samples, xi, of size N . In the figure, uP , the node colored in black, will finally produce y and transmit it
to the base station. The number of measurements in any yi is N , and our additive combining preserves
the same number of measurements to y through all intermediate combinations (i.e., yA to yX in Figure 3),
resulting in the saving of bandwidth roughly by the factor of N .

4 Decoding of Original Signals

4.1 Joint Decoding Algorithm

We explain the conventional joint decoding algorithm that can separate and decode original signals from
combined compressive measurements taken by multiple sensors. Given The key intuition of joint decoding
is to construct

4.2 New Decoding Algorithm
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surements. The intuition underlying our algorithm is two-fold. First, we use the linear least squares jointly
with sparsifying bases of the original signals. The sparsifying bases we consider are optimal (e.g., KLT and
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samples, xi, of size N . In the figure, uP , the node colored in black, will finally produce y and transmit it
to the base station. The number of measurements in any yi is N , and our additive combining preserves
the same number of measurements to y through all intermediate combinations (i.e., yA to yX in Figure 3),
resulting in the saving of bandwidth roughly by the factor of N .
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ŝI
(1) ŝI
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First, we discussed earlier that multi-hop relays can reduce the number of uplink transmissions and sub-
stantially lower the communication cost. The use of multi-hop relays, however, could complicate the data
compression due to the need for join optimization of the compressive measurements passed on from the
previous hop at the current node. Otherwise, multi-hop relays will hardly save anything since after each
hop the size of data becomes additively larger. This joint optimization is a hard problem and will be (multi-
hop routing) path-dependent—indeed the problem is known NP-hard []. Thus, conventional compression
schemes such as joint entropy encoding are mostly undesirable for our purposes.

Secondly, the in-network measurement collection we consider depends heavily on communication and
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{ŷT−I
i }i∈{1,...,P} received from Stage T − I
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(1) , . . . , ŷT−I
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{ŷT−I
i }i∈{1,...,P} received from Stage T − I
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P } → {ŷT−I
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{ŷT−I
1 , . . . , ŷT−I
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T
(1) −

P�

k=3
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or Coifman and Wickerhauser [5].

Compressive Sensing.
Optimal Basis Recovery.

3 Strategies

The basic idea to reduce the communication cost is to take advantage of statistical redundancy present in
measurements, which will lead to compression of measured samples.

3.1 Taking Compressive Measurements

We use compressive sensing that should provide two key advantages over conventional data compression.
First, we discussed earlier that multi-hop relays can reduce the number of uplink transmissions and sub-
stantially lower the communication cost. The use of multi-hop relays, however, could complicate the data
compression due to the need for join optimization of the compressive measurements passed on from the
previous hop at the current node. Otherwise, multi-hop relays will hardly save anything since after each
hop the size of data becomes additively larger. This joint optimization is a hard problem and will be (multi-
hop routing) path-dependent—indeed the problem is known NP-hard []. Thus, conventional compression
schemes such as joint entropy encoding are mostly undesirable for our purposes.

Secondly, the in-network measurement collection we consider depends heavily on communication and
computational costs. Conventional compression schemes likely require complex computations performed
on platform. We aim simple compressive encoding schemes that can be performed without burdening the
nodes.

3.2 Mixing Multiple Compressive Measurements from Heterogeneous Nodes

4 Recovery Algorithms

4.1 Separation-based Decoding

Restore original order ŝT
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Fig. 8. T th refinement and beyond (T ≥ II)

ment. The algorithm starts with the results passed from the
initial approximation.
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t−1
(P−1), . . . , ŷ
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the results 〈̂st−1i , ŷt−1i 〉 passed from the previous stage. (Note
that Stage 0, i.e., t = 0, refers to initial approximation.)

1) Sort ŝt−1i ’s by their `1-norm to obtain ŝt−1(i) ’s such that
‖ŝt−1(P )‖`1 ≥ ‖ŝt−1(P−1)‖`1 ≥ . . . ≥ ‖ŝt−1(1) ‖`1 ;

2) Sort ŷt−1i ’s according to the indices found in the previ-
ous step from sorting ŝt−1i ’s to obtain ŷt−1(i) ’s;

3) Relax st(i) and obtain ŝt(i) in the descending order by
the `1-norm computed in Step 1, i.e., in the order of
st(P ) → st(P−1) → . . .→ st(1):
i) Compute yt(i) = y −∑P

l=i+1 Q(l)ŝ
t
(l) −

∑i−1
k=1 ŷt−1(k) ;

ii) Do `1-minimization decoding on yt(i) = Φ Q(i) st(i)
and obtain ŝt(i);

4) Restore the original order ŝti;
5) If this is the final refinement stage, stop and return the

decoded results ŝti, else compute ŷti = Φ Qi ŝ
t
i and pass

〈̂sti, ŷti〉 to the (t+1)-th refinement and continue.

VI. EVALUATION

A. Methodology

We empirically evaluated the performance of our spectrum
analyzer. We used USRP2 and N200 nodes [20] that run
GNU radio [21], an open-source software radio framework.
We set up 4 USRPs in an indoor lab and analyzed a 200-
MHz UHF spectrum1. The spectrum was partitioned into J
= 8 subchannels (i.e., each with 25-MHz bandwidth) whose
center frequencies were fc ∈ {512.5, 537.5, 562.5, 587.5,
612.5, 637.5, 662.5, 687.5} MHz. We configured each USRP
to cycle between two subchannels, responsible for taking mea-
surements at both frequencies. Note that the Nyquist sampling
rate of a subchannel is 25 MHz× 2 = 50×106 samples/sec.
For each instance of measurements, we used N = 512 per
subchannel (i.e., the resolution bandwidth of 25 MHz/512 ≈
48.8 kHz). This corresponds to L = J × N = 4096-point

1It spans about 33 UHF channels (6 MHz each) between Ch. 19 and Ch. 51.
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frequency response for the entire spectrum contributed by all
USRPs.

For compressive sensing, we pre-generated a set of Φ matri-
ces and stored in each USRP. For each subchannel, the USRPs
could take compressive measurements using configurable M ,
which we varied from 26 (M/N = 5 % or 20x compression)
to 308 (60 % or 1.67x). USRPs used the same Φ under
each configuration. We also saved uncompressed original data
for evaluative purposes. The uplink transmission to the base
station from an USRP was simulated over a fixed Ethernet, as
precise wireless uplink behaviors (assuming no packet losses)
should hardly affect what we examined (i.e., number of total
measurements and decoding accuracy).

The USRPs were coarsely synchronized, and each USRP’s
measurement start and end times cannot be determined exactly.
This is similar to a swept-tuned spectrum analyzer that mea-
sures a narrow subchannel one at a time, staying for a short
duration before moving to next and cycling the entire spec-
trum. The USRPs (unfortunately) incur a 2-second, hardware-
related delay when changing radio frequency, resulted from
driving a voltage controlled oscillator (VCO).

B. Description of Experiments

We evaluated the following schemes:

1) No mixing. USRPs perform compressive sensing on
their assigned subchannels and transmit the compressive
measurements directly to the base station, i.e., there are 8
transmissions to the base station per one complete cycle
of measurements for the entire spectrum;

2) P -way combined compressive measurements. Varying
P = 2, 4, 8, USRPs mix their compressive mea-
surements, thus there are 8/P transmissions per one
complete cycle.

We compared the decoding performance of the proposed
algorithm to joint decoding for P = 8. Note that for no
mixing case the proposed algorithm needs not be used, as each
subchannel can be recovered individually by the standard `1-
minimum decoder.

C. Error Metric

We use the following error metric to evaluate the accuracy
of our decoding algorithm:

ξ =
1

L

L∑

k=1

‖X(fk)− X̂(fk)‖`2
‖X(fk)‖`2

(7)

where X(fk) is the frequency response of the spectrum under
analysis from the Nyquist sampling (no compression and
no manipulation of original data), and X̂(fk) the recovered
frequency response from a scheme we mentioned in Section
VI.B. Note frequency indices fk ∈ [500, 700)MHz with
k = 0, . . . , L − 1, following the discrete Fourier analysis
convention. Note also that the error metric ξ is normalized
(by the true value) per-sample mean.

D. Decoding Accuracy and Complexity

With varying number of compressive measurements for
each scheme, we counted the total number of measurements
received by the base station while computing the error metric.
Fig. 8 presents the number of measurements plotted against
the error metric ξ reflecting the accuracy of reconstructed
frequency responses. The 8-way combining scheme achieved a
5-fold saving in communication bandwidth for the same accu-
racy by no combining scheme. When we used the proposed de-
coding algorithm for P -way combined schemes, we applied 2
stages of iterative refinements. The proposed algorithm proved
to be better than the joint decoding in accuracy. In Fig. 9,
we plot frequency responses (i.e. spectrum analyzer display)
of the spectrum constructed from uncompressed original time
samples (4096 measurements), compressed but no combining
scheme (832 measurements, 4.9x compression), and 8-way
combined (208 measurements, 20x compression) for visual
comparison.

The proposed algorithm was also better in computational
complexity. To decode 8-way combined measurements, the
joint decoding requires to operate on 8×512 = 4096 variables
at once, whereas the proposed algorithm operates on 40
unknowns (i.e., each αi = 5) with the least squares and 2
stages of J = 8 relaxations (each decodes N = 512 variables).
The `1-minimum decoding has complexity of O(N3) [13],
and the joint decoding requires O(P 3N3) while the proposed
algorithm has only O(2PN3) excluding the least squares in
the initial approximation. The least squares solve for

∑P
i=1 αi

unknowns, which is about orders of magnitude fewer than PN
and therefore not a contributing factor.

E. Effect of Iterative Refinements

Fig. 10 depicts the error improvement versus the number
of refinement stages applied for 8-way combining (i.e., P =
8). The total number of measurements received by the base
station per one complete cycle, Mtot, were 50, 100, and 200.
Note that zero iterative (refinement) stage means the initial
approximation only. Error improvement becomes more signifi-
cant for smaller Mtot, which suggests that more computations
in decoding could compensate insufficient measurements to
some degree but could not overcome completely. There is a
diminishing return on the error improvements, and the return
is saturated faster for larger Mtot.

VII. CONCLUSION

We have described a network-based spectrum analyzer that
operates over distant sensor nodes providing the measurements
to construct fine-grained spectral information. Overcoming the
network communication cost as we scale up the number of
sensor nodes has been critical to our approach. To address
this, we have devised a recovery algorithm that accompanies a
simple, additive in-network combining scheme for compressed
measurements from multiple sensors. Our approach makes
an important assumption that discrete measurements obtained
by sensors bring out sparsity in the frequency domain or in
a custom basis. Designing sparsity-preserving discretization
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schemes is a challenging, ongoing research effort that ap-
plications of our work can benefit from, but orthogonal to
the main considerations of this paper. Although it may sound
surprising, we conclude that it is feasible to scale our network-
based spectrum analyzer with constant communication cost.
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