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Abstract
This paper describes a novel approach of packing sparse
convolutional neural networks into a denser format for effi-
cient implementations using systolic arrays. By combining
multiple sparse columns of a convolutional filter matrix into
a single dense column stored in the systolic array, the uti-
lization efficiency of the systolic array can be substantially
increased (e.g., 8x) due to the increased density of nonzero
weights in the resulting packed filter matrix. In combining
columns, for each row, all filter weights but the one with the
largest magnitude are pruned. The remaining weights are re-
trained to preserve high accuracy. We study the effectiveness
of this joint optimization for both high utilization efficiency
and classification accuracy with ASIC and FPGA designs
based on efficient bit-serial implementations of multiplier-
accumulators. We demonstrate that in mitigating data pri-
vacy concerns the retraining can be accomplished with only
fractions of the original dataset (e.g., 10% for CIFAR-10). We
present analysis and empirical evidence on the superior per-
formance of our column combining approach against prior
arts under metrics such as energy efficiency (3x) and infer-
ence latency (12x).

CCS Concepts • Computing methodologies→Neural
networks; •Computer systems organization→ Systolic
arrays;Neural networks; •Hardware→Hardware-software
codesign.

Keywords systolic arrays; neural networks; sparsity; joint
optimization; data flow architectures
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1 Introduction
Many recent hardware-based state-of-the-art deep learning
accelerators use systolic arrays [28, 29] for efficient imple-
mentations of convolutional neural networks (CNNs). These
systems, including the Google TPU [24] and numerous other
efforts [8, 14, 38, 52, 56], leverage properties of systolic arrays
such as parallel processing through a dataflow architecture,
regular layout of processing elements, and efficient inter-
processor communication, in order to achieve low power
consumption and high throughput for CNN inference.
Concurrently, weight pruning techniques have been pro-

posed to further reduce the computation cost of CNN infer-
ence by setting to zero (pruning) the majority of weights
during training while minimally impacting classification ac-
curacy. This reduces the amount of multiplier-accumulator
(MAC) operations required for inference, as the multiplica-
tions with the zero (pruned) weight can be skipped. How-
ever, the remaining nonzero weights after pruning are dis-
tributed in an unstructured manner, making it challenging
to efficiently utilize the regular structure of systolic arrays.
Using a standard systolic array, the weights set to zero af-
ter pruning still occupy systolic cells in order to maintain
synchronization across all cells in the array during matrix
multiplication. Therefore, the weight reduction achieved
through pruning does not necessarily lead to a reduced run-
time and hardware resources required for CNN inference.

In this paper we propose a novel approach, called column
combining, which can pack sparse convolutional networks
for efficient implementations in systolic arrays. For each
sparse filter matrix in a pruned CNN, all conflicting weights
but the one with the largest magnitude are pruned. As we
discuss in more detail in Section 3, by removing these con-
flicts, a sparse filter matrix fits compactly into our proposed
regular systolic architecture. The classification accuracy of
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the column combined CNN is then improved through addi-
tional retraining of the nonzero weights. Thus, our proposed
column combining approach leverages a joint optimization
opportunity present in CNNs. We optimize the topology of a
CNN to fit the structure of the underlying computing hard-
ware, such as systolic arrays, while preserving most of its
classification accuracy via network retraining.
The main contributions of the paper are summarized as

follows:

• Column combining algorithm (Section 3) for pack-
ing sparse CNNs with unstructured sparsity into a
denser format for efficient systolic array implementa-
tions. To ease data routing, a row permuting scheme
is described (Section 3.4) for a systolic array to output
contiguous data items for those columns to be com-
bined in the next layer. Additionally, the method can
retrain remaining filter weights after column-combine
pruning using only fractions of the original training
dataset to mitigate data privacy concerns (Section 5.5).
• Joint optimization methodology (Algorithm 1 in
Section 3) aiming at achieving two objectives simul-
taneously – high utilization efficiency of the systolic
array and high classification accuracy of the CNN.
The methodology leverages opportunities presented
in CNNs in training for both utilization efficiency and
accuracy simultaneously.
• Bit-serial systolic arrays (Section 4.2) to allow bit-
level fine-grain control in implementing quantized
computation and efficient multiplexing of multiple bit-
line data streams into a single column in the systolic
array to support column combining.
• Cross-layer pipelining (Section 3.5) for CNN infer-
ence over a series of systolic arrays, one for each layer.
By eliminating storing and fetching intermediate re-
sults for each layer, the per sample (e.g., an input image)
inference latency is dramatically reduced.
• ASIC and FPGA designs to validate performance
gains of our column combining approach (section 6)
for energy efficiency, area efficiency, and latency.

Our PyTorch [41] implementation used to train CNNs
with column combining is available at https://github.com/
BradMcDanel/column-combine.

2 Background and Related Work
In this section, we first provide a brief review of the basic
principles of using systolic arrays for the implementation of
CNNs and introduce terminologies that we will use through-
out. Then, we review related ASIC and FPGA accelerators
for CNN inference, advances in CNN design, weight pruning,
and input and weight quantization, all of which have led to
large reductions in both model size and computation cost
for training and inference.

2.1 Systolic Arrays for Convolutional Layers
The computation of a convolutional layer in a CNN can be
viewed as a matrix-matrix multiplication between the data
matrix (the output of the previous layer) and the learned
filter matrix. Suppose that a convolutional layer has N filters
operating on a data volume of depth M, as depicted in Fig-
ure 1a. Then, the result of the convolution computation is
the matrix product of the filter matrix and the data matrix,
as depicted in Figure 1b.
Figure 1c depicts a systolic array design for this matrix

multiplication. It is a weight-stationary systolic array in the
sense that filter weights stored in the array will not move
during computation, whereas input data continuously move
bottom-to-top and result data continuously accumulate left-
to-right. For systolic array synchronization, items in the
data and result matrices are properly skewed, as shown in
the figure. We assume throughout the paper this weight-
stationary systolic array design, while noting that use of
other systolic designs are also possible such as one where
the result data is stationary and the operand matrices move.

2.2 ASIC and FPGA Accelerators for CNNs
Over the past several years, there has been extensive work
on constructing efficient ASIC and FPGA designs for CNNs
which generally consider well studied networks such as
LeNet-5 [31], AlexNet [27], and VGG [48] including [40, 43,
46, 47, 49, 58]. One of the main considerations for such sys-
tems is minimizing the number of off-chip DRAM accesses
for storing and fetching the CNN weights, input samples,
and intermediate layer results, as these incur significant
energy consumption [19]. Therefore, a main focus of accel-
erator design is mapping CNN computations so that input
and weights are fetched only once for all usages within a
layer [7]. Another orthogonal direction is designing memory
systems that are more suitable to the regular structure of
CNN inference computation [44]. In Section 6.1, we show
our design achieves state-of-the-art performance in terms of
energy efficiency due to the reduced model size after column
combining.

FPGAs allow for faster development time and therefore are
often used to study system performance implications of var-
ious design and implementation alternatives for CNNs, such
as low-precision and binary networks [10], novel training
regimes [12], and model compression through weight prun-
ing or novel CNN structures [18]. In Section 6, we validate
the correctness and performance of our column combining
algorithm with an FPGA implementation. Additionally, we
compare our implementation to state-of-the-art FPGA re-
sults.

2.3 CNNs with Simplified Filter Structures
Figure 2 compares standard CNNs to two recent CNN vari-
ants, separable convolution [9, 22] and shift convolution [54].
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systolic array, with skewed input data and output result.
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Figure 2. Standard, separable, and shift convolution.

Separable convolution decouples a standard convolution
layer into two smaller convolution layers (depthwise convo-
lution and pointwise convolution) in order to reduce the num-
ber of model parameters and amount of computation during
inference. Each pointwise filter has only a single weight for
each channel, and therefore does not utilize neighboring
pixels in the spatial dimensions (width and height). Shift
convolution replaces the depthwise convolution layer with
shift operations that do not require any learned weights. In
Section 5.3, we compare the performance of our column com-
bining approach on CNNs with two types of filter structures,
where each layer implements either standard or shift con-
volution, in order to show the impact of column combining
under different types of convolution.

2.4 Weight Pruning During Training
Weight pruningmethods aim to reduce the number ofweights
in a trained CNNby removing (pruning) unimportantweights.
These pruning techniques have shown that many well stud-
ied networks such as AlexNet and VGG-16 have a large
number of weights (up to 90%) that can be pruned without
any impact on classification accuracy [19].
However, the remaining nonzero weights in each sparse

filter matrix after pruning are distributed in an unstructured
manner, making efficient implementations of CNN inference

difficult. This has lead to recent work on structured pruning
techniques, which add constraints so that the remaining fil-
ter matrix after pruning is still dense [16, 21, 23, 37, 39, 53].
This is generally achieved by removing entire rows (filters)
and columns (channels) from the filter matrix, with some
reduction to classification accuracy [53]. In Section 5.3, we
show that the unstructured pruning in conjunction with col-
umn combining leads to higher accuracy compared to state
of the art structured pruning techniques while maintaining
a packed format that can be efficiently implemented in our
proposed systolic array.

2.5 Input and Weight Quantization
Quantization is an important area of study in accelerating
inference computations. In this work, we take a simple linear
fixed-point quantization scheme [33]. We quantize both the
inputs and weights to an 8-bit fixed-point representation
from the 32-bit float-point representation [17, 34] used dur-
ing training. This quantization has been shown to lead tomin-
imal accuracy degradation even on challenging datasets [33].
Within a layer, the accumulation is done with 32-bit inte-
gers, which adds complexity to the bit-serial systolic array
design and is discussed in Section 4.2. In the future, we could
use low-precision quantization (e.g., binary or power of two
weights) in order to further improve the efficiency of CNN
inference with systolic arrays.

3 Column Combining
As discussed in Section 2.4, training a CNN with unstruc-
tured weight pruning leads to small but highly sparse models
with unstructured nonzeroweights. This unstructured sparse
weight matrix is not amenable to efficient implementation
in systolic arrays traditionally designed for dense matrix-
matrix multiplication. In this section, we propose a column
combining algorithm, which jointly optimizes the CNN for
both classification accuracy and utilization efficiency when
deployed in the proposed systolic array described in Sec-
tion 4.



3.1 Terminologies and definitions
Suppose that we are given the sparse filter matrix of weights
associatedwith a convolutional layer of a CNN (see Figure 1a)
after unstructured pruning has been performed. The columns
of this filter matrix which have nonzero weights on a given
row are said to be conflicting on the row, and the row is
said to be a conflicting row for these columns. By column
combining, we mean combining a selected group of columns
into a single combined column. In a combined column, for
the columns which conflict on a row, all nonzero weights
on the row are pruned except for the one with the largest
magnitude. We refer this pruning process as column-combine
pruning.
Further, we say a group of columns has x conflicts if a

total of x weights will be pruned when combining columns
in the group. We say that a group of columns meets the
limited-conflict condition for certain γ value, if the group has
at most γ conflicts per row on average. The γ value can less
than 1. For example, if γ = 0.5, then for every two rows at
most one weight is pruned on average.

3.2 Column Combining Overview
Given a sparse filter matrix, we first partition it into col-
umn groups by grouping columns that have minimal con-
flicts. Then, for each column group, we combine the sparse
columns in the group into a single combined column by ap-
plying column-combine pruning. We aim at achieving two
objectives simultaneously. First, we pack the given sparse
filter matrix into a dense matrix, called a packed filter matrix,
with as a few combined columns as possible to allow effi-
cient systolic array implementations with a small number
of columns. Second, we minimize the impact of column-
combine pruning on classification accuracy.
For high-density packing, we adopt a dense-column-first

combining policy that favors selections of combining columns
which result in high-density combined columns, where the
density of a column is the percentage of nonzeros in the
column. For high-classification accuracy, we then retrain the
remaining weights after column-combine pruning.

The algorithm involves some parameters: α (the maximum
number of sparse columns that can be combined into a single
dense column), β (the pruning rate schedule for unstructured
pruning) and γ (the average number of conflicts per row
allowed for each group). Typically, α is small (e.g., 2) for
early smaller CNN layers and large (e.g., 8) for later large
CNNs layers which have more capacity to be pruned. For
β , we follow a pruning rate schedule in a similar manner
to that proposed in [59] and prune up to a target number
of nonzeros after column combining for each layer. For γ , a
value of 1.75 is sufficient to achieve good packing efficiency
(e.g., over 90% nonzeros) after column combining.

Figure 3 depicts a column combining example. In (a), a
filter matrix F, associated with a sparse convolutional layer,
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Figure 3. Example of combining columns.

is divided along columns into three groups (blue, green, and
red). The zero-valued weights in F due to previous prun-
ing steps are omitted for illustration clarity. The objective
of column grouping is to select sparse columns that, when
combined, result in a single combined column with high
packing efficiency (i.e., components are mostly nonzero). As
we show in Section 5, high packing efficiency translates to
a high utilization efficiency of the systolic array, as more
MACs will perform useful computation by storing nonzero
weights. A small number of conflicting elements γ are al-
lowed between the columns in a group. For instance, in the
blue group, (-3) in column 1 conflicts with (7) in column 3
and -8 in columns 5. The conflicting (-3) and (7) weights are
pruned and -8 is kept as it has the largest magnitude. In (b),
each group is combined into a single column in order to
be loaded into a column in the proposed systolic array (as
discussed in Section 4).

3.3 Column Combining Algorithm
The column combining scheme, outlined in Section 3.2, com-
bines columns in a sparse filter matrix that do not have sig-
nificant conflicts. Algorithm 1, which calls Algorithm 2 and
Algorithm 3, is the top level algorithm used to train sparse
CNNs that can be implemented with systolic arrays of high
utilization efficiency. The training process works in an it-
erative fashion, where at each pruning epoch the model is
pruned based on the pruning rate schedule set by β , followed
by column combining. Generally, pruning is performed in
a gradual manner, with up to 10 pruning epochs over the
course of training. Training continues without pruning for
the final 50% of epochs. In Section 5, we provide analysis on
the effect that each parameter of Algorithm 1 has on both
classification accuracy and utilization efficiency.

The limited-conflict condition assures that in column com-
bining for each group (Algorithm 2) at most γ weights are
pruned per row on average (Algorithm 3). This helps mini-
mize the impact of column-combine pruning on classifica-
tion accuracy. The fact that each group can have at most α
columns (e.g., α = 8) limits the degree of multiplexing that
systolic cells (described in Section 4.2) need to support, while
allowing as many as α columns to be combined in order to



Algorithm 1: CNN Training with Column Combining
Input: C is a CNN with L convolution layers

A is the maximum number of combined columns per column
group for each layer
β is the pruning schedule (amount pruned per prune epoch)
γ is the number of conflicts (i.e., pruned weights) allowed on
average per row for each column group (fixed across layers)
E is the number of epochs for training

Output: Ĉ is a pruned version of C with combined columns
G are the column groups for each of the L layers in Ĉ

1 Ĉ← C;
2 for e ← 1 to E do
3 if e is a prune epoch then
4 for l ← 1 to L do
5 ▷ Step 1 Perform unstructured pruning by removing

the smallest magnitude weights up to βe
6 Ĉl ← prune(Ĉl , βe );
7 ▷ Step 2 Form column groups (Algorithm 2)
8 Gl ← group-columns(Ĉl , Al , γ );
9 ▷ Step 3 Prune conflicts in groups (Algorithm 3)

10 Ĉl ← group-prune(Ĉl , Gl );
11 Ĉ← train(Ĉ); ▷ Network Training

achieve high packing density. Finally, we note that the dense-
column-first combining policy is analogous to that of some
popular bin-packing algorithms which pack large items first.

Algorithm 2: Column Grouping (group-columns)
Input: F ∈ RN×MHW a filter matrix with N rows and MHW

columns (see Figure 1a)
α is the maximum number of combined columns per group
γ is the number of conflicts (i.e., pruned weights) allowed on
average per row for each column group

Output: g are the P groups of columns in F
1 g← [{}];
2 u← {1, 2, . . . , MHW };
3 Loop
4 ▷ exit if every column is in a group
5 if u = ∅ then break;
6 c ← pop(u); ▷ select ungrouped column c
7 ▷ compute densities d between g and c
8 d← pairwise-density(F, g, c );
9 ▷ compute number of conflicting weights between g and c

10 o← pairwise-overlap(F, g, c );
11 ▷ select the group with the highest density while satisfying both

the group size α and the limited-conflict γ conditions
12 gp ← densest-group(g, d, o, α, γ );
13 gp ← дp ∪ c ; ▷ add c to the group gp

3.4 Row Permutation for Contiguous Column
Groups

We can permute rows of a filter matrix of the current layer
to ensure that the columns from the same group for the
next layer are output next to each other. In Figure 4, systolic
arrays for various layers are denoted as rectangles with a
thick black boundary. In (a), a systolic array of eight columns

Algorithm 3: Column-Combine Pruning (group-prune)
Input: F ∈ RN×MHW a filter matrix of N rows by MHW columns

g are the P groups of columns in F
Output: F̂ is F with conflicting entries within each group pruned

1 F̂← F;
2 ▷ For each p group, prune all but one entry per row
3 for p ← 1 to P do
4 F̂p ← F̂[:, gp ]; ▷ Submatrix of F̂ containing columns in gp
5 for n ← 1 to N do
6 w ← max( |F̂p [n] |); ▷ Find largest magnitude weight w
7 found← false; ▷ Breaks ties for largest weights
8 for k ← 1 to size(gp ) do
9 if found or |F̂p [n][k ] | < w then

10 F̂p [n][k ] ← 0; ▷ Prune (set to 0)
11 else
12 found← true;
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for layer i+1 is for an original sparse filter matrix of this
layer consisting of three column groups, indicated in three
colors, for column combining. In (b), column combining is
performed on the three column groups, which results in a
reduced systolic array of three columns for layer i+1. This
reduced systolic array is for a packed filter matrix consisting
of three combined columns. A relatively expensive switchbox
function is needed for routing output of layer i to input of
the reduced systolic array for layer i+1. In (c), by permuting
the rows of the layer i filter matrix according to the column
groups in layer i+1, we avoid the expensive switchbox.

Note that such row permutations are valid, as the column
combining operation on a filter matrix are not affected by
row permutations on the previous filter matrix. Thus, row
permutations for layer i can be determined by the column
groups of a row permuted filter matrix for layer i+1. This
makes the columns within each group contiguous and re-
moves the need to reorder the output using a switchbox at
inference runtime.

3.5 Cross-layer Pipelining of CNN Inference under
Column Combining and Row Permutation

In many realtime application scenarios, single sample latency
is a more important metric than throughput, as an input
sample (e.g., an image) must be processed as soon as it is
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received by the system, and therefore cannot wait to be
processed in large batches.

To address this concern, we propose cross-layer pipelining
which pipes the output data elements from the previous
layer immediately as input into the next layer as soon as it
exits from the systolic array. Figure 5 shows this pipelining
approach for three sparse CNN layers (Layer i, Layer i+1,
and Layer i+2), each deployed in a separate systolic array
after column combining and row permutation have been
applied to each layer. The dashed lines emitted from each
layer output denote that each data element is immediately
pipelined into the next layer. In Section 6.4, we show that
this approach reduces the inference latency for our ASIC
implementation of LeNet-5 by 3.5×. Having the effect of
narrowing systolic arrays for convolutional layers of a CNN,
column combining can reduce data skew (see Figure 1c),
which further reduces the latency.

For more challenging datasets which require much larger
CNNs, such as ImageNet[11], there are not enough systolic
cells to implement the entire network in systolic arrays at
once. For these networkswe take amore conventional weight
tiling approach as depicted in Figure 16a.

4 Systolic Array System Description for
Column Combining

In this section, we describe the systolic array system and its
components in support of the proposed column combining
approach presented in Section 3.

4.1 Systolic Array System Overview
The systolic array system which implements packed filter
matrices after column combining is shown in Figure 6. The
weights of the packed filter matrices corresponding to each
convolutional layer of a CNN are stored in the weight buffer.
These weights are loaded into the MX cells of the systolic
array (discussed in Section 4.2) before matrix multiplication
is performed with the input data. The input data is loaded
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from the input buffer and passed through the shift block
(discussed in Section 4.3). The shift block performs shift
operations, as depicted in Figure 2, and passes the output to
the systolic array in a bit-serial fashion, which then performs
matrix multiplication with the weights stored in the systolic
cells. The output of each row in the systolic array is passed
to the ReLU block (discussed in Section 4.4), which performs
the ReLU activation function. Finally, the result from the
ReLU block is passed to the quantization block and stored in
the output buffer.

4.2 Bit-serial Systolic Arrays
In this section, we describe our bit-serial implementation of
a systolic array for matrix multiplication. Figure 7 show our
bit-serial MAC design which is used across all systolic array
implementations for 8-bit input Xi and 8-bit filter weight W.
The white logic elements shown implement the bit-serial
multiplication between the input Xi and compute the ab-
solute value of the filter weight. The blue logic elements
negate the product based on the sign of the filter weight.
The pink full adder performs bit-serial addition between the
multiplication result and the input accumulation Yi.

In Figure 9a we illustrate a 3×3 bit-serial systolic array for
multiplying a 3 × 3 filter matrix and a 3×M data matrix. We
pre-store in the systolic cell at position (i, j) the correspond-
ing filter weight Wi, j and its sign in the filter matrix. Data
arrives from the bottom of the array. Matrix multiplication
results come out from the right side of the array, as depicted
earlier in Figure 1c.
First, consider a simple scenario where each systolic cell

has balanced I/O and computation time. This is the case
when input data, filter weights and accumulation values all
have the same number of bits. Suppose that they are all 8-bit.
In this case, under the bit-serial MAC implementation of Fig-
ure 7, we will have a systolic cell as depicted in Figure 8a or a
BL (balanced) cell in Figure 10a. In the corresponding systolic
array, as depicted in Figure 9a, for data synchronization pur-
poses, neighboring input and accumulation data streams are
skewed by one clock to accommodate the communication
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delay between the cells. However, this simple scenario is not
applicable to high-precision accumulation that is necessary
for holding the partial result of matrix multiplication [33].
To accommodate high-precision accumulation, bit-serial

systolic cells will have longer computation time than I/O.
Suppose that input data and filter weights are 8-bit and ac-
cumulation values are 32-bit. In this case, under a bit-serial
MAC implementation of Figure 7, we have the unbalanced
systolic cell as depicted in Figure 8b. In the corresponding
systolic array, as depicted in Figure 9b where input of y takes
32 clocks and input of x takes 8 cycles, there is a 24-clock gap
between the input data streams. This gap allows for the addi-
tional computation time required by the 32-bit accumulation
for y.
We can fill in these gaps for each cell by processing four

independent input data streams simultaneously in an inter-
leaved manner, while expanding the processing power and
accumulation data path by 4×, as depicted in Figure 8c and
the IL (interleaved) cell in Figure 10b. The corresponding
systolic array is depicted in Figure 9c with more details in
Figure 11b.

Given the input channel groups determined by the column
combining algorithm, we now describe an efficient systolic
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Figure 10. Systolic cell types used for the corresponding
systolic array in Figure 11.
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Figure 11. Three types of systolic arrays based on the three
cell designs in Figure 10. In (c), Wi,(j) denotes a weight to be
used by channel xj. For example, the weight W2,(3) stored in
the middle cell is used by channel x3.

array implementation which can utilize the combined input
channel groups. In Figure 10c, the multiplexed input (MX)
cell, takes in two x inputs, from two input channels, utilizes
one of them inside each MAC, and forwards both inputs to
the cell above. Note that while for illustration simplicity this
figure shows only two instances of input xi , in our ASIC
and FPGA designs we pack up to 8 channels (requiring 8
instances of input xi ) into a single cell. This highlights the
importance of the bit-serial design, as in the case of 8 inputs,
each cell takes in only 8 bits per cycle, as opposed to a bit-
parallel design where each cell would require 64 inputs per
cycle in the case of 8-bit input.
Figure 11c shows how a systolic array connects the MX

cells. In this example, for the first column, the first and third
rows (filters) use input channel 1, denoted by the W1,(1) and
W3,(1) weights stored within the cells, and the second row
uses input channel 2, denoted by the W2,(2) weight stored
in the cell. As shown, these channels indexes are after row
permutation (Section 3.4), and are therefore guaranteed to
be contiguous.

4.3 Shift Block
Figure 12 shows the design for the shift operation. Based
on the direction of the spatial translation specified by the
shift control signal, the memory controller fetches the cor-
responding 8 bits input maps from the input buffer to the
register array, which sends the input to the systolic arrays
in a bit-serial fashion. We use double buffering to prefetch
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the next data tile so that the output time can overlap with
the data transfer overhead from the input buffer to register
arrays.

4.4 ReLU and Quantization
Figure 12 shows the design for ReLU operation. The 32-bit
input stream comes in a bit-serial fashion and is stalled in
a register array until the last bit arrives. The sign of the 32-
bit input stream is determined by the most significant bit
(32nd bit). If the 32nd bit is 1, then the multiplexer outputs a
32-bit stream of 0; otherwise the multiplexer simply outputs
the input stream. The output from the ReLU block is then
re-quantized and saved in the output buffer. This output can
then be transferred to the input buffer to be used as input
for the next layer.

5 Performance Analysis for the Column
Combining Algorithm

We analyze our column combining approach described in
Section 3 on three datasets MNIST [30] (28×28 greyscale
images of handwritten digits), CIFAR-10 [26] (32×32 RGB
images of 10 object classes), and ImageNet [11] (224×224
RGB images of 1000 classes). We evaluate column combining
on modified versions of well-studied networks: Lenet-5 for
MNIST, and VGG-19 for CIFAR-10 and ImageNet.

We use two different layer structures, which are shown in
Figure 13, to determine how column combining performs on
different filter sizes. The 3×3 layer corresponds to standard
convolution with 3×3 filters, as shown at the top of Figure 2.
This is the filter size used by the majority of layers in the
original VGG-19. The 1×1 layer corresponds to shift convolu-
tion (bottom of Figure 2) where only 1×1 filters are used. The
shift directions are randomly initialized before training and
are not learnable as in [54]. The α parameter corresponds to
the maximum size of each column group during column com-
bining. This is used to facilitate the amount of unstructured
pruning performed during training for column combining
(less aggressive pruning in small layers and more aggressive
pruning in large layers).
The network structures used for each dataset are shown

in Figure 14. For the VGG-19 networks, we removed all

Shift

1x1 Layer

Batch normalization
ReLU6

1x1 Convolution:
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Figure 13. The 1×1 and 3×3 layers for networks of Figure 14.
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Figure 14. Network structures used for evaluation. Details
of the 1×1 and 3×3 layers are shown in Figure 13.

but the final fully connected layer and added a global av-
erage pooling operation which is common in modern net-
works (e.g., ResNet [20]). In Section 5.3, we compare the ef-
fectiveness of column combining against structured pruning
methods. We provide results for both 1×1 and 3×3 filter net-
works in order to provide a more clear comparison against
previous state of the art which only uses 3×3 filters. We
evaluate both a small and large network for ImageNet with
1×1 filters, denoted ImageNet VGG-19-S (1×1) and ImageNet
VGG-19-L (1×1), respectively. In Section 6, all ImageNet eval-
uations use the small 1×1 network unless otherwise stated
due to the smaller size of our FPGA.
All networks are trained using Stochastic Gradient De-

scent (SGD) with an initial learning rate η of 0.05 for Lenet-5
and 0.1 for VGG-19. A Nesterov momentum of 0.9 [45] is
used for all networks. A cosine shape learning rate sched-
ule [36] is used to decay the learning rate to 0 over training.
All MNIST, CIFAR-10, and ImageNet models are trained for
150, 300, and 120 epochs, respectively. Unstructured pruning,
specified by the β schedule, is performed after each epoch
up to the 50% mark of training. At this point, the target spar-
sity has been reached and column combining is performed
to pack the remaining nonzero weights. After column com-
bining, no more pruning is performed for the final 50% of
training. An l1 penalty λ = 10−7 is added to the loss function
to encourage unstructured sparsity in the weights during
the first 50% of epochs where pruning occurs as shown in
Equation 1
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Figure 15. (a) Classification accuracy for validation set and
number of nonzero weights over training epochs (grey verti-
cal lines denote epochs where pruning occurs). (b) Increasing
γ greatly improves utilization efficiency while minimally im-
pacting classification accuracy.

E(W) = ED (W) + λ · | |W| |1 (1)
whereW are the CNNweights across all layers, ED (W) is the
objective loss function (e.g., cross-entropy loss), and | |W| |1
is the ℓ1 penalty with weight λ1.

Before deployment on ASIC or FPGA platforms discussed
in Section 6, the batch normalization parameters are folded
into the convolution layer and 8-bit linear quantization is
applied to the weights.

5.1 Iterative Training with Column Combining
Training a network with column combining occurs over a
series of pruning iterations (Algorithm 1), where, at each
pruning stage, unstructured pruning and column combining
are performed to decrease the model size. Figure 15a shows
the classification accuracy and number of nonzeros weights
for the VGG-19 (1×1) model on the CIFAR-10 dataset over
each training epoch. Each dashed vertical line denotes a
pruning epoch. At each epoch, the number of weights in the
model is shown by the red line. The pruning schedule is set
to be more aggressive in the early epochs of training, where
the learning rate is higher and the pruned model can adjust
the remaining weights, as proposed in [59].

5.2 Impact of the Limited-Conflict Condition
The limited-conflict condition, as described in Section 3.1,
allows for γ conflicting entries per row on average between
columnswithin a group. All but the largest magnitudeweight
among conflictingweights are pruned during column-combine
pruning (Algorithm 3). Figure 15b shows how classification
accuracy and utilization efficiency vary as a function of γ for
8 VGG-19 (1×1) networks trained on the CIFAR-10 dataset.
Larger values of γ allow for more conflicts between the
columns in a group and therefore prune more weights, pos-
sibly with relatively large magnitudes, in order to achieve
1Our notation follows [53].

Dataset Pruning Method Network Accuracy (Top-1) Parameters Pruned (%)

CIFAR-10

Network Slimming [35] VGG-19 93.8% 2.3M 88.5%
Channel Pruning [21] ResNet-56 91.8% 12.8M 50.0%
Column Combining (ours) VGG-19 (3×3) 94.7% 3.0M 84.0%
Column Combining (ours) VGG-19 (1×1) 92.9% 0.3M 84.7%

ImageNet

Structured Pruning [53] AlexNet 58% 46.5M 25%
Network Slimming [35] VGG-19 63.34% 23.2M 82.5%
Channel Pruning [21] VGG-19 69% 26.6M 80.0%
Column Combining (ours) VGG-19 (3×3) 71.81% 4.1M 87.4%
Column Combining (ours) VGG-19-S (1×1) 55.99% 1.5M 66.6%
Column Combining (ours) VGG-19-L (1×1) 65.19% 2.8M 79.9%

Table 1. Comparison of structured pruning methods to col-
umn combining on CIFAR-10 and ImageNet.

higher utilization efficiency across all layers in the CNN.
This dramatically increases the utilization efficiency from
69% (γ = 0.25) to 90% (for γ = 1.0 and larger). As discussed
in the previous subsection, column-combine pruning has a
small impact on classification accuracy (around 1%) since ad-
ditional training is performed after pruning in order to allow
the remaining weights to adjust to the loss of the pruned
weights.

5.3 Comparison with Structured Pruning
We compare the effectiveness of column combining, which
converts filter matrices with unstructured sparsity into a
mostly dense packed format, to structured pruning methods
which perform pruning so that the result matrix is always
dense. Generally, structured pruning has difficulty achieving
the same classification accuracy as unstructured pruning
given the same number of parameters as the pruning cri-
teria is significantly constrained. Table 1 compares column
combining to state of the art structured pruning techniques
on the CIFAR-10 and ImageNet datasets. We see that col-
umn combining achieves higher classification accuracy than
the other methods while using fewer nonzero parameters
after pruning2. The pruned (%) is the percentage of weights
pruned from the number of weights at the start of training.

5.4 Dramatic Tiling Reduction in Partitioned
Matrix Multiplication with Column Combining

When a systolic array is smaller than the weights of a con-
volutional layer, matrix multiplication can be performed in
multiple passes, where each pass executes matrix multiplica-
tion between a submatrix (tile) of the layer weights and the
corresponding input data. Figure 16a shows how this parti-
tioning process is performed on a sparse filter matrix of (96
rows by 94 columns), which is larger than the systolic array
(32 rows by 32 columns). The filter matrix is partitioned into
9 tiles, each with a maximum size of 32 by 32, and the input
data is tiled in a similar manner along the columns, but not
along the rows (batch size × image height × image width).

The full matrix multiplication is performed by alternating
between weight loads and matrix multiplications for each of
2Our accuracy is reported before quantization for a fair comparison to the
other works which do not perform quantization. Results in Section 6 report
accuracy after quantization.
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the submatrices (tiles). The filter matrix and input data enter
the systolic array as depicted in a skewed fashion in order
to maintain data synchronization within the systolic array.
Note that in the steady state every systolic cell is busy all the
time, either doing the matrix multiplication computation or
loading the weights for the next tile. ReLU and quantization
are performed on the output of the systolic array after the
final tile for a set of rows in the filter matrix. (Note that in
Section 6, we evaluate settings where a CNN layer must be
partitioned in tiles, as shown in Figure 16a and also settings
where the each layer can fit entirely into a systolic array
which does not require partitioning.)

Figure 16b shows a sparse filter matrix and a correspond-
ing packed filter matrix after column combining, which is
stored in the systolic array with MX cells (described in Sec-
tion 4). As in Figure 16a, the sparse filter matrix has 96 rows
and 94 columns, with only 16% of the weights being nonze-
ros. For a 32×32 systolic array, this sparse filter matrix is
partitioned into 9 tiles (denoted by the red lines) in order
to perform the full matrix multiplication. The packed filter
matrix is the output after column combining, which has ar-
ranged the 94 columns of the sparse filter matrix into 17
groups. Each group is a single column in the 32×17 packed
filter matrix, which can then be loaded into the systolic array
of 544 MX cells. This packed format has 89% nonzeros and
requires only 3 tiles to perform matrix multiplication (a 3×
reduction in tiles).
Figure 17a shows the number of tiles required to per-

form matrix multiplication with a 64×64 systolic array for
each layer in VGG-19 (1×1) models for the CIFAR-10 dataset
trained using Algorithm 1 under three different settings of
γ . The unstructured pruning setting trains the CNN without
column-combine pruning (γ = 0). The two column-combine
models use different settings for γ (0.25 and 1.75), which
lead to a large difference in packing efficiency. The γ = 0.25
setting reduces the number of tiles over the unstructured
pruning setting by approximately 50% across all layers. By
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comparison, the γ = 1.75 setting further reduces the number
of tiles by a substantial margin across all layers and achieves
an 8× reduction in the number of tiles for the final 6 layers
(13 through 19). Generally, this shows that it is difficult to
effectively combine sparse columns when a small γ value is
used, as a few conflicts in any row for a potential group will
make the combination invalid. By adding a modest amount
of column-combine pruning (e.g., γ = 1.75) the combining
algorithm is able to substantially improve the utilization
efficiency and decrease the number of tiles.

5.5 Column Combining with Limited Datasets
In many real world scenarios, customers may provide pre-
trained models to vendors for deployment on their devices
(e.g., mobile devices). In these settings, a customer may not
wish to divulge entire datasets used to train the model to
the vendor for a number of reasons, such as the dataset con-
taining sensitive private information or being a competitive
advantage. In this scenario, model pruning is difficult, as
pruning weights without retraining leads to a significant
degradation in classification accuracy.
We propose that these data privacy concerns can be par-

tially mitigated by providing only a subset of the original
dataset to perform training with column combining. Fig-
ure 17b compares the effects of column combining on a
pretrained dense VGG-19 (1×1) model, trained on the full
CIFAR-10 train dataset, to a new network, over different frac-
tions of training data. All models use γ = 1.75 for column
combining. The largest difference in performance between
the two approaches is when only 2.5% of the full training
data is used (a difference of 20% in classification accuracy),
as the weights in the pretrained model are already initialized
to reasonable values. At 15% of the full training data, the
pretrained model can achieve over 90% classification accu-
racy. This shows that a small amount of training data can
be sufficient to perform the retraining in column combin-
ing while still maintaining a relatively high classification
accuracy. By comparison, training a new model requires 50%



of the training dataset to achieve an over 90% classification
accuracy.

6 Hardware Implementation Experiments
and Performance Evaluation

In this section, we evaluate the performance of our systolic
array system for column combining described in Section 4
for both ASIC and FPGA implementations. Throughout, we
compare designs in terms of accuracy, throughput, area effi-
ciency, and energy efficiency. Additionally, we pay attention
to performance for single or a small number of input samples
(e.g., the end-to-end latency) and energy required to process
a single input sample (e.g., an input image). As stated earlier
in Section 3.5, in realtime scenarios, single sample latency
is a more important metric than throughput, as an input
sample must be processed immediately to meet a set latency
budget. For all ImageNet evaluations, only the VGG-19-S
(1×1) model is used due to the smaller size of our FPGA.

6.1 ASIC Implementation and Evaluation
We synthesize our ASIC design using the Synopsys Design
Compiler [2] with 45nm NanGate Open Cell Library [3] and
CACTI 7.0 [1]. We estimate the hardware performance of
static random-access-memory (SRAM) with CACTI 7.0 and
synthesize the remaining components of the design including
Systolic Arrays withMX cells (Section 4.2), Shift (Section 4.3),
ReLU and Quantization (Section 4.4) using the Synopsys
Design Compiler.

6.1.1 Comparison Against Prior Designs for MNIST
We compare our ASIC implementation of LeNet-5, trained
on MNIST, to prior state-of-the-art CNN accelerator designs.
Due to the small size of the LeNet-5 model, each layer can
fit entirely into a systolic array and therefore no tiling is
required. Additionally, we use 16-bit accumulations for the
systolic array for this experiment, as the filter matrix for
each layer is small and therefore does not require 32-bit
accumulations. With 16-bit accumulations, a single MAC
operation will take half amount of cycles compared with
32-bit accumulations. All other designs use LeNet-5 (except
for SpiNNaker [25] which uses a Deep Belief Network and
TrueNorth [6] which uses a Spiking Neural Network). Table 2
compares the designs in terms of accuracy, area efficiency,
and energy efficiency. Generally, our design has both the
highest area efficiency and energy efficiency across all the
designs. Compared to next best design (SC-DCNN), our de-
sign achieves a 2.2× improvement in area efficiency and a
3× improvement in energy efficiency, for a slightly reduced
classification accuracy.

6.2 FGPA Implementation and Evaluation
For our FPGA implementation, we use the Xilinx VC707
evaluation board. We synthesize our design using the Xilinx

Platform Network Platform Accuracy Area Eff. Energy Eff.
Ours CNN ASIC 97.62% 46603 658053
SC-DCNN CNN ASIC 98.26% 21439 221287
2x Xeon W5580 CNN CPU 98.46% 2.5 4.2
Tesla C2075 CNN GPU 98.46% 4.5 3.2
SpiNNaker DBN ARM 95.00% N/A 166.7
TrueNorth SNN ASIC 99.42% 2.3 9259
Table 2. Comparison of our ASIC implementations of LeNet-
5 to other CNN accelerators for MNIST.

[50] [58] [13] Ours
Xilinx FPGA chip N/A XC7Z020 Cyclone V 5CEA9 VC707
Frequency (MHz) N/A 143 100 150
Accuracy (Top-1) N/A 87.73% 88.3% 93.0%
Efficiency (img./S/W) 6109 1320 36 12112
Table 3. Comparison of our VGG-19 (1×1) model to state-
of-the-art FPGA implementations for CIFAR-10.

Vivado Design Suite [5]. We use 32-bit accumulation for the
systolic array implementation. The resources of the VC707
allow for a systolic array with column combining of size 64
rows by 64 columns to be implemented.
Table 3 compares our VGG-19 (1×1) implementation to

other FPGA implementations for CIFAR-10 in terms of classi-
fication accuracy and energy efficiency. Our design achieves
top-1 accuracy of 93.0%, which is around 5-6% higher than
other models. Moreover, our design achieves a 3× improve-
ment on energy efficiency over the next best design. While
it is possible for the other designs to increase the accuracy
by using more hardware, it is hard for them to attain a low
energy efficiency as our design.
Table 4 compares our ImageNet VGG-19-S (1×1) model

to other FPGA-based accelerators for ImageNet. In term of
energy efficiency, our design outperforms the most recent
work [51, 57], by 3.34× and 1.93×, respectively. Our approach
allows for substantially smaller models trained with column
combining to achieve reasonable accuracy while being effi-
ciently implemented in a high-utilization systolic array. This
smaller model translates to a reduced number of MAC oper-
ations required by the model which leads to higher energy
efficiency.

Table 4. Comparison with FPGA-based CNN accelerators
for the ImageNet dataset.

[57] [42] [55] [32] [47] [51] Ours
Xilinx FPGA Chip VC706 ZC706 ZC706 VC709 Virtex-7 ZC706 VC707
Frequency (MHz) 200 150 100 150 100 200 170
Accuracy (Top-1) 53.30% 64.64% 53.40%+ 53.40%+ 55.70% 52.60% 51.28%
Efficiency (img./S/W) 23.6 0.46 6.13 12.93 8.39 40.7 78.7

+ These papers did not directly report classification accuracy, but used 8-bit or 16-bit
quantized versions of the CNN. These classification accuracy numbers are our estimate
based on reported numbers in [4].



6.3 Optimality in Energy Efficiency
We provide an analysis showing that our systolic array de-
sign can achieve a nearly optimal energy efficiency for the
given design architecture. The total energy consumption of
processing an input sample is:

Etotal = Ecomp + Emem

= Emac × Nmac + Emem = Emac × cN
opt
mac + Emem

where Ecomp and Emem are the energy consumption for all
MAC computations and SRAM, respectively, Emac is the en-
ergy consumption for a single MAC operation, Nmac is the
number of MAC operations in the CNN after column com-
bining, and N

opt
mac is the optimal number of MAC operations

where no multiplications with zeros are performed. Let c
denote the ratio between Nmac and N

opt
mac . Suppose that all

designs have the same Emac and Emem . Then, the energy
efficiency of a design is:

Energy Eff. =
1

Etotal
=

1
Ecomp + Emem

=
1

Emac × cN
opt
mac + Emem

and the optimal energy efficiency for this design is:

Optimal Energy Eff. =
1

Emac × N
opt
mac + Emem

We have observed from synthesized results that when the
input size is relatively small, r = Emem

Ecomp
tends to be small.

For example, r = 0.06 and r = 0.1 for MNIST and CIFAR-10,
respectively. In this case, we have

Energy Eff.
Optimal Energy Eff.

=
Emac × N

opt
mac + Emem

Emac × cN
opt
mac + Emem

=

1
c + r

1 + r
≈

1
c

Note that 1/c is the packing efficiency achievable by column
combining. Thus when r is small, the ratio between Energy
Eff. and Optimal Energy Eff. is dominated by the packaging
efficiency. Consider, for example, the scenario depicted in
Figure 15b, for γ = 1.75. Column combining can achieve a
packing efficiency over 90% with a modest degradation of
classification accuracy of about 0.7% in absolute percentage.
Thus in this case the energy efficiency of our design is about
90% of the optimal energy efficiency, for small values of r .

6.4 Reduction in End-to-end Inference Latency
with Cross-layer Pipelining

In this section, we evaluate the FPGA performance of cross-
layer pipelining, described in Section 3.5, in terms of end-
to-end inference latency for a single sample for CIFAR-10.
Cross-layer pipelining reduces the latency significantly by
9.3× compared to without pipelining for CIFAR-10. Table 5
compares our column combined VGG-19 (1×1) model with
cross-layer pipelining to other hardware implementations
including GPU, CPU, and FPGA accelerators for CIFAR-10
in terms of accuracy and single frame latency. The latency
652µs of [15] shown in Table 5 only includes the latency for
all convolutional layers (thus the total is greater than 652).

CPU[58] GPU[58] [58] [15] Ours
Accuracy (Top-1) 88.42% 88.42% 88.42% 85.88% 93.0%
Latency (microseconds/frame) 14800 730 5940 >652 55.68

Table 5. Comparison of our VGG-19 (1×1) model with cross-
layer pipelining to state-of-the-art CNN accelerators for
CIFAR-10.

Our design achieves an end-to-end latency over 12× smaller
than next best implementation, while also obtaining a higher
classification accuracy.

7 Conclusion
In this paper, for CNN inference, we have presented a solu-
tion to a long-standing parallel processing challenge about
how one can make efficient use of regular parallel process-
ing arrays, such as systolic arrays, for sparse computations.
Specifically, for a given sparse CNN, we have proposed a
novel approach of using column combining to pack the filter
matrix associated with each convolutional layer for its effi-
cient systolic array implementation. In combining columns,
we prune all weights on conflicting rows but the one with
the largest magnitude. We then continue to improve classi-
fication accuracy of the pruned network via retraining. We
iterate on this column-combining and network-retraining
step to improve both utilization efficiency of the systolic
array and the classification accuracy of the network.

Being able to transform sparse computations to fit highly
efficient regular processor arrays is powerful. As demon-
strated in the paper, our proposed column combining ap-
proach can increase the utilization efficiency of a systolic
array by approximately 8×, with a slight increase in the
complexity of systolic cells for providing multiplexing (MX)
support. This has led to superior performance of our pro-
posedmethod against prior arts under metrics such as energy
efficiency (3×) and inference latency (12×).
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