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Abstract. We present Supple, a novel toolkit which automatically gen-
erates interfaces for ubiquitous applications. Designers need only spec-
ify declarative models of the interface and desired hardware device and
Supple uses decision-theoretic optimization to automatically generate a
concrete rendering for that device. This paper provides an overview of
our system and describes key extensions that barred the previous ver-
sion (reported in [3]) from practical application. Specifically, we describe
a functional modeling language capable of representing complex appli-
cations. We propose a new adaptation strategy, split interfaces, which
speeds access to common interface features without disorienting the user.
We present a customization facility that allows designers and end users
to override Supple’s automatic rendering decisions. We describe a dis-
tributed architecture which enables computationally-impoverished de-
vices to benefit from Supple interfaces. Finally, we present experiments
and a preliminary user-study that demonstrate the practicality of our
approach.

1 Introduction

The growth of mobile and ubiquitous computing has caused increased depen-
dance on digitally encoded information and has increased users’ expectations of
being able to access, create and manipulate digital content in a variety of situa-
tions. As a result users frequently rely on devices other than desktop computers
for their digital needs. These devices include mobile phones, PDAs, tablet com-
puters, touch panels, and increasingly wall-sized displays operated by finger or
laser pointing. These devices not only differ in their screen size and resolution;
they also support very diverse kinds of input devices and modes of interaction.

These trends put an enormous pressure on software developers to make their
products available for a large number of platforms. While the logic of the ap-
plication may often transfer easily across different platforms, the user interfaces
typically have to be designed and implemented from scratch. Of course, inter-
face design is always time-consuming, but there are several aspects of ubiquitous
applications that are especially challenging: 1) New kinds of devices enter the
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market at a rapid pace. 2) Since ubiquitous computing is a young field, there is
a smaller track record of successful interface designs and increased need for iter-
ative prototyping. 3) In ubiquitous computing new functionality often emerges
from interactions of spontaneously aggregated devices and services [10].

This paper describes Supple, a fast and efficient UI toolkit for ubiquitous
applications which addresses these issues by automatically generating a person-
alized interface for a wide range of hardware platforms. We argue that such a
toolkit should satisfy the five requirements listed below.
– Easy: The toolkit should support rapid prototyping and be easy for applica-

tion developers to use. Section 2 explains how Supple’s high-level interface
representation speeds development, and Table 2 in Section 6 details the code
complexity of the examples in this paper.

– Capable: The toolkit should handle complex interfaces and rich data types.
Section 2 describes our expanded modeling language, and Table 3 demon-
strates that Supple can render reasonably complex interfaces very quickly.

– Adaptive: Generated interfaces should possess adaptation and customiza-
tion features to make convenient operation by users with widely varying
activities, styles and preferences. However, automated changes to an inter-
face must minimize the chance of user disorientation. Section 3 introduces
a novel interface-adaptation mechanism called split interfaces and describes
a preliminary user study suggesting user acceptance. Section 4 presents a
complementary customization capability, which allows users to tailor any
Supple interface to their desires as well as to undo unwanted adaptations.

– Portable: A single interface specification should enable rendering that in-
terface on every supported hardware platform, including devices which are
computationally impoverished and which may not have network connectiv-
ity. Section 2 explains how Supple takes a device description as input and
uses a decision-theoretic optimization algorithm to render an interface specif-
ically tailored to the capabilities and constraints of that hardware platform.
Section 5 describes our distributed architecture and caching infrastructure,
which supports remote rendering and wireless operation. Section 6 provides
preliminary performance data for our system.

– Extensible: It should be easy to extend the set of hardware devices sup-
ported by the toolkit. The most difficult aspect of getting Supple to generate
interfaces for a new hardware platform is specifying the cost model [3] for
that device’s interaction modes. In the past, this was indeed a laborious pro-
cess, but we have recently developed a preference-elicitation methodology
and machine-learning algorithm which quickly generates these cost models.
Space precludes a description of our technique, but see [4] for details and
experiments showing its efficacy.
The next section summarizes Supple’s rendering algorithm and describes

its extended modeling language which now supports more complex applications
and data types required by ubiquitous applications. Section 3 explains Supple’s
novel method of supporting dynamic improvements to the UI in a manner which
doesn’t disorient the user; a preliminary user-study validates the approach. Sec-
tion 4 presents a mechanism to allow a designer to override decisions made by
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CD:
{  ,  } {  ,  }

{  ,  ,  }

{  ,  }

Disc:
<int, [0-50]>

Track:
<int,numTracks>

Play:
nil->nil

Stop:
nil->nil

Pause:
nil->nil

Repeat:
bool

Random:
bool

Stereo: {  ,   ,  ,  }

Tape:
{  ,  }{  ,  }

{  ,  ,  ,  ,  ,  }

Mode:
<string, {Tape 1, Tape 2}>

Reverse:
bool

Dolby:
bool

<-Play:
nil->nil

Play->:
nil->nil

Stop:
nil->nil

Pause:
nil->nil

Rev:
nil->nil

Fwd:
nil->nil

Power:
bool

Volume:
<int, [0-10]>

X-Bass:
bool

{  ,  ,  }

<<Seek:
nil->nil

Tuner:
{  ,  ,  ,  }

Seek>>:
nil->nil

Freq:
<float, [80-105]>

Band:
<string, {AM, FM}>

Fig. 1. Graphical representation of the functional specification for a stereo controller.
For clarity, different parts of the specification are grouped with gray shading.

Fig. 2. Three tab views of the stereo specification, rendered for a PDA.

the automatic rendering engine. Section 5 describes the distributed architecture,
which enables Supple to run on computationally impoverished platforms such
as PDAs. Section 6 presents experimental results, which confirm Supple’s fit-
ness as a toolkit for ubiquitous applications. We end the paper with a discussion
of related and future research.

2 Overview of Supple

Supple takes three inputs: a functional specification of the interface, a device
model and a user model. The functional specification defines the types of data
that need to be exchanged between the user and the application (e.g. Figure 1).
The device model describes which widgets are available on the device and pro-
vides a cost function, which estimates the user effort required to manipulate
these widgets with the interaction methods supported by the device. Finally, a
user’s typical activities are modeled with a device- and rendering-independent
user trace. Supple’s rendering algorithm combines constraint propagation with
branch-and-bound search, guided by an admissible heuristic.



4

Fig. 3. An interface utilizing images and clickable maps.

In this section, we describe Supple’s functional specification language, briefly
discuss its optimization-based rendering algorithm and provide an overview of
its implementation, focusing on aspects not elucidated in [3].

2.1 Functional Specification Language for Interface Modeling
The interface elements included in the functional specification correspond to
units of information that need to be conveyed via the interface between the user
and the controlled appliance or application. Each element is defined in terms of
its type. There are several classes of types:

Primitive types include the common basic data types such as integers,
floats, strings and booleans. As an example, the power switch for the stereo sys-
tem is represented as a Boolean in the specification of Figure 1. The primitive
types also include several more specialized constructs that often benefit from
special handling by user interfaces such as dates, times, images and clickable
maps. These last two types are illustrated in a concrete interface shown in Fig-
ure 3, where a user can point at different offices on a building map, causing the
occupant’s image to be displayed.

Container types, formally represented as {τ1, τ2, . . . , τn}, are used to cre-
ate groups (or records) of simpler elements. For example, all of the interior nodes
(e.g., Tuner, Tape, CD, Stereo or the unnamed intermediate nodes) in the spec-
ification tree in Figure 1 are instances of the container type.

Constrained types: 〈τ , Cτ 〉 denotes a constrained type, where τ is any
primitive or container type and Cτ is a set of constraints over the values of this
type. In the stereo example, the volume is defined as an integer type whose values
are constrained to lie between 0 and 10. In the email client shown in Figure 4(a)
the list of email folders shown on the left is represented as a String whose values
are constrained to be the names of the folders in the currently selected email
account (note here that the constraints on the legal values of an element can
change dynamically at run time e.g., when new folders are created). In most
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Fig. 4. An email client that uses Supple to render its user interface. (a) The main
view. (b) The configuration pane.

cases elements of the constrained type are rendered as a discrete selection widget
(list, combo box, etc) except for number ranges where continuous selectors such
as sliders may be used.

Constraints can also be specified for container types. For example, consider
the list of available email accounts in the email example of Figure 4(b). Each
account is modeled as an instance of the container type. Yet the user wants not
only to see the settings of a single account, but she also wants to select different
accounts to view. Thus, we model the interface element representing the current
account as a container object whose domain of values is restricted to all registered
email accounts for that user. When Supple renders this container, it allows the
user to select which account to view, and also displays that account’s settings.
When enough screen space is available, Supple will render both the selection
mechanism and the details of the content side-by-side, as in Figure 4(b). When
space is scarce, Supple will show just the list of available accounts; in order to
view their contents, the user must double-click on an element in the list, or click
the explicit “Details” button.

While this approach makes modeling easy, it assumes that all the objects
in a container’s domain are of exactly the same type. In practice, this is not
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Fig. 5. A simple client for Amazon Web Services. (a) Search results with a pane showing
properties of a selected object — only those properties which are common to all items
are shown there, but the “More Details” button brings up a more specialized view for
each item. (b) Detailed view for a book. (c) Detailed view for a digital camera.

always the case. For example, consider Figure 5’s interface to Amazon Web
Services. Items returned by search may come from any of several categories,
each of which can have different attributes. Books, for example, have titles and
authors while many other items do not. To alleviate this problem, Supple allows
the elements of a container of type τ to be a subtype τ ′ of τ .1 In such situations,
if space permits, Supple renders all the attributes of the common ancestor type
τ statically, next to the choice element (Figure 5(a)). Any time a specialized
object is selected by the user, another button is highlighted, alerting the user
that more detailed information is available, which can be displayed in a separate
window as in Figures 5(b) and (c).

Vectors: elements of type vector(〈τ , Cτ 〉) are used to support multiple se-
lection; they denote an ordered sequence of zero or more values of type τ . The
constraints Cτ define the set of values of type τ that can be selected from. For
example, the list of emails in the email client (Figure 4(a)) is represented as a

1 A subtype of a container type is created by adding zero or more new elements; the
subtype cannot rename, remove or change type of the elements defined in its parent
type.
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Fig. 6. Supple optimally uses the available space and robustly degrades the quality of
the rendered interface if presented with a device with a smaller screen size. This figure
shows three renderings of a classroom controller on three devices with progressively
narrower screens.

vector of Message elements, whose values are constrained to the messages in the
currently selected folder; this allows the user to select and move or delete several
messages at once.

Actions are denoted as τ1 7→ τ2, where τ1 stands for the type of the object
containing parameters of the action, while τ2 describes the return type i.e.,
the interface component that is to be displayed after the typical execution of
the action. Unlike the other types which are used to represent the application’s
state, the action type is used to invoke the methods. The “Reply” button in
the rendering of the email client interface in Figure 4(a) is represented as an
action with a null parameter type (since it operates on the current message)
and Message as the return type. The Search in the Amazon browser example in
Figure 5(a) is an action with String as a parameter type and a null return type.

2.2 Algorithm

Unlike previous model-based rendering systems (e.g. the Personal Universal Con-
troller [6]), which use templates or rule-based approaches to generating user in-
terfaces, Supple uses decision-theoretic, combinatorial optimization. Conceptu-
ally, Supple enumerates all possible ways of laying out the interface and chooses
the one which minimizes the user’s expected cost of interaction. Efficiency is ob-
tained by using branch and bound search and a novel, admissible heuristic to
explore the space of candidate renderings; full constraint propagation is used to
maximize the pruning effect of violated constraints. Several variations on the
algorithm are empirically evaluated in [3].

Supple’s use of a cost function to guide the choice of rendering has several
advantages. Unlike a rule set that needs to be created by hand, the cost function
can be quickly constructed automatically from designer’s responses to examples
of concrete renderings of different interfaces [4]. Furthermore, optimization is
relatively robust, flexibly handling tradeoffs and interactions between choices
in different parts of the interface. In contrast, rule-based systems are fragile
because small changes to device constraints (e.g., display size) may require a
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Fig. 7. Supple’s implementation: The interface model exposes the state variables and
methods that should become accessible through the interface. The widget proxies gen-
erated by the device model are assigned to interface model elements by Supple’s op-
timization algorithm.

major change to the rendering. A rule derivation which works well on one PDA
might fail when used with a slightly smaller screen, since the candidate interface
might no longer fit. Conversely, a rule-based system will likely fail to exploit
an increase in screen size (or decrease in interface complexity) by using more
convenient but larger widgets. In contrast, Supple’s search algorithm always
selects an interface that is optimal (with respect to the cost function) for a
given interface and device specification. Figure 6 illustrates how Supple robustly
degrades the quality of the generated user interfaces as it is presented with
devices with progressively narrower screens.

2.3 Implementation
Supple is written in Java and is designed to integrate easily with existing appli-
cation code — especially with applications whose state is maintained in beans
— in such cases Supple automatically maintains two-way consistency between
the interface and application states. Communication between Supple’s imple-
mentation components is illustrated in Figure 7. User interfaces are specified
by creating UI objects for each property or method to be exposed through the
interface. When asked to generate a concrete user interface, Supple proceeds in
the following way:
1. The device model is engaged to generate a set of candidate widget proxies,

serializable objects that are capable of generating a concrete widget, for each
element of the interface model.

2. Using combinatorial search, Supple generates the best assignment of widget
proxies to interface model elements and establishes the connections between
them. If necessary, the proxies may now be serialized for caching or transport
to computationally-impoverished devices.

3. The widget proxies are triggered to generate a concrete user interface on the
final display device.

For most applications, new windows or dialog boxes (or equivalent elements
on other platforms) need to be displayed at run-time. Supple renders them
dynamically as needed.
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3 Automatic Adaptation without Disorientation

Automatically generating interfaces on the fly opens up the possibility of incor-
porating knowledge about the user and his tasks into the design of the concrete
interface. Our initial paper on Supple explained how analysis of a user trace
enabled the system to automatically adapt an interface to a given user’s work
habits by fully replacing one rendering with another [3]. This approach, however,
could result in dramatic changes to the interface and consequently disorient the
user. In this section, we compare alternative designs for adaptive interfaces in an
exploratory user study; we then describe our implementation of split interfaces,
a technique which reconciles adaptivity with predictability.

3.1 Exploratory User Study

For our study, we compared four interfaces: two traditional and two adaptive
siblings. One of the traditional interfaces organized operations hierarchically,
and the other used a “flat” structure, in which operations are always visible.
Because these structures have different strengths and weaknesses, we considered
different adaptation methods in each case.

A hierarchical interface offers clear organization, but makes certain opera-
tions harder to access, so we employ adaptation in an effort to speed access to
commonly used functionality. Following [13, 16, 2] we advocate a generalization
of split menus which we call split interfaces (Figure 8(b)). We partition an inter-
face into static and dynamic sections. The static portion always maintains the
same organization, while the dynamic portion displays speedy ways to invoke
commonly used functions that might be otherwise hard to access. Note that in
contrast to Sears and Shneiderman [13], who removed recently used items from
their original locations when ordering them near the head, we propose duplicating
functionality when placing it in the dynamic portion of the interface.

A flat interface organization makes every operation ready-at-hand, but may
promote so many operations, that the result confuses the user. Thus, we use
adaptation in an effort to facilitate navigation, directing the user to commonly
used options. Specifically, we develop the notion of altered prominence, dynam-
ically highlighting commonly used keys (Figure 8(d)).

Our hypothesis was that the split interface would be more universally ac-
cepted, because the original (static) portion of the interface is never changed,
maintaining a sense of user control. We expected altered prominence to be more
controversial, because adaption modifies the interface in ways that users can’t
ignore.

For our experimental domain, we chose a graphing calculator application,
because most tasks require numerous interactions with clickable UI elements.
This provides a copious stream of user-activity data, allowing for relatively fast
adaptation. We enrolled 16 users from a population of graduate students and
staff in the Department of Computer Science & Engineering at the University of
Washington. Half the users were assigned to the hierarchical/split interface and
half to flat/altered prominence. We asked each user to complete two sets of 18
formula entry tasks. Users entered one set of formulae in an adaptive interface
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(a) (b) (c) (d)

Fig. 8. The (handcrafted) interfaces used in our preliminary user study: (a) a static
interface that requires users to use hierarchical pull-down menus to access advanced
functions, (b) split interface — an adaptive version of the hierarchical interface in
which families of the most frequently accessed functions are added to the (previously
empty) “dynamic” area in the middle of the interface, (c) a static, flat interface with
every button present at all times (d) altered prominence — an adaptive version of the
flat interface, which highlights the two most recently used families of buttons. (The
parenthesis and the x variable are highlighted at all times.)

and the other in a static UI. To neutralize learning effects, half the users started
with the adaptive interface, while the other half first used the static UI. Users
reported their subjective experience on two questionnaires.

Due to the moderate sample size, most of our results were not statistically
significant. On average, the subjects completed the tasks faster using the adap-
tive interfaces. The speedup was very small for the split interface, but noticeable
for the interface with altered prominence. Furthermore, when compared to the
corresponding static interface, the error rate increased for the split interface, but
decreased slightly for altered prominence.

The subjective comments were more surprising. Users considered altered
prominence to be intuitive, but deemed the split interface to be slightly less intu-
itive than its static alternative. Interestingly, however, users expressed a strong
and nearly-universal preference for the split interface when compared with its
static version (this result was statistically significant with p < 0.02). In con-
trast, there was no statistically significant preference for altered prominence in
the flat interface; in fact, some users expressed a strong dislike for that method
of adaptation claiming that it caused them to get disoriented every time the
highlighting changed.
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(a) (b) (c)

Fig. 9. In the original print dialog box (a) it takes four mouse clicks to select landscape
printing: details button, features tab (b), landscape value and then a click to dismiss
the pop-up window. (c) shows the interface after automatically adaptation by Supple
given frequent user manipulation of document orientation; the adapted interface is
identical to the one in (a) except for the Common Activities section that is used to
render alternative means of accessing frequently used but hard to access functionality
from the original interface.

In both cases, the interface adapted at a rapid pace: several times during the
course of a 10–15 minute-long session. We believe that both adaptation strategies
would have had more impact if they were performed at a slower pace, giving
the user a chance to notice and take full advantage of them. In addition, the
prominence might better have been altered more gradually, so that the changes
were imperceptible and hence not a distraction.

3.2 Adaptation in SUPPLE

Since our study indicated that users strongly favored split interfaces, we adopted
this method in Supple. Figure 9 shows an example where, in response to a par-
ticular user trace that repeatedly used “Landscape” printing, Supple has auto-
matically populated the “Common Activities” area of the top-level print dialog
box with a one-click shortcut to this orientation. Supple’s split interfaces gen-
erally work well on interfaces that involve navigating among different windows
or tab panes (or cards/pages on cell phones and pages on the Web).

Rendering a split interface is computationally harder than rendering an in-
terface where each piece of functionality exists in exactly one place. In addition
to finding the best assignment of widgets to interface elements, Supple now
must also decide what amount of space to set aside for the dynamic content,
what functionality to represent in the dynamic area, and how to render it (du-
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plicated functionality need not be rendered exactly as it was in the interface’s
static part).

Ideally, Supple should duplicate functionality with the highest expected util-
ity (i.e., favoring the product of access likelihood and the difficulty of navigation
with the static interface). Note, however, that the presence of a dynamic short-
cut for an element E will likely reduce the chance that a user will navigate to
E through the static interface. This in turn may cause a different rendering to
be preferable for the static part. Thus the choice of static and dynamic aspects
interact, and choosing the optimal static interface requires considering the dis-
tribution over possible dynamic content. Since this computation is intractable,
we use a simple approximation — first choosing a static rendering in isolation,
then greedily adding the best dynamic shortcuts in turn. We define the utility of
a particular set of duplicatedFunctionality for a particular concreteInterface and
a usage trace as:

utility(duplicatedFunctionality | concreteInterface, trace) =
expectedEffort(concreteInterface | trace)
– expectedEffort(concreteInterface+duplicatedFunctionality | trace)

To compute expectedEffort, Supple simulates use of the interface by re-
playing the trace of past interactions through a hypothesized interface and es-
timating the total ”effort” required. The usage traces are recorded in terms of
the functionality accessed and are stored in a rendering-independent manner.
For desktop interfaces, the number of mouse clicks (for changing tabs, opening
new windows, dismissing them, etc) is used as the approximation of the total
effort. On WAP cell phones, the number of button presses is used as the metric.
In cases where the functionality that the user wants to access has been dupli-
cated in several parts of the interface, Supple assumes that the user will use the
most convenient copy of the functionality. While this model of expected effort
is imperfect, our initial experience suggests that it is a good approximation for
evaluating the potential utility of duplicated functionality.

In theory, a system might calculate the optimal percentage of space to allo-
cate to the dynamic and static parts of an interface, respectively. Unfortunately,
a principled approach to this optimization is computationally prohibitive. As a
result, Supple ignores this decision and only includes area for dynamic content
if a user explicitly requests it or if the best available rendering does not fill all
available space. Table 1 summarizes the algorithm that Supple uses for select-
ing which interface elements to display in the “Common Activities” area of each
interface view:2

4 Overriding Automated Rendering Decisions

Supple’s committment to completely-autonomous rendering hinders acceptance
with users as it originally provided no means for either designers or the end users
to control the presentation or organization of the final concrete interfaces. In
2 A view is a unit of a user interface such as a window on a desktop computer or a

card in a WML document.
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selectCommonActivities(interfaceModel, concreteInterface, trace)
1. initialize duplicatedFunctionality
2. while there is still a view with space for duplicated functionality
3. currentBestUtility ← 0
4. currentBestCandidate ← null
5. foreach view in concreteInterface that has space for duplicated functionality
6. foreach element in interfaceModel
7. temp ← duplicatedFunctionality + duplicate element into view
8. if utility(temp | concreteInterface, trace) > currentBestUtility
9. then currentBestCandidate ← duplicate element into view
10. if (currentBestCandidate != null)
11. then duplicatedFunctionality ← duplicatedFunctionality + currentBestCandidate
12. else return duplicatedFunctionality
13. return duplicatedFunctionality

Table 1. Supple’s algorithm for selecting elements to be displayed in the “Com-
mon Activities” area of each interface view.

device model
& user model

customization
plan

User:
{  ,  }

Name:
string

Password:
password

Host:
{  ,  }

Name:
string

Port:
integer

Login: {  ,  } -> {  ,  }

... ...

User:
{  ,  }

Name:
string

default: bob

Password:
password

Host:
{  ,  }

Port:
integer

widget: spinner

Login: {  ,  } -> {  ,  }

... ...

functional specification customized specification

1023

Login

Password

Name bob

User

Port

Host

Login

Fig. 10. Supple’s customization architecture. The user’s customization actions are
recorded in a customization plan. The next time the interface is rendered (possibly in
a differently sized window or on a different device) the plan is used to transform the
functional specification into a customized specification which is then rendered using
decision-theoretic optimization as before. The interface shown in this figure is for a
small FTP client.

order to encourage adoption (and satisfy requirements of ease and adaptivity),
we devised a convenient way to override optimization-based choices. Supple
includes a comprehensive customization facility that allows a designer or end
user to make explicit changes to an interface: rearranging elements, duplicating
functionality, removing elements, and constraining the choice of widgets used to
render any part of the functional specification. Operation is simple on a windows
and mouse platform — one simply right-clicks the interface element (primitive
widget or container) and options are revealed. Duplication and rearrangement
are specified with drag and drop.

Combining explicit customization with optimization-based rendering requires
a major change to the original Supple architecture (Figure 10). Supple records
a complete history of the user’s customization operations in a customization
plan. Rendering an interface proceeds in two phases. First, Supple applies the
plan to the functional specification in order to create a graph called a customized
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specification. In the second phase, Supple applies decision-theoretic optimiza-
tion (described in Section 2) to the device model, user model, and customized
specification to render the interface.

The functional and customized specifications may have very different struc-
tures, e.g., the customization specification may omit, duplicate or move func-
tionality; it may also contain constraints on the set of widgets which may be
used to render certain elements.

Note that the customization plan can be applied to any functional specifica-
tion, including ones that the user (and Supple) have not yet seen; it also may
be applied when rendering an interface on a novel device (however, constraints
requiring specific widgets may not be satisfiable). Explicitly representing the
customization plan also allows Supple to support a flexible undo system which
encourages users to experiment with alternative interfaces.

5 Handling Computationally-Impoverished Devices

As required by the portability and extensibility requirements, Supple supports
the major modes of operation required by ubiquitous computing. In some situa-
tions, users will want to access applications on their desktop computers (PCs). It
is also likely that users will want to use their desktop computers to access appli-
cations running on a remote server or appliance. Finally, mobile users may want
to access either local or remote applications using computationally-impoverished
devices such as PDAs and cellphones. These scenarios require that Supple be
able to present interfaces on devices other than those executing application logic.

Furthermore, our measurements show that Supple optimization-based ren-
dering can take up to 40 seconds to render an interface on a PDA such as a Dell
Axim v50x. Thus we require that Supple be able to utilize a remote rendering
service (we refer to it as the solver server) to accelerate the rendering process,
whenever network connectivity is available. Figure 11 illustrates different modes
of operation supported by Supple. In order to enable disconnected operation
and to save power, aggressive caching of rendering results is also supported. In
the remainder of this section we summarize Supple’s distributed architecture.

Being able to render interfaces for remote application is a common feature
of today’s interface generation systems, like the previously mentioned Personal
Universal Controller [5] and the Ubiquitous Interactor [7]. However, the compu-
tational complexity of our decision-theoretic rendering algorithm create unique
challenges for the distribution of our system.

Supple naturally supports distribution of the application and the interface,
when its XML-based syntax is used to describe the functional specification.
We have also implemented a distributed framework, based on Java RMI, that
achieves the same result when the programatic interface is used. Supple auto-
matically choses local or remote bindings depending on the configuration, and
the application programmer need not be aware that distributed operation is
involved.
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Appliance
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Application
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PC
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Application
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PC

(d)

Application

Display Solver

PDA

PC

Fig. 11. Supple allows the application, solver server, and interface to run on different
devices; the following modes of operation are common: (a) An application running on
a PC is displayed on the same machine — the user interface is rendered locally. (b) A
remote application is displayed on a PC — the user interface is rendered on the PC. (c)
An application running on a PDA is displayed on that same PDA — a remote server
may be used for faster rendering of an interface which is then cached. (d) A remote
application is displayed on a PDA — again a remote server may be used to quickly fill
the cache with the required interfaces.

Currently the remote solver server can only be invoked using Java RMI,
because our device model is not fully declarative.3 In the future, however, we
plan to implement the solver server as a web service.

As a bootstrapping measure, we have implemented a local discovery mecha-
nism based on Multicast DNS (base protocol for Apple’s Bonjour) so that dis-
play devices can easily detect available applications and solver servers in their
environments. Developers are free to replace it with whatever local or global
discovery mechanism is most appropriate for their deployment environment.

6 Quantitative Evaluation

In this Section, we evaluate Supple’s versatility, quantify the complexity of
interface specifications, report on the rendering time for different devices, and
measure the size of messages transmited during distributed operation. Addition-
ally, Section 3.1 described our user study which evaluated the split interface and
altered prominence adaptation methods.

We demonstrate Supple’s versatility by exhibiting the wide range of dif-
ferent types of interfaces it has generated. Earlier in the paper, we presented
a stereo controller (Figure 2), a fully functional email client (Figure 4), an in-
terface to Amazon web services (Figure 5), a map-based interface (Figure 3),
a controller for classroom equipement (Figure 6), and an adaptive print dialog
box (Figure 9). The wide diversity of these applications demonstrates Supple is
capable of handling complex interfaces and rich data types (i.e., the capability
requirement).

3 Both the factors comprising cost functions and the elements of the widget factory
are described procedurally. As a result, appropriate class definitions may need to be
submitted together with a rendering request.
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Print Dialog Map Amazon Email Stereo Classroom

Lines of code 117 47 59 475 133 73

Table 2. Lines of code used to construct and manage the user interfaces for the
applications presented throughout this paper and for the Classroom controller from [3].

Print Dialog Map Amazon Email Stereo Classroom

PC 0.31s 0.25s 1.2s 0.21s 1.5s 0.55s

PDA (local) — — — — 40s 29s

PDA (remote) — — — — 3.1s 2.5s

Table 3. Time required to render user interfaces on different platforms. The three
conditions include interfaces being rendered locally on a desktop computer (PC) and
interfaces rendered on a PDA either locally or on a remote solver server running on a
desktop computer. In the last case the times include the communication overhead.

Comparisons of the code quantity or complexity among different approaches
are often controversial. Yet, we feel it is useful to report on the amount of code4

devoted to the description and management of the user interface for all the
examples reported in this paper (e.g., as a proxy for easy of use requirement).
These numbers are reported in Table 2 and are for the programmatic (as opposed
to the XML-based) encoding of the interfaces.

In service of the extensibility requirement, Table 3 reports the rendering
times for different interfaces and different platforms. For interfaces running on a
desktop computer, the generation times support fully interactive operation. PDA
users can also experience fast interface generation times if they have network
access to a remote solver. Even disconnected PDA users are not prevented from
using Supple but they may have to endure a substantial wait (e.g., up to 40s) the
first time any given interface is rendered. Future renderings are instantaneous,
because of the caching mechanism.

We have also measured the sizes of the messages that need to be exchanged
in order to invoke a remote solver. The functional specification sizes vary from
4.8kB to 11.5kB while the rendered solutions are all smaller than 3.6kB. These
sizes make a solver server an option, not only on WiFi networks, but also on
slower Bluetooth or 3G cellphone connections.

7 Related Work

Researchers have investigated model-based user interface systems including au-
tomatic interface generation for many years, yielding impressive systems [15].
Unfortunately, none of the prior work meets our five requirements. Projects like
the UIML [1], XIML [11] or the Ubiquitous Interactor [7] provide a device-
independent way of representing various aspects of the user interface but ulti-

4 Numbers were calculated using the Metrics plugin for Eclipse available at
metrics.sourceforge.net.
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mately all require that the application designer specify how abstract elements
be mapped to concrete widgets on various target platforms.

The Personal Universal Controller (PUC) [5] comes closer to meeting our
requirements as it provides a domain-independent language for abstractly de-
scribing user interfaces in terms of their functionality and it provides a set of
rendering algorithms for a small number of different platforms. This system,
however, is intended mainly for rendering interfaces for appliances as a replace-
ment for traditional remote controls. Its rule-based rendering algorithms relies
on specific domain knowledge and makes it inflexible even to the changes in the
screen size of the device it runs on. XWeb [8], is even further limited by the fact
that leaf widgets are pre-specified and only their layout is chosen dynamically.

8 Conclusions
This paper presents Supple — an automatic user interface generation toolkit
that supports rapid prototyping and deployment of ubiquitous applications across
different platforms. We make the following contributions that turned a research
prototype into a practical and powerful tool:
– We provide a detailed description of the functional specification language

for modeling user interfaces and we extend it with three new classes of fea-
tures: explicit support for subtyping; new types for representing images, map
locations and vectors; and the alternatives specification elements that give
the designers greater control over different subsets of functionality to be
presented on different classes of devices.

– We describe a new adaptation strategy, termed split interfaces that provides
the benefits of allowing users fast access to frequently used functionality
without needlessly disorienting them. This change required a fundamental
extension to our rendering algorithm, enabling it to handle functional spec-
ifications which are directed acyclic graphs not trees.

– We support explicit customization actions, which allows both users and the
designers to change the structure of the interface or to override Supple’s
automatic rendering choices.

– We use a distributed architecture, that enables user interfaces to be pre-
sented on remote device; it also allows impoverished devices with network
connectivity to use remote interface solver servers for faster rendering of the
interfaces. Our architecture also supports caching of the previously rendered
interfaces for faster presentation and disconnected operation.

– Our evaluation demonstrates the feasibility of the practical deployment of
Supple. Our user study (Section 3.1) supports the split interfaces as an
effective and non-distracting method to adapt interfaces to user’s tasks.

Supple satisfies the five desiderata listed in Section 1 and is a promising
platform for ubiquitous interfaces. In order to fully evaluate Supple’s impact,
we are releasing it as an open source toolkit for public use.

In the future we plan to extend the specification language to allow drag
and drop operations on platforms that provide that capability and to support
more complex map-based interactions where additional interactive objects can
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be overlaid over the map. Finally, following [12], we plan to extend Supple to
work with multiple modalities, including speech.
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