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Abstract This paper addresses the problem of topic
distillation on the World Wide Web, namely, given a typ-
ical user query to find quality documents related to the
query topic. Connectivity analysis has been shown to
be useful in identifying high quality pages within a topic
specific graph of hyperlinked documents. The essence of
our approach is to augment a previous connectivity anal-
ysis based algorithm with content analysis. We identify
three problems with the existing approach and devise al-
gorithms to tackle them. The results of a user evaluation
are reported that show an improvement of precision at 10
documents by at least 45% over pure connectivity anal-
ysis.

1 Introduction

Search services on the World Wide Web are the informa-
tion retrieval systems that most people are familiar with.
As argued by Marchionini [23] “end users want to achieve
their goals with a minimum of cognitive load and a max-
imum of enjoyment.” Correspondingly, in the context of
Web searches we observe that users tend to type short
queries (one to three words) [2, 9], without giving much
thought to query formulation. Additionally, it is often
the case that users themselves are unclear about their
information need [12] when framing the query. Since de-
termining relevance accurately under these circumstances
is hard, most search services are content to return exact
query matches – which may or may not satisfy the user’s
actual information need.

In this paper we describe a system that takes a some-
what different approach in the same context. Given typ-
ical user queries on the World Wide Web (i.e., short
queries), our system attempts to find quality documents
related to the topic of the query. Note that this is more
general than finding a precise query match and not as
ambitious as trying to exactly satisfy the user’s informa-
tion need. The latter is often hard to do since most short
queries do not express the need unambiguously. In cases
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where the query is ambiguous, i.e. there is more than
one possible query topic, our goal is to return relevant
documents for (some of) the main query topics. This ex-
cludes minor interpretations of the query and encourages
users to type in queries that are representative of the
topic they seek to explore. We call the process of finding
quality documents on a query topic, topic distillation.

The situation on the World Wide Web is different
from the setting of conventional information retrieval sys-
tems for several reasons. The main reasons are:

• Users tend to use very short queries (1 to 3 words
per query [2, 9]) and are very reluctant to give feed-
back.

• The collection changes continuously.

• The quality and usefulness of documents varies
widely. Some documents are very focused; oth-
ers involve a patchwork of subjects. Many are not
intended to be sources of information.

• Preprocessing all the documents in the corpus re-
quires a massive effort and is usually not feasible.

However, there is an additional source of information that
an information retrieval system on the World Wide Web
can harness: namely, the opinions of people who create
hyperlinks. A simple approach to finding quality docu-
ments is to assume that if document A has a hyperlink to
document B, then the author of document A thinks that
document B contains valuable information. Thus, using
the in-degree of a document as a measure of its quality is
a first heuristic. However, transitivity is worth exploiting
as well. If A is seen to point to a lot of good documents,
then A’s opinion becomes more valuable, and the fact
that A points to B would suggest that B is a good doc-
ument as well.

Using this basic idea, Kleinberg [21] developed a
connectivity analysis algorithm for hyperlinked environ-
ments. Given an initial set of results from a search ser-
vice, the algorithm extracts a subgraph from the Web
containing the result set and its neighboring documents.
This is used as a basis for an iterative computation that
estimates the value of each document as a source of rel-
evant links and as a source of useful content.

While this algorithm works well for some queries,
it performed poorly in several of our test cases. To
better understand its behavior we built a visualization
tool. This enabled us to discover three problems with
connectivity analysis as suggested by Kleinberg, i.e. a



“links-only” approach: Mutually Reinforcing Relation-
ships Between Hosts (where certain arrangements of doc-
uments “conspire” to dominate the computation), Auto-
matically Generated Links (where no human’s opinion
is expressed by the link), and Non-relevant Documents
(where the graph contains documents not relevant to the
query topic). In this paper we present several techniques
for tackling these three scenarios. The last problem is
by far the most common, and our general solution is to
use content analysis to help keep the connectivity-based
computation “on the topic.”

We compare the performance of 10 algorithms with
the basic Kleinberg algorithm on 28 topics that were used
previously in [6]. The best approach increases the preci-
sion over basic Kleinberg by at least 45% and takes less
than 3 minutes. This running time is dominated by the
time to fetch 130 documents from the World Wide Web
and can be reduced considerably when term vectors for
the documents are available.

The paper is structured as follows. Section 2 describes
the connectivity analysis algorithm, its implementation,
and the problems we encountered. Section 3 shows how
be address the first problem, Section 4 gives algorithms
addressing the other two problems. In Section 5 we eval-
uate the different algorithms. Section 6 presents consid-
erably faster algorithms that additionally improve preci-
sion. In Section 7 we discuss related work.

2 Connectivity Analysis

The goal of connectivity analysis is to exploit linkage in-
formation between documents, based on the assumption
that a link between two documents implies that the doc-
uments contain related content (Assumption i), and that
if the documents were authored by different people then
the first author found the second document valuable (As-
sumption ii). In 1997 Kleinberg [21] published an algo-
rithm for connectivity analysis on the World Wide Web
which we describe next.

2.1 Kleinberg’s Algorithm

The algorithm computes two scores for each document:
a hub score and an authority score. Documents that have
high authority scores are expected to have relevant con-
tent, whereas documents with high hub scores are ex-
pected to contain links to relevant content. The intuition
is as follows. A document which points to many others
is a good hub, and a document that many documents
point to is a good authority. Transitively, a document
that points to many good authorities is an even better
hub, and similarly a document pointed to by many good
hubs is an even better authority.

In the context of a user query the algorithm first
constructs a query specific graph whose nodes are doc-
uments. Then it iteratively computes the hub and au-
thority scores for the nodes. The graph is constructed as
follows. A start set of documents matching the query is
fetched from a search engine (say the top 200 matches).
This set is augmented by its neighborhood, which is the
set of documents that either point to or are pointed to
by documents in the start set. In practice, since the in-
degree of nodes can be very large, Kleinberg recommends
considering at most 50 predecessors of a document. The
documents in the start set and its neighborhood together
form the nodes of the neighborhood graph. Hyperlinks be-
tween documents not on the same host form the directed

edges. Links within the same host1 are assumed to be by
the same author and hence are not indicators of value.
The computation of hub and authority scores is done as
follows.

(1) Let N be the set of nodes in the neighborhood graph.
(2) For every node n in N , let H[n] be its hub score and

A[n] its authority score.
(3) Initialize H[n] and A[n] to 1 for all n in N .
(4) While the vectors H and A have not converged:
(5) For all n in N , A[n] :=

∑
(n′,n)∈N H[n′]

(6) For all n in N , H[n] :=
∑

(n,n′)∈N A[n′]

(7) Normalize the H and A vectors.

Kleinberg [21] proved that the H and A vectors will even-
tually converge, i.e., that termination is guaranteed. In
practice we found the vectors to converge in about 10
iterations. The documents are then ranked by hub and
authority scores respectively.

Note that the algorithm does not claim to find all
relevant pages, since there may be some that have good
content but have not been linked to by many authors. In
our evaluation of different algorithms we use Kleinberg’s
algorithm [21] as our baseline, which we call base.

2.2 Implementation

To determine the neighborhood of the start set the al-
gorithm needs to follow links that point in and out of
these documents. Outlinks are easily obtained by fetch-
ing the document. One way of obtaining inlinks is to use
AltaVista queries of the form link : u, which returns a
list of documents that point to the URL u. This was the
implementation used by [21].

In our queries, the neighborhood graph contained on
the order of 2000 nodes. The running time is completely
dominated by the time it takes to fetch the documents.
With a download rate of 1 document per second queries
takes about 30 minutes.

To get fast access to linkage information within the
World Wide Web, we built a Connectivity Server [4] that
provides linkage information for all pages indexed by the
AltaVista search engine. The server provides a special-
ized interface to compute the neighborhood graph for a
set of URLs. This speeds up the graph construction to
under half a minute and enables us to handle queries in
almost real time.

We ran the computation for 150 iterations in each
case, although the system seemed to converge after 10.

2.3 Problems Encountered

We found that the algorithm as described above did not
work well in all cases. Obviously, if there are very few
edges in the neighborhood graph not much can be in-
ferred from the connectivity. We built a neighborhood
visualization tool which allowed us to trace the compu-
tation and discover three other reasons why the algorithm
tends to fail:

1. Mutually Reinforcing Relationships Between Hosts:
Sometimes a set of documents on one host point to
a single document on a second host. This drives up
the hub scores of the documents on the first host

1We assume throughout the paper that the host can be deter-
mined from the URL-string.



and the authority score of the document on the sec-
ond host. The reverse case, where there is one docu-
ment on a first host pointing to multiple documents
on a second host, creates the same problem. Since
we make the (simplifying) assumption that the set
of documents on each host was authored by a single
author or organization, these situations give undue
weight to the opinion of one “person.”

2. Automatically Generated Links: Web documents
generated by tools (e.g., Web authoring tools, data-
base conversion tools) often have links that were
inserted by the tool. For example, the Hypernews
system which turns USENET News articles into
Web pages, automatically inserts a link to the Hy-
pernews Web site. In such cases Assumption ii,
namely that a human’s opinion is represented by
the link, does not apply.

3. Non-relevant Nodes: We often find that the neigh-
borhood graph contains documents not relevant
to the query topic. If these nodes are well con-
nected, the topic drift problem arises: the most-
highly ranked authorities and hubs tend not to
be about the original topic. For example, when
running the algorithm on the query “jaguar and
car” the computation drifted to the general topic
“car” and returned the home pages of different car
manufacturers as top authorities, and lists of car
manufacturers as the best hubs.

3 Improved Connectivity Analysis

As discussed in the previous section we identified three
problems with Kleinberg’s algorithm. In this section we
address problem 1, mutually reinforcing relationships be-
tween hosts. The next section addresses problems 2 and
3.

Mutually reinforcing relationships between hosts give
undue weight to the opinion of a single person. Ideally
we would like all the documents on a single host to have
the same influence on the document they are connected
to as a single document would. To achieve this we give
fractional weights to edges in such cases:

If there are k edges from documents on a first host
to a single document on a second host we give each edge
an authority weight of 1/k. This weight is used when
computing the authority score of the document on the
second host. If there are l edges from a single document
on a first host to a set of documents on a second host,
we give each edge a hub weight of 1/l. Additionally, we
discard isolated nodes from the graph. This leads to the
following modified algorithm:

(4) While the vectors H and A have not converged:
(5) For all n in N ,

A[n] :=
∑

(n′,n)∈N H[n′]× auth wt(n′, n)

(6) For all n in N ,
H[n] :=

∑
(n,n′)∈N A[n′]× hub wt(n, n′)

(7) Normalize the H and A vectors.

In the appendix we prove that the H and A vectors con-
verge, i.e., that the algorithm terminates.

This modified algorithm was effective in eliminating
the mutually reinforcing relationship problem in all the
cases where we had encountered it. In our evaluation we
call this improved algorithm, imp.

4 Combining Connectivity and Content Anal-
ysis

In this section we combine content analysis using tra-
ditional Information Retrieval techniques with improved
connectivity analysis to tackle topic drift. There are two
basic approaches both assuming we can determine the
relevance of a node to the query topic: (i) eliminating
non-relevant nodes from the graph, and (ii) regulating
the influence of a node based on its relevance. We have
also experimented with combinations of these techniques.
These mostly address problem 3 since they discard or pe-
nalize nodes that do not belong to the topic. However,
in practice they also seem to solve problem 2, since au-
tomatically generated links often point to pages outside
the topic.

4.1 Computing Relevance Weights for Nodes

The relevance weight of a node equals the similarity of its
document to the query topic. We describe next how to
compute the similarity score of a document D. As men-
tioned before, the query topic is broader than the query
itself. Thus matching the query against the document is
usually not sufficient. Instead we use the documents in
the start set to define a broader query and match every
document in the graph against this query. Specifically,
we consider the concatenation of the first 1000 words
from each document to be the query, Q and compute
similarity(Q,D).

In our implementation, since queries are long and the
document vocabulary tends to be varied we use term
frequency weighting. We use cosine normalization in
weighting both the query and the documents since the
deviation in term vector lengths is large. See Salton and
Buckley [28] for a discussion of weighting options. Specif-
ically,

similarity(Q,Dj) =

∑t

i=1
(wiq × wij)√∑t

i=1
(wiq)2 ×

∑t

i=1
(wij)2

where
wiq = freqiq × IDFi,
wij = freqij × IDFi,
freqiq = the frequency of the term i in query Q,
freqij = the frequency of the term i in document Dj ,
IDFi = an estimate of the inverse document frequency
of term i on the World Wide Web.

4.2 Pruning Nodes from the Neighborhood
Graph

There are many approaches one can take to use the rel-
evance weight of a node to decide if it should be elimi-
nated from the graph. We investigated approaches based
on thresholding the relevance weight. All nodes whose
weights are below a threshold are pruned. Thresholds
are picked in one of three ways:

1. Median Weight: The threshold is the median of all
the relevance weights.

2. Start Set Median Weight: The threshold is the me-
dian of the relevance weights of the nodes in the
start set.

3. Fraction of Maximum Weight: The threshold is a
fixed fraction of the maximum weight. We used
max/10 in our experiments.



On the pruned graph we run the imp algorithm. We
call the corresponding algorithms: med, startmed, and
maxby10.

4.3 Regulating the Influence of a Node

This approach seeks to modulate how much a node influ-
ences its neighbors based on its relevance weight. If W [n]
is the relevance weight of a node n and A[n] the author-
ity score of the node we use W [n]×A[n] instead of A[n]
in computing the hub scores of nodes that point to it.
Similarly, if H[n] is its hub score we use W [n]×H[n] in-
stead of H[n] in computing the authority score of nodes
it points to. This reduces the influence of less relevant
nodes on the scores of their neighbors.

Combining the previous four approaches with the
above strategy gives us four more algorithms, which we
call: impr, medr, startmedr, and maxby10r.

4.4 Implementation

Unlike the previous implementation where it sufficed to
get the graph from the Connectivity Server, in this case
we need to fetch all the documents to do content analysis.
To build term vectors we eliminate stop words and use
Porter stemming [27]. For IDF weights, since we know of
no source of IDF weights for the Web and of no official
representative collection, we had to build our own col-
lection. Hence we used term frequencies measured in a
crawl of 400,000 Yahoo! [30] documents in January 1997.

5 Evaluation

Traditionally, ranking schemes are evaluated by comput-
ing precision and recall on a pre-labeled corpus, such as
the TREC [17] collection. We compare our algorithms
based on precision and relative recall at 5 and 10 doc-
uments. We used relative recall instead of recall since
we do not know the number of relevant documents for a
topic on the Web, or even in the Neighborhood Graph.
We used a set of 28 queries previously used by [6] in
comparing the rankings from their version of Kleinberg’s
algorithm with category listings on the Web. Table 1
gives a listing of the queries ordered by the number of
results returned by AltaVista in December 1997 for each
query, which can be taken as a measure of the topic’s
popularity on the Web.

We ran our 8 algorithms and base on each of the
queries and considered documents with the top 14 hub
and authority scores. The set of top authority documents
from all the algorithms were pooled together randomly
and independently rated for relevance by 3 volunteers.
The ratings were then combined and the final relevance
rating for each document was decided by majority vote.
A similar rating was done for the top hub documents.
In each case the subjects were instructed to determine
whether the document was not relevant to the topic (case
i), relevant to the the topic (case ii), or both relevant to
the topic and a good example of a hub or an authority
as the case may be (case iii). Only documents classified
under case iii by a majority of reviewers (i.e., 2 out of 3)
were considered relevant for the purposes of computing
precision and relative recall.

The subjects were encouraged to follow links and
browse the document’s neighborhood before deciding on
a rating. Specifically, the subjects were told:

Abb. Query AV ct. ta th
VC “vintage car” 2159 13 15
RE +recycling +cans 2811 13 10
ZB “Zen Buddhism” 4617 21 22
TH +Thailand +tourism 4642 20 18
PA “parallel architecture” 4709 4 11
SC “stamp collecting” 5581 20 21
TE telecommuting 7436 20 22
SU sushi 8082 8 8
AL alcoholism 9596 8 17
CG “classical guitar” 11404 19 31
LD “lyme disease” 12123 16 12
BI bicycling 16956 26 24
FH “field hockey” 20410 33 22
AP “amusement park” 25202 19 19
TT “table tennis” 27409 12 20
RC “rock climbing” 31286 27 30
CV “computer vision” 35762 26 23
SH shakespeare 41885 13 15
CR cruises 46820 17 24
GW “Gulf war” 49055 16 21
GA gardening 65009 20 20
CH cheese 65782 9 10
HI HIV 82218 20 28
AA “affirmative action” 104280 10 9
MF “mutual funds” 110064 22 25
BL blues 126971 23 16
GD “graphic design” 158847 11 9
AR architecture 306720 12 19

Table 1: Queries used in sorted order of AltaVista re-
sult set size in December 1997. The table also lists for
each topic the total number of relevant documents that
appeared in the top-10 ranking of at least one algorithm.
For authority rankings this is listed as ta and for hub
rankings as th.

“You have some latitude in deciding what constitutes
a good hub or authority. A good hub generally has useful
links. A good authority is generally a document with use-
ful content. If a document with little content has links to
relevant content-rich documents on the same site (e.g., if
it is a ‘Table of Contents’ page), it may still count as an
authoritative page. You might instead choose to regard
all good hubs as good authorities. Whatever policy you
adopt please be consistent.”

Two issues came up: (i) Sometimes queries had more
than one interpretation. For instance, some reviewers re-
stricted architecture to building related topics, whereas
others included computer architecture as well. (ii) There
was disagreement among the reviewers on whether to in-
clude pages on the topic containing very localized infor-
mation, e.g., pages on bicycling trails in New Jersey for
the query “bicycling.”

No rating was given in cases where documents were
not accessible or were in a language that the subjects
did not understand. To compensate for this we obtained
ratings for the top 14 documents in each ranking, and
omitted the unrated documents. This gave us a list of
at least 10 documents for each algorithm–topic pair with
3 ratings for each. We computed precision and relative
recall for this list using the combined relevance measure
described previously (relevant if placed in class iii by a
majority of the reviewers). We computed precision at 5
and at 10 documents for each algorithm–topic pair, as



well as average precision for specific sets of documents
and all the documents combined. To compute relative
recall in the context of a topic, we first determined t, the
total number of relevant documents for the topic occur-
ring in the top-10 ranking of at least one of the algo-
rithms. Table 1 lists values of t for the various topics (ta
for authorities and th for hubs). For each algorithm, rela-
tive recall at 5 (similarly 10) documents was computed as
the number of relevant documents in the top 5 (similarly
10) ranked documents expressed as a fraction of t.

Table 2 shows the precision after the top 5 and 10
ranked authority documents. We classified the five queries
with the smallest AltaVista result set size as rare, and
the five the with largest result set size as popular. We
also give precision values for the sets of rare and popular
queries. Similarly, Table 3 gives precision values for hub
documents.

First, we discuss the performance in the context of
authority ranking. We observe that in all cases imp,
which eliminates mutually reinforcing relationships be-
tween hosts, provides an appreciable improvement over
base, the algorithm described by Kleinberg. Adding con-
tent analysis either by pruning nodes or regulating the
influence of nodes improves on imp, especially in the case
of rare topics. Med, startmed, and maxby10 all perform
roughly the same and improve precision by about 10%
over imp. Regulation helps imp in all cases, about as
much as pruning. For the algorithms that use pruning,
adding regulation does not seem to affect precision.

On both popular and rare topics the algorithms per-
formed, in general, worse than on all topics. Precision
for rare topics is in general lower than for popular topics.
We conjecture that rare topics do not have enough con-
nectivity for the algorithms to exploit, while for popular
topics that threshold based pruning is too simplistic. In
the next section we present algorithms that prune more
selectively. One of them performs significantly better on
popular topics.

To summarize authority rankings, imp improves pre-
cision by at least 26% over base; regulation and pruning
each improve precision further by about 10%, but com-
bining them does not seem to give any additional im-
provement.

Considering precision in the ranking for hubs we find
as before that imp improves on base (by 23% or more),
and med improves on imp by a further 10%. Regulation
slightly improves imp and maxby10 but not the others.

Overall hub precisions are better than authority pre-
cisions, even for base, but medr still improves precision
by 45% over base. In general at 10 precision averaged
over all topics is higher than on rare and popular topics.

Due to the distribution of the ta and th (see Table 1)
no algorithm can have a better relative recall at 10 than
0.65 for authorities and 0.6 for hubs. Base achieved a
relative recall at 10 of 0.27 for authorities and 0.29 for
hubs. Our best algorithm for authorities gave a relative
recall of 0.41; similarly for hubs it was 0.46 (see Table 4),
i.e., we achieved roughly half the potential improvement
by this measure.

6 Partial Content Analysis

Although the content analysis based algorithms described
in the previous section improve precision – they do so at
the expense of response time. Query response times with
imp are about half a minute, whereas content analysis
of all nodes in the graph requires downloading roughly

2000 documents from the Web which can take about
30 minutes. Ideally, we would like to use the advan-
tage that content analysis provides – i.e., reduction of
the effect of non-relevant nodes, without paying the high
cost of a full graph download. In this section we de-
scribe two algorithms that involve content pruning but
only analyze a part of the graph (less than 10% of the
nodes). This makes them a factor of 10 faster than previ-
ous content analysis based algorithms, supporting query
response times of around 3 minutes, which are more tol-
erable.

Our two algorithms are motivated by the observation
that not all nodes are equally influential in deciding the
outcome of the improved connectivity analysis. Some are
better connected than others and hence likely to domi-
nate the computation. The new algorithms attempt to
selectively analyze and prune if needed, the nodes that
are most influential in the outcome. Since the act of
pruning itself alters the course of the computation se-
lecting the best candidates for pruning is problematic.
We use two heuristics, degree based pruning and iterative
pruning, to select the nodes to be analyzed. These are
described in the subsections below.

In both cases, as before, an expanded query, Q, is
needed to compute the relevance weights of nodes. Pre-
viously the entire start set was used to compute Q. With
partial content analysis only a subset of the start set
(30 documents in our implementation) is used for this
purpose. These are selected by another heuristic, based
solely on the information the Connectivity Server can
provide – namely the URL and connectivity of each docu-
ment. With some experimentation we arrived at a heuris-
tic that selects nodes based on in-degree, out-degree, and
match of the URL string with the original query. Specif-
ically, we select the 30 start set documents that maxi-
mize the value of in degree+ 2×num query matches+
has out links, where num query matches is the num-
ber of unique substrings of the URL that exactly match
a term in the user’s query, and has out links is 1 if the
node has at least one out-edge and otherwise 0.

The documents selected from the start set are fetched
and their initial 1000 words are concatenated to give Q.
Each of them is then scored against Q and the 25th per-
centile relevance weight is selected as the pruning thresh-
old. The pruning threshold is used in the next phase
(the pruning phase) to eliminate some of the influen-
tial but non-relevant nodes in the graph. In computing
similarity between the query, Q, and a document, D, a
slightly modified formula is used from before. The weight
of terms in the original query is boosted by a factor of
three. Specifically, wiq is computed as freqiq×IDFi×3,
whenever term i is a (stemmed form) of a term in the
user’s query. This is done in the pruning phase as well.

In the pruning phase a hundred nodes are selected
from the graph by one of two heuristics, which we de-
scribe next. They are matched with Q, and pruned if
their relevance weight is below the pruning threshold. In
all at most 130 documents are fetched and analyzed.

We experimented with two partial pruning approaches:
(i) Degree Based Pruing and (ii) Iterative Pruning.

6.1 Degree Based Pruning

In degree based pruning, the in and out degrees of the
nodes are used to select nodes that might be influen-
tial. Specifically, we use 4 × in degree + out degree as
a measure of influence. The top 100 nodes by this mea-
sure are fetched, scored against Q and pruned if their



Without Regulation With Regulation Partial
base imp med startmed maxby10 impr medr startmedr maxby10r pca0 pca1

All At 5 0.52 0.66 0.73 0.65 0.69 0.67 0.72 0.65 0.7 0.72 0.75
At 10 0.46 0.58 0.65 0.66 0.62 0.62 0.65 0.65 0.64 0.64 0.67

Rare At 5 0.24 0.36 0.64 0.48 0.55 0.6 0.6 0.48 0.6 0.48 0.6
At 10 0.18 0.24 0.5 0.5 0.43 0.44 0.48 0.54 0.48 0.44 0.64

Popular At 5 0.36 0.55 0.6 0.68 0.64 0.55 0.6 0.6 0.6 0.68 0.88
At 10 0.4 0.54 0.57 0.7 0.6 0.58 0.6 0.62 0.64 0.68 0.8

Table 2: Average Precision at Top 5 and 10 ranked authority documents

Without Regulation With Regulation Partial
base imp med startmed maxby10 impr medr startmedr maxby10r pca0 pca1

All At 5 0.6 0.74 0.87 0.78 0.75 0.8 0.87 0.77 0.81 0.8 0.8
At 10 0.56 0.73 0.79 0.7 0.73 0.76 0.81 0.69 0.76 0.74 0.71

Rare At 5 0.44 0.64 0.88 0.72 0.6 0.8 0.88 0.8 0.8 0.56 0.72
At 10 0.46 0.6 0.76 0.6 0.64 0.76 0.8 0.66 0.76 0.53 0.63

Popular At 5 0.48 0.8 0.8 0.88 0.8 0.8 0.8 0.72 0.8 1.0 0.68
At 10 0.42 0.68 0.74 0.72 0.68 0.7 0.74 0.6 0.7 0.76 0.54

Table 3: Average Precision at Top 5 and 10 ranked hub documents

score falls below the pruning threshold. After this, con-
nectivity analysis as in imp is run for 10 iterations on
the pruned graph. The ranking for hubs and authorities
computed by imp is returned as the final ranking. This
algorithm is called pca0.

6.2 Iterative Pruning

For iterative pruning we use connectivity analysis itself
(specifically the imp algorithm) to select nodes to prune.

Pruning happens over a sequence of rounds. In each
round imp is run for 10 iterations to get a listing of the
(currently) best hubs and authorities. The top docu-
ments by these rankings are examined in decreasing order
of rank, alternating between the hub and the authority
ranking. When examining a document, we fetch it and
compute its relevance (if it is not already fetched) un-
til either 5 documents have been fetched in the round
or enough top ranked documents have been found to
be relevant (15 in our experiments). In the latter case
the algorithm terminates. In the former case the algo-
rithm terminates the round and starts a new round on
the pruned graph, until an allotted quota of documents
has been fetched (100 in our implementation). The rank-
ings computed in the last round are returned as the best
hubs and authorities overall.

The motivation for stopping each round when 5 doc-
uments have been fetched is that when combating topic
drift by pruning, it is usually sufficient if the top ranked
documents are pruned, since they tend to be high de-
gree nodes that support others in the ranking. After this
point we think it is more profitable to execute another
round than to continue with the pruning.

This algorithm is called pca1.

6.3 Comparison with Previous Techniques

In Table 2 we show precision for authority ranking by the
new algorithms (pca0 and pca1) as well. Even though
our main goal was to speed up the computation, pca0
performs comparably with the best previous algorithm
and pca1 improves precision. We believe that the pca1
improvement comes from the fact that partial content

analysis avoids pruning non-influential documents that
are below the threshold in terms of relevance but are
connected to and support good hubs and authorities on
the topic.

Table 3 show precisions for hub ranked documents.
For all topics, pca0 and pca1 perform 10% worse than
medr, the best of the previous algorithms. For the top-
ics where pca1 performs poorly we found that it uses
up its whole quota of 100 documents, suggesting that a
larger quota allowing for more pruning would be more
successful. For example, in the case of “graphic design”
pca1 used up its quota before it could eliminate a set of
irrelevant documents containing automatically generated
links. These links pointed to a very good authority which
placed the irrelevant documents at the top of the hub list.

In terms of relative recall, compared with the best
previous algorithm, selective pruning performed compa-
rably for authority documents, and about 10% worse for
hub documents.

7 Related Work

The ARC algorithm of Chakrabarti et al [6] also ex-
tends Kleinberg’s algorithm with textual analysis. ARC
computes a distance-2 neighborhood graph and weights
edges. The weight of each edge is based on the match
between the query terms and the text surrounding the
hyperlink in the source document. Regulation is similar
to their approach but there are three differences: (i) We
use an expanded query instead of the original query. (ii)
The relevance is computed using the whole document,
not just a window surrounding the hyperlink. (iii) The
weight of an edge is either the relevance of the source
document or the target document depending on whether
authority or hub scores are being computed.

Connectivity analysis of Web hyperlinks resembles the
work on citation and co-citation analysis in the area of
bibliometrics. This is used to discover influential publi-
cations and authors with similar interests within the arti-
cles of a certain field of study. See [22] for a discussion on
applying bibliometrics to the World Wide Web. Citation
analysis has been criticized (see [8]) as a source of system-
atic bias, since members of cliquish communities tend to



Without Regulation With Regulation Partial
base imp med startmed maxby10 impr medr startmedr maxby10r pca0 pca1

Authorities At 5 0.15 0.19 0.22 0.2 0.21 0.2 0.22 0.19 0.21 0.22 0.23
At 10 0.27 0.35 0.39 0.41 0.37 0.38 0.39 0.4 0.38 0.38 0.41

Hubs At 5 0.16 0.21 0.26 0.22 0.21 0.24 0.26 0.22 0.24 0.24 0.23
At 10 0.29 0.41 0.46 0.38 0.4 0.43 0.46 0.38 0.43 0.41 0.4

Table 4: Relative Recall

cite each other preferentially, and some authors are cited
out of deference rather than relevance. On the Web this
is less of a problem since the community is diverse and
distributed, and the right to publish cannot be restricted
by cliques. Indeed, the importance of considering refer-
ential statistics in document selection is increased since
there is no quality control on the Web.

Others have used inter-document linkage to compute
useful data on the Web as well. Pirolli et al [26] run a
computation on a inter-document matrix, with weights
derived from linkage, content similarity and usage data,
to identify usable structures. PageRank [25] is a ranking
algorithm for Web documents that uses connectivity to
compute a topic-independent score for each document.

There has been much work in IR on supporting topic
exploration. This is typically done by letting users browse
topic hierarchies that are either predetermined (e.g., Cat-
a-Cone [19]), or dynamically constructed by clustering
based on user selection (e.g., Scatter/Gather [10], Para-
phrase [3]). Another approach to topic exploration is
interactive query expansion where new terms are sug-
gested to help focus the query (e.g., [24, 15]). On the
Web there are examples of topic hierarchies (e.g., Ya-
hoo! [30, 16]), dynamic clustering (AltaVista’s Live-
Topics [5]) and query expansion (as in Excite [13]). The
goal of topic exploration is to locate a set of documents
dealing with the user’s topic of interest, whereas topic
distillation assumes such a set and finds quality docu-
ments within it. Hence, topic exploration may be viewed
as a powerful preliminary step to topic distillation. This
was suggested by Hearst in [18], who observed that Klein-
berg’s algorithm does not bring forth documents that
deal with less popular interpretations of the query. She
suggests first clustering the documents to separate out
the subtopics and then analyzing the induced subgraphs
individually. Another option would be to modify the al-
gorithm so that within-cluster edges have a higher weight
than cross-cluster edges. This would allow nodes belong-
ing to smaller, less developed topics to be supported by
nodes belonging to other related topics.

Finally, our approach to evaluating precision at a
fixed number of result documents based on user rele-
vance ratings seems typical of ranking evaluations done
on the Web (e.g., search service comparisons [7, 11]).

8 Conclusions

In this paper we showed that Kleinberg’s connectivity
analysis has three problems. We presented various al-
gorithms to address them. The simple modification sug-
gested in algorithm imp achieved a considerable improve-
ment in precision. Precision was further improved by
adding content analysis, with algorithms medr, pca0 and
pca1 being the most promising. In our current implemen-
tation pca0 and pca1 compute ranking with a relatively
fast turnaround (about 3 minutes) when using the Con-
nectivity Server to compute the graph.

For authorities, pca1 seems to be the best algorithm
overall. It provides enough of an improvement over imp
to justify the overhead of analyzing a small set of docu-
ments. For hubs, medr is the best general-purpose algo-
rithm, but if term vectors are not available for the doc-
uments in the collection, we suggest using imp. In each
case the best algorithm improves precision over baseline
Kleinberg by at least 45%.

This approach is limited to topics that are well repre-
sented and well connected on the Web. Additionally, this
work assumes that the results of a search service query
defines a good start set, which is debatable. It would be
interesting to apply query expansion and clustering to
produce a better start set.

Hypertext encourages documents to be split up into
pieces. One could argue that what users are looking for
on the Web are good sites, containing a set of connected
documents on the topic, rather than individual docu-
ments. Connectivity based ranking schemes might serve
this purpose well since they have a tendency to return
the root document within a site, which is a good start-
ing point for exploration. This happens because external
hyperlinks most often link to the root document, even if
it does not have much content.
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[29] Vélex, Weiss R., Sheldon M. A., Gifford, D. K.
1997. “Fast and Effective Query Refinement.”
Proc. of ACM SIGIR ’97, pp. 6–15.

[30] Yahoo!. www.yahoo.com/

9 Appendix

We prove that the connectivity analysis aglrotihm termi-
nates.

Lemma 1 The improved connectivity analysis algorithm
terminates, i.e., the H and A vectors eventually converge.

Proof. Let |N | be the size of the neighborhood graph.
Let B = (bnm) be a matrix such that for all 1 ≤ n ≤ |N |
and 1 ≤ m ≤ |N |, bnm = authority weight(n,m) and let
C = (cnm) be a matrix with cnm = hub weight(m,n) for
all 1 ≤ n ≤ |N | and 1 ≤ m ≤ |N |. Then steps (5) and
(6) can be rewritten as:

(5) A := BH
(6) H := CA

Let D = CB. Every entry of D is non-negative. Since
every node n is incident to an edge, dnn > 0 for every
n. Note that authority weight(n,m) > 0 if and only
if hub weight(n,m) > 0, i.e., bnm > 0 if and only if
cmn > 0. Thus, dmn > 0 if and only if dnm > 0.

Consider D|N|. There exists a permutation of the
rows of D|N| such that the resulting matrix has the fol-
lowing block-diagonal shape for some l > 0:

D1 0 · · · · · · · · · · · · 0
0 · · · 0 D2 0 · · · · · · 0

. . .
0 · · · · · · · · · · · · 0 Dl

Each block, i.e., matrix Di with 1 ≤ i ≤ l is square
and all its entries are positive. Thus, by the Frobenius
theory of positive matrices (see e.g. [20]), it follows that
the first eigenvalue λ0(Di) > |λ(Di)|, where λ(Di) is any
other eigenvalue of Di and there exists an eigenvector
X0 for λ0(Di) with positive entries. If this condition is



fulfilled then Dk
i · Z converges [14], where Z is a vector

with each coordinate equal to 1. Since the value of H
after the k-th iteration equals Dk · Z, it follows that the
H vector and thus also the A vector converges.


