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ABSTRACT

Studying Web graphs is often difficult due to their large size. Re-
cently, several proposals have been published about various tech-
niques that allow to store a Web graph in memory in a limited
space, exploiting the inner redundancies of the Web. The Web-
Graph framework is a suite of codes, algorithms and tools that aims
at making it easy to manipulate large Web graphs. This papers
presents the compression techniques used in WebGraph, which are
centred around referentiation and intervalisation (which in turn are
dual to each other). WebGraph can compress the WebBase graph
(118 Mnodes, 1 Glinks) in as little as 3.08 bits per link, and its
transposed version in as little as 2.89 bits per link.

Categories and Subject Descriptors

E.2 [Data]: Data Storage Representations; E.4 [Data]: Coding
and Information Theory; H.3 [Information Systems]: Information
Storage and Retrieval

General Terms

Algorithms, Experimentation, Measurement

Keywords

Web graph, compression

1. INTRODUCTION

In the last few years, the World Wide Web has become the fo-
cus of an intense research activity, performed by both academic
and industrial research centres; this activity is mainly aimed at de-
veloping efficient techniques to retrieve information over the Web,
using some form of exploration or search that is especially tailored
to the specific hypertextual structure of the Web itself. These tech-
niques find many potential and actual applications, for example, in
search engines, in the design of effective crawlers, in determining
cybercommunities, etc.

In many cases, most of the information one needs to perform a
search is contained in the structure of the Web graph (or link graph),
that is the graph having a node for each URL, and a (directed) arc
from node x to node y whenever there is a hyperlink in page x
leading to page y.
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Needless to say, the Web graph is a huge object to deal with: it
currently contains some 3 billion nodes, and more than 50 billion
arcs (and these estimates are just lower bounds, as they are obtained
from search engines, which index just a part of the Web).

In this paper, we present new compression techniques that are
used in WebGraph to represent compactly Web graphs. WebGraph
is a framework that provides simple methods to manage very large
graphs. More precisely, it is currently made of:

1. A set of flat codes, called ¢ codes, which are particularly
suitable for storing Web graphs (or, in general, integers with
a power law distribution in a certain exponent range). The
fact that these codes work well can be easily tested empiri-
cally; a more detailed mathematical analysis can be found in
the companion paper [6].

2. Algorithms for compressing Web graphs that exploit gap com-
pression (as in the Connectivity Server [2]), referentiation
(a la LINK [11]), intervalisation and ¢ codes to provide a
high compression ratio, and algorithms for accessing a com-
pressed graph without actually decompressing it, using lazy
techniques that delay the decompression until it is actually
necessary. The algorithmic part of WebGraph is the topic of
this paper.

3. A complete, documented implementation of the algorithms
above in Java, contained in the package
it.unimi.dsi.webgraph. Besides a clearly defined
API, the package contains classes that allow one to modify
(e.g., transpose) or recompress a graph, so to experiment with
various settings.

4. Data sets for very large graphs (e.g., a billion of links). These
data were either gathered from public sources (such as Web-
Base [7]) or obtained with UbiCrawler [5, 4].

One of the features of the WebGraph compression format is that
it is devised to compress efficiently not only the Web graph, but
also its transposed graph (i.e., a graph with the same nodes, but
with the direction of all arcs reversed). A compact representation
of the transposed graph is essential in the study of several advanced
ranking algorithm (e.g., HITS [8]): the literature often reports that
the transposed graph is more “entropic”, and thus more difficult to
compress than the graph itself [10, 11], but we shall see that in the
WebGraph framework transposed graphs actually compress better.

2. THE WEB GRAPH

The Web graph relative to a certain set of URLs is a directed
graph having those URLs as nodes, and with an arc from x to y
whenever page x contains a hyperlink toward page y. When trying



to devise a compression mechanism to store a Web graph efficiently
we can exploit some empirical observations about the structure of
hyperlinks in a typical subset of the Web.

The features of the links of a Web graph that are usually quoted
are locality and similarity, which were originally exploited by the
Connectivity Server [2] and by the LINK database [11].

1. Locality. Most links contained in a page have a naviga-
tional nature: they lead the user to some other pages within
the same host (“home”, “next”, “previous”, “up” etc.); if we
compare the source and target URLs of these links, we ob-
serve that they share a long common prefix; said otherwise,
if URLs are sorted lexicographically, the index of source and

target are close to each other.

2. Similarity. Pages that occur close to each other (in lexico-
graphic order) tend to have many common successors; this
is because many navigational links are the same within the
same local cluster of pages, and even non-navigational links
are often copied from one page to another within the same
host.

These features suggest to use techniques borrowed from full-text
indexing for storing increasing sequences of integers with small
gaps, and moreover inspired the reference compression techniques
discussed in [11, 1]. Since several successor lists are similar, one
can specify the successor list of a node by copying part of a pre-
vious list, and adding whatever remains. This is achieved using
a list of bits, one for each successor in the referenced list, which
tell whether the successor should be copied or not, or using other
techniques (such as explicit deletion lists [11]).

The empirical analysis at the base of WebGraph’s compression
techniques evidenced two additional facts:

1. Similarity is much more concentrated than it was previ-
ously thought. Either two lists have almost nothing in com-
mon, or they share large segments of their successor lists.
This implies that the one-bit-per-link scheme used in refer-
ence compression may be refined to a copy-block list scheme,
in which the links to be copied are specified by means of
interval lengths (this corresponds essentially to a run-length
encoding of the reference bits).

2. Consecutivity is common. It can be observed that many
links within a page are consecutive (with respect to the lexi-
cographic order); this is due to two distinct phenomena. First
of all, most pages contain sets of navigational links which
point to a fixed level of the hierarchy. Since the hierarchical
nature of a site is usually reflected in the hierarchical nature
of URLs, links in pages at the bottom of the hierarchy tend to
be adjacent in lexicographic order. Second, in the transposed
Web graph pages that are high in the site hierarchy (e.g., the
home page) are pointed to by most pages of the site. This, of
course, gives also rise to large intervals.

3. Consecutivity is the dual of distance-one similarity. If a
graph is easily compressible using similarity at distance one
(i.e., exploiting similarity with the successor list of the pre-
vious node in lexicographical ordering), its transpose must
sport large intervals of consecutive links, and viceversa, as
a node that is common among two or more consecutive suc-
cessor lists at distance one is reflected by a corresponding
interval of length two or more in the transposed graph.

As an example, see Figure 1 and Figure 2, which show the distri-
bution of gaps in increasing sequences of successors for a snapshot
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of the .uk domain: gaps are regularly distributed along a power-
law distribution (a fact which is exploited in [6]), but the gap 1
lies over the interpolating line (i.e., intervals are very frequent; this
phenomenon is particularly evident in the transposed graph).
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Figure 1: Distribution of gaps in a 18.5 Mpages snapshot of the
.uk domain. The scale is logarithmic on both axes, and the line
displays a power law with exponent 1.21.
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Figure 2: Distribution of gaps in the transpose of a 18.5 Mpages
snapshot of the . uk domain. The scale is logarithmic on both
axes, and the line displays a power law with exponent 1.20

(modulo a scaling factor).

The considerations above suggest that a compression format for
the Web graph and its transpose should take into consideration at
the same time similarity and consecutivity. As we shall see, our
compression format takes indeed these phenomena into account,
obtaining a high compression ratio.

3. THE COMPRESSION FORMAT

Throughout this section, whenever we say that an integer is part
of the compression format, we mean that a suitable instantaneous
coding must be chosen for the integer (WebGraph allows to choose
among several codes). For consistency, we assume that all codings
encode natural numbers, that is, the first code is for 0, the second
one for 1 and so on. This is natural for some codings (e.g., Golomb)
and less natural for other codings (e.g., ), which must be shifted
suitably. However, this allows to treat uniformly different coding
techniques. We remark that this convention is the one adopted in



Table 1: Naive representation using outdegrees and adjacency
lists.

Node | Outdegree | Successors

15 11 3,1,0,0,0,0,3,0,178, 111, 718
16 10 1,0,0,4,0,0,290,0,0, 2723

17 0

18 5 9.1,0,0,32

Table 2: Representation using gaps.

MG4I!, but it is different from the one used in the companion pa-
per [6].

Naive representation. Suppose that we are interested in repre-
senting a Web graph relative to some set of N URLs; the graph
nodes will be numbered from 0 to N — 1 according to the lexico-
graphic ordering of URLs. We let S(x) denote the set of successors
of node x (i.e., the set of all nodes y such that there is an arc from
X to y)z.

We wish to represent the graph using adjacency lists: in other
words, the graph will be coded as the sequence of adjacency lists
of nodes 0, 1, etc., each preceded with the outdegree of the corre-
sponding node, to make it self-delimiting. This naive representa-
tion is exemplified in Table 1.

Using gaps. The example shows the locality phenomenon dis-
cussed above; locality suggests that we should represent each list
of successors as a list of gaps (as pioneered by the Connectivity
Server). More precisely, if S(x) = (sq, ..., sg), we will represent
itas (s; —x,s0 —sy— 1,53 —s2—1,..., 8t —sg—1 — 1) instead;
note that all the integers obtained in this way are non-negative, ex-
cept possibly for the first one. Since we do not want to deal with
negative numbers, we will code the first element suitably, using the
mapv:Z — N

2x
YO = o1

ifx>0
if x < 0.

In Table 2 you can see this modified representation using gaps.

Reference compression. Another possible way to improve the
compression ratio is to exploit similarity: instead of representing
the adjacency list S(x) directly, we can code it as a “modified”

IMG4] (Managing Gigabytes
age providing bit-level 1/0; it
http://mg4j.dsi.unimi.it/.

2In this paper, with some abuse of notation, we will not distinguish
between a set of integers and the corresponding list of integers in
increasing order. Hence, if A = {45, 12, 378, 40} we will also use
the notation A for the list (12, 40, 45, 378). Note, however, that
some algorithms on the Web graph require that the original order
of the links be preserved. In this case, techniques described in this
paper are not viable.

for Java)
can be

is a pack-
downloaded at

Node | Outdegree | Successors

15 11 13,15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15,16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0

18 5 13,15, 16,17, 50
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version of some previous list S(y), called the reference list. The
difference x — y is called the reference number. As we already
mentioned, this results usually in reference compression, in which
a sequence of bits, one of each successor in the reference list, tells
whether the corresponding successor of y is also a successor of x.

More precisely, the representation of S(x) with respect to S(y)
is made of two parts: a sequence of |S(y)| bits, called the copy list,
and the list of integers S(x) \ S(y), called the list of extra nodes.
The copy list specifies which of the links contained in the reference
list should be copied: it will contain 1 at the i-th position iff the
i-th entry of list S(y) also appears in S(x).

The resulting representation is shown in Table 3; note that every
copy list is preceded by a the reference number: if the reference is r
for list S(x), it means that the compression is relative to list S(x —r)
(if r = 0 then we are not compressing the list by reference).

The choice of r is critical, here; we assume that there is a fixed
parameter W > 0 (called the window size), and r is chosen as the
value between 0 and W that gives the best compression. A large
value of W is likely to produce better compression ratios (simply
because it enlarges the set of possible reference lists); the price for
this improvement is a slower and more memory-consuming com-
pression and decompression.

Several forms of reference compression are used in different ver-
sions of the LINK database; moreover, reference compression is
analysed from a theoretical viewpoint in [1].

Differential compression. WebGraph introduces differential com-
pression, in which the differences with S(y) are recorded by a se-
quence of copy blocks: we look at the copy list as an alternating
sequence of 1- and 0-blocks, and specify the length of each block
(decremented by one, for all blocks except the first one). This se-
quence of integers is preceded by a block count telling the number
of blocks that will follow. We will always omit the last block from
the list of blocks, because its value can be deduced from the block
count and from the outdegree of the reference node. The resulting
scheme is exemplified in Table 4.

Note that the first copy block always refers to a 1-block (so, the
first copy block is O if the copy list starts with a 0). Using typi-
cal codes, such as y coding, copying entirely a list costs one bit:
more generally, differential compression allows to code a link in
less than one bit, something which is impossible with plain refer-
ence compression.

Using intervals to exploit consecutivity. As we observed in Sec-
tion 2, consecutivity is frequent among extra nodes; hence, instead
of compressing them directly using the gap technique, we first iso-
late the subsequences corresponding to integer intervals. Only in-
tervals whose length1 is not below a certain threshold L,;, are
considered.

Hence, each list of extra nodes will be compressed as follows:

e a list of integer intervals; each interval is represented by its
left extreme and by its length; left extremes are compressed
using the differences between each left extreme and the pre-
vious right extreme minus 2 (because there must be at least
one integer between the end of an interval and the begin-
ning of the next one); interval lengths are decremented by
the threshold L .

e alist of residuals (the remaining integers), compressed using
differences.

Table 5 shows the resulting representation assuming that the in-
terval threshold is 2. For example, consider the list of remaining

I'The length of an integer interval is the number of integers it con-
tains.



Node | Outd. | Ref. | Copy list Extra nodes
15 11 0 13, 15,16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 | 22,316, 317, 3041
17 0
18 5 3 11110000000 | 50
Table 3: Representation using copy lists.
Node | Outd. | Ref. | #blocks | Copy blocks Extra nodes
15 11 0 13,15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 7 0,0,2,1,1,0,0 | 22,316,317,3041
17 0
18 5 3 1 4 50

Table 4: Representation using copy blocks.

nodes for node 15:

e there are two intervals ([15, 19] and [23, 24]); the left ex-
tremes, compressed as explained above, give 15 — 15 = 0
(the first extreme is represented as a difference with respect
to the node itself) and 23 — 19 —2 = 2 (the other extremes are
represented as difference with respect to the previous right
extreme minus 2); the lengths are 5 and 2, but should be re-
duced by the threshold (2), which gives 3 and O respectively;

the residuals are 13,203, 315, 1034, which gives 13 — 15 =
—2 (encodedas2-| —2|+1=15),203 —13 -1 = 189,
315—-203 —1=111and 1034 — 315 = 718.

The final format. The WebGraph format can be summarised as

follows:
W>0 Lmin < 00
—_——l | —_—
d l’[bBl"‘Bb]r>() i EyLy---E;L; Ry --- Ry
B<ddg>o

where the data are described in Table 6. We denote with a sub-
script to brackets the condition on previous data for a certain part
of the coding to be present, and with an overbrace the analogous
conditions on compression parameters.

The value B represents the number of successors that have been
copied from the reference list, and may be computed as follows:

0 ifr=0
B =1Li<h<bhodd Bn if r = 0 and b odd
IS(x = )| = Zlghgb,h even Bn ifr =0and b even.

The only datum that is always present is the outdegree d: if
d = 0, no other data needs to be stored for that adjacency list.
The part relative to differential compression is, of course, omitted
if W = 0, because in that case differential compression is inhib-
ited; moreover, if r = 0 (i.e., if we have decided not to compress
the list differentially), the block part is not stored. The extra part
(which stores intervals and residuals) is omitted if 8 = d, because
in that case all successors have been copied from the reference list.
Finally, the part relative to intervals (interval count, left extremes
and interval lengths) is omitted if L;, = oo (which means that we
do not want to use interval compression).
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Note that the adjacency list is self-delimiting (as long as the out-
degree of the reference node is known), because all the integer lists
it comprises are preceded by their length, except for the list of resid-
uals whose length can be computed ask =d —  — Z;,:O Ly.

4. REFERENCE CHAINS

As we have seen, the overall compression process is based on
two parameters, specifying the window size W and the minimum
interval length L,i,. The choice of W determines a trade-off be-
tween the compression ratio and the time needed to compress/de-
compress the graph. A remark is in order, here: say that node x
(directly) refers to node y iff x has reference r > Oand x —r = y;
when x refers to y, if we want to access the adjacency list of node
x we will first have to decompress the adjacency list of node y.

Of course, y > x — W, so if we are accessing the adjacency lists
in a sequential fashion, we just need to keep a sliding window of
the last W adjacency lists. Conversely, if we need a direct random
access to adjacency lists, we have to consider carefully the problem
of accessing in turn all the lists they (directly or indirectly) refer to.
In other words, if we want to access to S(x) and if x directly refers
to y, we will first have to access S(y), and if y directly refers to z,
we will first have to access S(z) and so on. The sequence of nodes
built in this way is called the reference chain of node x.

If we put no limit on this, in the worst case accessing to the
adjacency list of node x may require a decompression of all lists
up to x. This will cause a severe slowdown in the time required to
perform random accesses.

Of course, this is not a problem if we only plan to access ad-
jacency lists sequentially (as is the case, for example, in the com-
putation of PageRank [9]); yet, if random access is our primary
business, we need to put a limit on the lengths of reference chains.

Thus, there is a further parameter R to our compression algo-
rithm, called the maximum reference count. When performing dif-
ferential compression of S(x), we do not consider all nodes x —
I,...,x — W, but only the ones that do not produce reference
chains longer than R. A small value for R is likely to produce
worst compression, but shorter (random) access times.

The authors of the LINK database report testing on the number
of bits per link reached with different values for W and R: here, we
provide statistics about the number of bits per link and the reference



Node | Outd. | Ref. | #blocks | Copy blocks #intervals | Left extremes | Length | Residuals
15 11 0 2 0,2 3,0 5,189,111, 718
16 10 1 7 0,0,2,1,1,0,0 | 1 600 0 12,3018
17 0
18 5 3 1 4 0 50
Table 5: Representation using intervals (interval threshold is 2).
Datum Meaning Notes Represented as. ..
d Outdegree d>0
r Reference number | 0 <r < W
b Block count b>0
By, , Bp | Blocks B >0,By,...,B, >0 B;,By—1...,Bp,—1
i Interval count i>0
Eq, , E; | Left extremes Eyy1 2 Ep+L+1 VE —x),Eb—E—-Ly—1,... ,E;—E;_1—L;_1—-1
Ly, ,L; Interval lengths Li,...,L;j > Luin L1 —Lnin,--->Li — Lmin
Ry, , R | Residuals O<RIi<Ry<--- <R | vIRf—x),Rp—R1—1,... ,Rpy — Ry_1—1

Table 6: Data describing the adjacency list of node x.

chains. The results are summarised in Table 7: one can easily see
that R = oo gives excellent results, although even when R = 1 we
improve significantly over existing techniquesz.

For comparison, version 3 of the LINK database provides a com-
pression of 5.61 bits per link for a Web graph of 61 Mnodes and
1 Glinks graph, and 5.66 bits per link for its transpose, whereas [10]
reports 5.07 bits per link and 5.63 bits per link, respectively, for the
WebBase graph and its transpose3 . The figures reported in [12] on a
115 Mpages/1.47 Glinks snapshot taken from the Internet Archive,
on the other hand, are much worse (13.92 bits per link; no data is
provided for the transpose).

S. THE OFFSET ARRAY

As we have seen, the graph is described as a sequence of adja-
cency lists; each list is in turn represented by a sequence of natural
numbers and, at the very last level, we encode each natural number
in these sequences using some kind of self-delimiting bit-encoding
(the choice of this encoding for residuals is discussed thoroughly
in [6]).

If we want to access the graph in a random fashion, we must
keep an auxiliary vector of offsets, that has N entries (one for each
node); the entry of index / represents the position (in memory)
where the successor list of node # starts. Offsets can be expressed
as bit- or byte-displacements, the second option being actually ap-
plicable only if each adjacency list is byte-aligned.

The advantage of byte displacement is that a 32-bit offset is suffi-
cient to index 4 GiB of RAM; thus, it can be considered sufficient to
exploit the current core memories. Using 32-bit offsets for bit dis-
placement is not sensible, as it would allow indexing just 512 MiB

2The compression speed depends essentially on W: on the Web-
Base graph, for example, offline recompression (i.e., both the
source and the target graph are not loaded into memory) was per-
formed at about 111000 nodes/s when W 1, 88000 nodes/s
when W = 3 and 54 000 nodes/s when W = 7; note, however,
that these figures comprise both the decompression of the source
and the compression of the target.

3These figures, however, are averaged over three data sets of 25,
50, and 100 Mpages.
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of RAM, which, at the current compression rates, would allow to
represent just 150 millions of nodes.

On the other hand, byte displacement requires aligning each suc-
cessor list, and this requirement is very expensive (more than 10%
increase in size); moreover, core memory exceeding 4 GiB is al-
ready available with the current technology, and in any case, using
32-bit byte offset displacements does not allow to store more than
about 4 billions of nodes: considering the current size of the Web,
this solution suffers from an inherent lack of scalability.

These reasons pushed the authors to implement WebGraph using
bit displacements. This, of course, requires some considerations
about offset representation in memory, as consuming 64 bits for
each offset would make the offset array larger than the graph itself.
The authors of the LINK database, for instance, propose a complex
scheme in which nodes of lower degree get smaller offsets; other
proposals require a main part that is kept in main memory, and a
part that is kept offline [10].

Our solution rests on a different viewpoint: much in the same
way as WebGraph allows to trade off between speed and compres-
sion ratio when compressing a graph, it also allows to tune speed
and offset array size while decompressing it. Essentially, if we need
to perform random accesses, but we have only a limited amount of
central memory, we may load the offset array only partially; more
precisely, we only keep the offsets of nodes 0, J, 2J, ..., for a
suitable parameter J (called the jump). When we need to access
the adjacency list S(x), we use the offset relative to node J |x/J |,
and then we skip over (i.e., read and ignore) x mod J entries se-
quentially. If J is large, we spare memory but lose time when ac-
cessing a node; if J is small, we have faster access times but higher
memory consumption. Note that J is not a compression parameter:
rather, it is fixed when reading the graph into memory.

A minor point to take into consideration here is the following:
as explained in the previous sections, each adjacency list is stored
in an almost self-delimiting format, except for the list of residuals,
whose length £ depends on the number g of links copied from the
reference list, which may in turn depend on the outdegree |S(x —r)|
of the reference list itself. Unfortunately, when skipping over an
adjacency list we need to know k, and this fact implies that posi-
tioning on the start of a given adjacency list may require a recursive



18.5 Mpages, 300 Mlinks from . uk

R Average reference chain Bits/node Bits/link

W=1|W=3 | W=7 |W=1|W=3W=7|W= W=3| W=
oo | 171.45 | 198.68 | 19598 | 44.22 38.28 35.81 2.75 2.38 222
3 1.04 1.41 1.70 | 62.31 5237 | 48.30 3.87 3.25 3.00
1 0.36 0.55 0.64 81.24 | 62.96 55.69 5.05 391 3.46

Tranpose
) 18.50 | 2534 | 26.61 36.23 33.48 31.88 2.25 2.08 1.98
3 0.69 1.01 1.23 37.68 35.09 33.81 2.34 2.18 2.10
1 0.27 0.43 0.51 39.83 36.97 35.69 2.47 2.30 222
118 Mpages, 1 Glinks from WebBase

R Average reference chain Bits/node Bits/link

W=1|W=3|W=7 | W=1|W=3|W=7 | W=1|W=3|W=7
00 85.27 | 118.56 | 119.65 30.99 2779 | 26.57 3.59 3.22 3.08
3 0.79 1.10 1.32 | 3846 | 33.86 32.29 4.46 3.92 3.74
1 0.28 0.43 0.51 46.63 38.80 | 36.02 5.40 4.49 4.17

Tranpose

00 27.49 30.69 31.60 | 27.86 | 2597 24.96 3.23 3.01 2.89
3 0.76 1.09 1.31 2920 | 2740 | 26.75 3.38 3.17 3.10
1 0.29 0.46 0.54 31.09 29.00 | 28.35 3.60 3.36 3.28

Table 7: Experimental data about reference chains with L,;;, = 3 and using ¢3 for residuals. The .uk data were gathered using
UbiCrawler; the WebBase data refer to the 1/2001 general crawl.

access to a number of other adjacency lists which is not bounded
by the maximum reference count R, or by any other parameter.

To avoid this problem, we slightly change the way adjacency lists
are loaded into memory: lists are considered as divided into blocks,
containing J lists each (the offset array contains the bit where each
such block starts). The J outdegrees are stored at the beginning
of each block, followed by the remaining data. The advantage of
this variant is that we can know the outdegree of any node without
decompressing its adjacency list. This in turn solves the skipping
problem completely. (As a side remark, if only sequential access is
needed, the offset array needs not be loaded at all.)

6. LAZY ITERATION

Accessing a WebGraph compressed graph without references is,
of course, trivial: it is just a matter of rebuilding the extra list (pos-
sibly merging intervals and residuals). This can be easily accom-
plished by reading all interval data, and merge the resulting se-
quence of integers with the residuals. Note that if you want to
produce the successor list in increasing order you do not need to
read actually all residuals to produce the first output, but you need
to read all interval data (which, however, is usually much smaller).

Accessing a graph with (possibly heavy) referentiation is, how-
ever, a different problem, as unbounded reference chains of actual
Web graphs reach more than one hundred depth levels. A trivial
solution is to decode recursively each list by computing the list it
references. This, however, has several disadvantages: first, a large
number of memory accesses—potentially, as many as the number
of successors present in all referenced lists. Second, a large number
of temporary data structures have to be built.

WebGraph enumerates successors using lazy iterators; more pre-
cisely, it generates recursively a cascade of lazy iterators over the
various reference lists involved in building the required one. Ev-
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ery iterator, at construction time, fetches all data up to the residuals
(note that this data are usually very small compared to the list), but
does not go farther. Then, each time the top-level iterator is re-
quired to produce a new successor, it checks whether it can fulfill
the request using its local data (intervals and residuals); if it is not
S0, it passes the request to the iterator of the reference node.

This architecture is implemented in a very simple way, combin-
ing the powerful iterator-related features of the fastutil Java
package, and some custom-made iterators, which implement mask-
ing of underlying iterators, merging of increasing iterators, and
interval-based enumeration. We refer the reader to the API doc-
umentation for more information about these features.

Note that no list is ever actually expanded into memory. During
the iteration, the only state kept by the recursive stack of iterators is
related to intervals and blocks. This allows to iterate over very long
successor lists, almost independently of the core memory available,
a fact that dramatically reduces memory accesses.

Finally, since all iterators implement a method that skips several
entries (and, of course, this method is implemented in constant time
by interval iterators), masking can be performed very efficiently, as
discarding blocks can be skipped quick1y4.

Data about access speed is provided in Table 8, where it appears
clearly that for random access the speed obtained in sequential
access reduces depending on the length of the average reference
chain. Without lazy iterators, we would expect essentially that the
speed be multiplied by the average reference-chain length, but the
results are much better because of the interplay between skipping
and intervalisation (indeed, the results are particularly good for
the transposed graph, which is highly intervalised). Interestingly,

4Experiments show, indeed, that lazy iteration is faster than eager
iteration (e.g., than simply expanding all referenced lists).



R = oo gives better sequential access times: in that case the main
cost is memory access, and the higher compression ratio turns out
to have a visible effect. Table 8 contains also data about the (small)
slowdown produced by partially loading the offset array.

All data have been gathered using a Java implementation of the
WebGraph framework; it is likely that a tuned C implementation
would increase by a factor of about two the timings we report.

Timings given in the literature [11, 12, 10] are in the same order
of magnitude of the ones reported here (e.g., version 3 of the LINK
database provides a sequential and random access times are 248 ns
and 336 ns, respectively, albeit with a different language and archi-
tecture). A more precise comparison would require implementing
all techniques using the same language, the same compilers (and
possibly virtual machines), and the same hardware.

All data have been gathered on a 512 MiB 2.4 GHz Pentium, by
scanning completely the adjacency lists of a large sample of nodes.
Note that sequential-access times do not depend on R, but only on
w.

7. RELATED WORK

Since the Web grows constantly, and at a high speed, several pa-
pers have recently addressed the problem of compressing the Web
graph. One of the first attempts at using modern compression tech-
niques were the Connectivity Server [2], which suggested lexico-
graphical ordering as a way to obtain a good compression using
gaps, and the LINK database [11], which implemented reference
compression. Hardness results about finding the best possible ref-
erence list are given in [1].

More recent attempts try to exploit more heavily the network
structure of the Web, either by partitioning successor lists following
hosts and popularity [12], and then using suitable codes, or using
a more hierarchical view of the nodes [10]. The latter proposal, to
our knowledge, implements the strongest compression techniques
available before WebGraph (but see below). Reference [12] dis-
cusses also compression of other data related to the Web graph,
such as URLs.

The authors of [3] present a general framework for compress-
ing graphs that satisfy a separation condition, and apply their tech-
niques to the Google data set (about five million edges). Their re-
sults, in bits per edge, are even better than the one presented by [10]
(albeit worse than WebGraph), but an actual comparison is very
difficult, because the experimental data set is quite small, and it
is hard to see whether the compression ratios will extend to larger
Web graphs. Access times are very good (in fact, the best so far),
but this kind of data is even more sensitive to scaling issues, as they
are strongly dependent on low-level caching, hardware details, and
implementation.

We do not know of any attempts to use lazy iteration to enu-
merate successors without decompressing adjacency lists in main
memory.

8. CONCLUSIONS

In this paper, we presented new techniques for compressing the
Web graph and its transposed. The number of bits per link obtained
is a major advance with respect to all methods we are aware of.
Moreover, the format is very flexible, and can be tuned so to fit
different kinds of CPUs and memory sizes.

All software and data sets described in the experimental part are
freely available from the WebGraph home page
(http://webgraph.dsi.unimi.it/), where one can also
get large data sets. The Java part of the WebGraph framework is
fully documented using the JavaDoc documentation system.
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There is, of course, much work still to be done. Presently, the
most interesting challenge is to find a simple way to get the opti-
mal compression from a given sequence of successors, and a given
reference list. This is more involved than it may seem at first sight,
as, for instance, it could be interesting to store redundantly nodes
both as intervals and as references just to get larger intervals.

Another interesting question is exploring the possible interplay
between different compression parameters. Since WebGraph al-
lows a great freedom in choosing codes, it may happen, that, say, a
very large window W works very well if one chooses the right code
(say, y instead of unary) for the reference.

Finally, WebGraph does not provide any way to store efficiently
the URLs of a Web graph. In the future, for instance, we plan
to implement a new minimal perfect hash class that also stores the
URLs themselves, and acts as a two-way connection between URLs
and nodes.
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