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Abstract

The i.i.d. rate of a channel is the mutual information rate between the channel
input and the channel output when the channel input symbols are independent,
identically distributed (i.i.d.) and equally likely. We design a coding strategy that
achieves rates higher than the i.i.d. rate of a partial response channel (intersymbol
interference channel with inputs constrained to binary values), while still allowing
simple encoding and decoding. The strategy breaks the code into an inner trellis
code and an outer block code. This paper concentrates on the design of the inner
trellis code.

The trellis code is designed according to sub-optimal Markov state transition
probabilities which are determined by a rate-optimizing iterative algorithm so that
the i.i.d. rate of the trellis code is near the channel capacity. We construct the trellis
code using integer approximations to these transition probabilities. This yields a
signal constellation that reduces the shaping loss, so that a properly constructed
outer code can achieve rates near the channel capacity. We demonstrate that the
proposed trellis code, with an appropriately optimized outer irregular low-density
parity-check code, achieves rates that surpass the channel i.i.d. information rate.

1 Introduction

The computation of the capacity of a �nite-input-alphabet channel with intersymbol
interference (ISI) memory is a long-standing open problem [1]. Recent breakthroughs
enable the computation of tight upper and lower channel capacity bounds. Arnold and
Loeliger [2], and independently P�ster, Soriaga and Siegel [3], devise a Monte-Carlo
method to compute the information rates of constrained-input ISI channels if the channel
input process forms a Markov chain. This method can be used to compute lower bounds
on the channel capacity as well as the i.i.d. information rate of the channel. In [4], Kav�ci�c
proposes an iterative method (very much resembling the Arimoto-Blahut algorithm [5,
6]) that optimizes the transition probabilities of the input Markov chain. The method
achieves a high information rate, thus tightening the capacity lower bound. The channel
output distributions computed using the channel inputs generated in this manner can
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also be used to construct tight upper bounds on the channel capacity, as was shown by
Vontobel and Arnold [7].

With these advances in the computation of bounds on the channel capacity, the
question arises whether practical codes can be constructed to achieve near-capacity per-
formance. In [8] we have shown that low-density parity-check (LDPC) coset codes con-
structed over random graphs can at most achieve rates as high as the i.i.d. channel rate,
but not higher. In this paper we propose a general coding strategy that can surpass
the channel's i.i.d. rate and may ultimately reach the capacity of �nite-input-alphabet
channels with ISI memory. The basic idea for the method we propose is rather old - we
use an inner trellis code and outer block code (say, an LDPC code with an appropriate
iterative decoding algorithm).

In this paper we concentrate on the design of the inner code, which we construct as
a trellis code. Most previous trellis code constructions are based on either maximizing
the minimum free distance [9, 10] or matching the spectral nulls of the channel if the
channel has spectral nulls [11], or other lattice-based constructions [12, 13]. We use a
new approach to construct the inner trellis code. We design the trellis code using the
notion of the trellis code capacity CT . To de�ne the trellis code capacity CT , we construct
a super-channel consisting of the trellis code concatenated onto the channel we are using.
The trellis code capacity CT is de�ned as the information rate between the super-channel
input sequence At and the super-channel output sequence Yt, when the super-channel
input symbols At are equally likely and i.i.d. See Figure 1 for an illustration.

We construct the inner trellis code such that the trellis code capacity CT matches the
channel capacity lower bound CL, as computed by the method in [4]. The tighter our
computed lower bounds CL are, the closer we can make the trellis code capacity CT of
our constructed trellis code to the channel capacity. Our approach demonstrates that we
can construct an acceptably simple trellis code with a relatively low signal shaping loss,
i.e., we construct near-capacity signal constellations on a trellis.

Combined with an appropriate outer code construction, we provide an example of a
code that surpasses the dicode (1 �D) channel's i.i.d. rate. Asymptotic analysis based
on density evolution shows that our code performs within 0.2dB of the channel capacity
lower bound and within 0.7dB away from the channel capacity upper bound.

2 An information rate optimizing algorithm

Let r represent the target code rate for the code we want to design. Our strategy assumes
an inner code with rate rin and an outer code with rate rout. Obviously, we must have
rin � rout = r. Further, we assume that the outputs of the outer code are equally likely
i.i.d. binary random variables. In a strict sense, this assumption cannot be satis�ed
with any implementable code. However, for turbo codes with large interleaver sizes or
for randomly generated LDPC codes with large block lengths, the neighboring bits will
appear very nearly independent. Hence this assumption is suitable as a design heuristic
for these codes. We focus now on the inner code.

The main tool used for the construction of the inner code is an iterative algorithm
for optimizing the information rates of Markov processes over noisy channels [4]. The
algorithm can be represented as an expectation-maximization procedure, where the ex-
pectation step is estimated using the sum-product (BCJR, Baum-Welch) algorithm [14]
and the maximization step is computable in closed form. No proof is known to show that
the algorithm achieves the maximal information rate of the Markov process. However,
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Algorithm 1 Iterative optimization of Markov chain transition probabilities.

Initialization Pick an arbitrary distribution P
(`)
ij that satis�es the following two constraints: 1) 0 �

P
(`)
ij � 1 if the process can be taken from state i to state j via branch `; otherwise P

(`)
ij = 0 and

2) for any i, require that
P
j;`

P
(`)
ij = 1.

Repeat until convergence

1. For � large, generate � noiseless trellis outputs according to the transition probabilities P
(`)
ij

and pass them through the noisy channel to get y.

2. Run the forward-backward sum-product (Baum-Welch, BCJR) algorithm and compute T̂
(`)
ij

according to (3).

3. Compute the estimate of the noisy adjacency matrix

Âij =

(
2
P

` T̂
(`)
ij if states i and j are connected

0 otherwise
,

and �nd its maximal eigenvalue Ŵmax and the corresponding eigenvector
h
b̂1; b̂2; � � � ; b̂M

iT
.

4. Compute the new transition probabilities as P
(`)
ij =

b̂j

b̂i
�
2T̂

(`)
ij

Ŵmax

.

end

Table 1: Iterative optimization of Markov chain transition probabilities.

(See [4] for the relation between this quantity and the information rate.)
We use Algorithm 1 (in Table 1) to optimize the transition probabilities to achieve

a high information rate. After many iterations, Algorithm 1 typically settles to a
�xed point and we obtain the optimized transition probabilities P

(`)
ij . Using these op-

timized transition probabilities P
(`)
ij , we estimate the optimized information rate as

CL =
P
i;j;`

�iP
(`)
ij

�
log2

1

P
(`)
ij

+ T̂
(`)
ij

�
. See [4] for a derivation. The index L in CL denotes

that the computed rate is a lower bound on the channel capacity.

3 Choosing the inner code rate

In this section we argue that there should be an upper bound on the inner code rate
rin, given our construction strategy. An obvious lower bound is rin � r, where r is the
target code rate. We argue that we should have rin < 1, for the following reason. By
Proposition 1 in [8], when rin = 1, the maximal achievable rate, or threshold, of an outer
LDPC code is the i.i.d. rate of the channel. But we desire to design an outer LDPC
code that surpasses the i.i.d. rate of the channel. We therefore need rin < 1. We next
formulate a rule that further tightens the upper bound on rin.

The upper bound that we advocate here is a design principle that eliminates the
possibility that two paths of the inner trellis code start and end at the same state and
correspond to two di�erent input sequences, which would present ambiguities for de-
coding. We assume that the inner code is a trellis code with K states that maps an
input symbol k-tuple into a noiseless channel output n-tuple. Thus the inner code rate
is rin = k=n. We form the n-th order extension of the channel trellis (e.g., Figure 2).
We apply Algorithm 1 to the n-th order extension of the trellis to �nd the optimized



transition probabilities P
(`)
ij . With these probabilities determined, we require that the

inner code rate be

r � rin �
1

n
min
i;j;`

"
log2

1

P
(`)
ij

#
; (4)

where the minimum is taken over all branches of the n-th order channel trellis extension.
The upper bound in rule (4) is equivalent to 2�k � maxi;j;` P

(`)
ij . To see the reasoning

behind this rule, we will assume that it does not hold, i.e., we will assume that Pmax =
maxi;j;` P

(`)
ij > 2�k. Since the trellis code is a mapping from binary k-tuples onto noiseless

channel output n-tuples, each state of the K trellis code states will have 2k branches
leaving the state. Since we assume i.i.d. inputs to the the trellis encoder, the conditional
probability of each branch is 2�k. The goal of our trellis code design is to construct a
trellis code such that the frequencies of branch occurrences match as closely as possible
the probabilities of branch occurrences of the optimal n-th order channel trellis extension
as computed by Algorithm 1. That is, if a branch occurs with conditional probability
P

(`)
ij in the n-th order trellis extension, the occurrence frequency of the same branch in

the trellis code should be as close as possible to P
(`)
ij . If Pmax > 2�k, then in our designed

trellis code two branches from a trellis code state may be necessary to match a transition
in the n-th order channel trellis extension. That is, two branches of the trellis code would
have the same starting state and carry the same noiseless channel output n-tuple, but
have di�erent input k-tuples. This setup has the potential to violate unique decodability,
for example in the case where both of these branches also end in the same state of the
trellis decoder. Obeying rule (4) provides a guarantee that this scenario will be avoided.

In order to keep the complexity of the encoder and decoder small, we seek the smallest
possible integers k and n for which the inner code rate rin = k=n satis�es (4). Note that
there is a tradeo� here; larger k and n allow for better but more complex trellis codes. It
is not clear whether there exist integers k and n that satisfy (4) for any channel. However,
for several channels that we tried with r = 0:5, condition (4) was easily satis�ed with
small integers k and n.

We give an example on the 2-state representation of the dicode (1�D) channel. The
channel noise is assumed to be Gaussian and white with variance �2. The target code
rate was chosen to be r = 0:5. For this target code rate, condition (4) is satis�ed with
k = 2 and n = 3. The value of the signal-to-noise ratio (SNR) for which the n-th order
trellis information rate CL equals r = 0:5 is 10 log10 (2=�

2) = 0:35dB. The values of the
obtained transition probabilities are given in Table 2; they are the transition probabilities
for which the optimized information rate CL equals r = 0:5 (for another target rate r,
the numbers k and n and the transition probabilities would take di�erent values).

4 Integer approximations of transition probabilities

Our desire is to design a trellis code that maps k input bits into n noiseless channel output
symbols. We also desire that the state occurrence probabilities and the conditional branch
occurrence probabilities in the trellis code match those computed by Algorithm 1 for the
n-th order channel trellis extension (i.e., we want them to match �i and P

(`)
ij ). To keep

the complexity of the trellis code in check, we also impose the constraint that the number
of states in the trellis code be K, where K is a predetermined integer.



start end branch channel noiseless transition integer integer
state state # input channel probability approximations approximation

n-tuple output k = 2, K = 10 probabilities
n-tuple k1 = 5, k2 = 5

1 1 1 0,0,0 0, 0, 0 P
(1)
11 = 0:005 n

(1)
11 = 0 n

(1)
11 =

�
k1 � 2k

�
= 0:00

1 1 2 1,0,0 -2, 2, 0 P
(2)
11 = 0:146 n

(2)
11 = 3 n

(2)
11 =

�
k1 � 2k

�
= 0:15

1 1 3 0,1,0 0, -2, 2 P
(3)
11 = 0:146 n

(3)
11 = 3 n

(3)
11 =

�
k1 � 2k

�
= 0:15

1 1 4 1,1,0 -2, 0, 2 P
(4)
11 = 0:195 n

(4)
11 = 4 n

(4)
11 =

�
k1 � 2k

�
= 0:20

1 2 1 0,0,1 0, 0, -2 P
(1)
12 = 0:066 n

(1)
12 = 1 n

(1)
12 =

�
k1 � 2k

�
= 0:05

1 2 2 1,0,1 -2, 2, -2 P
(2)
12 = 0:231 n

(2)
12 = 5 n

(2)
12 =

�
k1 � 2k

�
= 0:25

1 2 3 0,1,1 0, -2, 0 P
(3)
12 = 0:145 n

(3)
12 = 3 n

(3)
12 =

�
k1 � 2k

�
= 0:15

1 2 4 1,1,1 -2, 0, 0 P
(3)
12 = 0:066 n

(4)
12 = 1 n

(4)
12 =

�
k1 � 2k

�
= 0:05

2 1 1 0,0,0 2, 0, 0 P
(1)
21 = 0:066 n

(1)
21 = 1 n

(1)
21 =

�
k2 � 2k

�
= 0:05

2 1 2 1,0,0 0, 2, 0 P
(2)
21 = 0:145 n

(2)
21 = 3 n

(2)
21 =

�
k2 � 2k

�
= 0:15

2 1 3 0,1,0 2, -2, 2 P
(3)
21 = 0:231 n

(3)
21 = 5 n

(3)
21 =

�
k2 � 2k

�
= 0:25

2 1 4 1,1,0 0, 0, 2 P
(4)
21 = 0:066 n

(4)
21 = 1 n

(4)
21 =

�
k2 � 2k

�
= 0:05

2 2 1 0,0,1 2, 0, -2 P
(1)
22 = 0:195 n

(1)
22 = 4 n

(1)
22 =

�
k2 � 2k

�
= 0:20

2 2 2 1,0,1 0, 2, -2 P
(2)
22 = 0:146 n

(1)
22 = 3 n

(2)
22 =

�
k2 � 2k

�
= 0:15

2 2 3 0,1,1 2, -2, 0 P
(3)
22 = 0:146 n

(3)
22 = 3 n

(3)
22 =

�
k2 � 2k

�
= 0:15

2 2 4 1,1,1 0, 0, 0 P
(3)
22 = 0:066 n

(4)
22 = 0 n

(4)
22 =

�
k2 � 2k

�
= 0:05

Table 2: Optimized transition probabilities for the 3-rd order extension of the dicode channel (1�D

channel) trellis, and good integer approximations.

Assume that the n-th order extension of the channel trellis has M states. We desire
to �nd M integers k1; : : : ; kM , such that

PM
i=1 ki = K and that the fractions ki=K are

as close as possible to the state probabilities �i. Thus state i of the n-th order extension
of the channel trellis is replaced by ki states in the trellis code.

Consider now state i in the n-th order extension of the channel trellis. There is
a total of 2n branches leaving this state, with transition probabilities P

(`)
ij that satisfyP

j;` P
(`)
ij = 1. State i will be replaced by ki states in the trellis code. The group of ki

states that replace state i must have a total of ki � 2
k branches exiting the group, since

the code maps input bit k-tuples to noiseless channel output n-tuples. For each state i
of the n-th order channel trellis extension, we desire to �nd 2n integers n

(`)
ij , such thatP

j;` n
(`)
ij = ki � 2

k and that the fractions n
(`)
ij =

�
ki � 2

k
�
are as close as possible to the

transition probabilities P (`)
ij .

To �nd the integers ki and n
(`)
ij , we must have an optimization criterion. Here we

choose to minimize the Kullback-Leibler distance between two Markov processes: the
�rst process has state probabilities ki=K and transition probabilities n

(`)
ij =

�
ki � 2

k
�
, while

the second process has state probabilities �i and transition probabilities P
(`)
ij . That is,

we desire to �nd the set of non-negative integers
n
ki; n

(`)
ij

o
such that

n
ki; n

(`)
ij

o
= arg minn

ki;n
(`)
ij

o
X
i;j;`

ki
K
�
n
(`)
ij

ki � 2k
� log2

n
(`)
ij

ki � 2k

P
(`)
ij

; (5)



where the minimum in (5) is taken under the constraints

MX
i=1

ki = K and
X
j;`

n(`)
ij = ki � 2

k: (6)

The objective function in (5) is not necessarily the optimal one to minimize for �nite
K. One could also choose a di�erent objective function, such as the mean squared error.
When K ! 1, a good objective function should yield solutions that asymptotically
approach ki=K ! �i and n

(`)
ij =

�
ki � 2

k
�
! P

(`)
ij . The Kullback-Leibler objective function

in (5) certainly exhibits this asymptotic behavior (as does the mean squared error).
The integer optimization in (5) can be solved either by integer programming tech-

niques or in the case of the dicode channel here by a simple greedy algorithm. We
optimized the integers when the channel is the dicode (1 � D) channel, the trellis code
rate is rin = k=n = 2=3, and the chosen number of trellis code states is K = 10. The

optimal values are k1 = k2 = 5, and the values n(`)
ij are given in Table 2.

5 Permutations increase the trellis code capacity

The integer optimization from the previous section gives us the optimal number of
branches of each type to use in the formation of the trellis code. For example, by reading
the integers in Table 2, we conclude that 4 branches carrying the noiseless output n-tuple
[�2; 0; 2] should be used in the trellis code. However, we still do not know how to connect
these branches to the states of the trellis code. In fact, there are many possible ways of
creating a trellis code with the integer assignment in Table 2. The question arises as to
which connection assignment is the best.

Our goal is to design a trellis code whose trellis code capacity CT is maximized.
The maximum possible trellis code capacity is the rate CL computed by Algorithm 1
(although CT will actually be lower than CL because of the integer approximations). For
any trellis code concatenated to a �nite-state machine channel, the trellis code capacity
CT can be determined by the Arnold-Loeliger Monte-Carlo method [2]. For the dicode
(1 � D) channel example in Table 2, the maximal trellis code capacity of k=n = 2=3 is
achievable if the signal-to-noise ratio (SNR) approaches in�nity. However, recall that our
speci�c goal in designing this inner code is to �nd a trellis with capacity close to r = 0:5
at SNR = 0:35dB (which is the SNR at which the n-th order channel trellis extension
rate CL reaches rate 0:5; see Figure 3 in Section 6 for further clari�cation). It is not clear
which connection of branches delivers the best trellis for this situation.

There is no known solution to this problem. However, a random search over all
branch connection assignments (which we call permutations) typically delivers results
that are acceptable. We simply pick a random assignment that has the determined
integer coeÆcients ki and n

(`)
ij and compute the trellis code capacity CT of the resulting

trellis code using the Arnold-Loeliger method [2] with i.i.d. input k-tuples. If the trellis
code capacity CT is close to the desired code rate CL (at the point where CL = r), we stop;
otherwise, we continue the random search. To avoid creating a problem for the decoder,
we ensure that two branches leaving the same state never carry the same noiseless channel
output n-tuple. This random search strategy delivered the trellis code given in Table 3.
The trellis code in Table 3 has K = 10 states, and the integer occurrences of branches
match the values n

(`)
ij in Table 2.

The trellis code capacity of the trellis code in Table 3 is plotted in Figure 3 - curve CT .
Also plotted in Figure 3 are: CL - the lower bound on the channel capacity (computed



start input output end noiseless
state k-tuple n-tuple state channel

of bits of bits output
n-tuple

1 0,0 0,1,0 1 0, -2, 2
1 0,1 1,0,0 5 -2, 2, 0
1 1,0 0,0,1 6 0, 0, -2
1 1,1 1,0,1 9 -2, 2, -2
2 0,0 1,1,0 2 -2, 0, 2
2 0,1 1,0,0 4 -2, 2, 0
2 1,0 0,1,1 9 0, -2, 0
2 1,1 1,0,1 8 -2, 2, -2
3 0,0 1,1,0 3 -2, 0, 2
3 0,1 1,0,0 2 -2, 2, 0
3 1,0 0,1,1 10 0, -2, 0
3 1,1 1,0,1 7 -2, 2, -2
4 0,0 0,1,0 4 0, -2, 2
4 0,1 1,1,0 1 -2, 0, 2
4 1,0 1,1,1 7 -2, 0, 0
4 1,1 1,0,1 6 -2, 2, -2
5 0,0 0,1,0 3 0, -2, 2
5 0,1 1,1,0 5 -2, 0, 2
5 1,0 0,1,1 8 0, -2, 0
5 1,1 1,0,1 10 -2, 2, -2

start input output end noiseless
state k-tuple n-tuple state channel

of bits of bits output
n-tuple

6 0,0 0,1,0 1 2, -2, 2
6 0,1 1,0,0 3 0, 2, 0
6 1,0 0,0,1 6 2, 0, -2
6 1,1 1,0,1 8 0, 2, -2
7 0,0 0,1,0 5 2, -2, 2
7 0,1 0,0,0 4 2, 0, 0
7 1,0 0,0,1 10 2, 0, -2
7 1,1 1,0,1 7 0, 2, -2
8 0,0 0,1,0 4 2, -2, 2
8 0,1 1,0,0 1 0, 2, 0
8 1,0 0,1,1 9 2, -2, 0
8 1,1 0,0,1 8 2, 0, -2
9 0,0 0,1,0 3 2, -2, 2
9 0,1 1,0,0 2 0, 2, 0
9 1,0 0,1,1 7 2, -2, 0
9 1,1 0,0,1 9 2, 0, -2
10 0,0 0,1,0 2 2, -2, 2
10 0,1 1,1,0 5 0, 0, 2
10 1,0 0,1,1 6 2, -2, 0
10 1,1 1,0,1 10 0, 2, -2

Table 3: A 10-state trellis code for the dicode (1 � D) channel, obtained by randomly searching for
the permutation that has the largest trellis capacity (the trellis capacity of this trellis code is plotted
in Figure 2). Note that the random permutations preserve the integers in Table 2. Consequently, the

integer occurrences of the noiseless channel output n-tuples match the values n
(`)
ij in Table 2.

by Algorithm 1 on the 3rd order extension of the channel trellis), CU - the Vontobel-
Arnold upper bound on the channel capacity [7], and C0 - the i.i.d. rate of the dicode
channel. Notice that at the target SNR of 0:35dB, the trellis code capacity CT is only
0.05dB away from the bound CL in the region r = 1=2. The bound CL can be further
increased by about 0:2dB by taking channel trellis extensions with more states and larger
n. Correspondingly, the trellis code capacity CT can also be increased by about 0:2dB
by increasing k and n to be larger than the minimal values that satisfy condition (4)
and by increasing the number of states K in the trellis code. The price paid is a higher
complexity of the trellis code encoder/decoder.

The signi�cance of the trellis code capacity CT is two-fold. First, if the trellis code is
designed properly, the trellis code capacity CT can be higher than the channel i.i.d. rate
C0 in the region of interest (here, the region of interest was around r = 0:5), as seen
in Figure 3. Second, the trellis code capacity CT can be achieved by a random linear
outer code (see [8], Theorem 3), and it is an upper bound for the thresholds of random
LDPC coset codes (see [8], Proposition 1). Approaching CT arbitrarily closely with an
outer LDPC code requires optimizing the edge degree distributions [16, 17]. This task
lies beyond the scope of this paper, but the threshold of an optimized LDPC code is
plotted in Figure 3 to demonstrate the feasibility of the design.

6 Code construction examples

Figure 3 shows the trellis code capacity curve (CT ) for the inner trellis code with rate
rin = 2=3 (Table 3) constructed for the dicode (1�D) channel and a target rate r = 0:5.
The point marked by `o' shows the position of a the threshold for an optimized outer
irregular LDPC code with rate rout = 0:75 designed to approach the trellis code capacity
CT at rate r = rin �rout = 0:5. The design of this outer LDPC code falls beyond the scope
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Figure 3: Shown are upper (CU ) and lower
(CL) bounds on the channel capacity of the di-
code (1�D) channel. Also shown are the chan-
nel's i.i.d. information rate (C0) and the trellis
code capacity CT ) of the trellis code in Table 3.
The point marked by `o' shows the threshold
location of an optimized outer irregular LDPC
code concatenated onto the inner trellis code of
Table 3.

−8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

In
fo

rm
at

io
n 

R
at

e 
(b

it/
ch

an
ne

l u
se

)

C
L
 (using Algorithm 1)

C
T
 (tellis code capacity)

C
0
 (channel i.i.d. rate)

0.5 1 1.5

r=1/2  

r
in

=2/3 

r=1/2 

C
L
 

C
T

C
0
 

Figure 4: Shown is a tight lower bound (CL) on
the channel capacity of the 1�D+0:8D2 chan-
nel, the channel i.i.d. information rate (C0) and
the trellis code capacity (CT ) of a constructed
trellis code with 12 states. Though we did not
construct an outer LDPC code for this channel,
we conjecture that a properly optimized LDPC
code could have a threshold in the gap between
C0 and CT .

of this paper. We just note that the code consists of two constituent irregular LDPC
codes (because k = 2). Note that the code threshold is well above the i.i.d. information
rate, but below the trellis code capacity CT as predicted by Proposition 1 in [8]. This
demonstrates that the trellis code design method proposed in this paper can indeed be
used to construct codes that perform above the i.i.d. information rate of partial response
channels (and perhaps ultimately reach the capacity by constructing more complex trellis
codes and matching outer LDPC codes to them).

Figure 4 shows the curves for a similarly designed trellis code for the partial response
channel with the channel response polynomial G(D) = 1 � D + 0:8D2. This channel
(unlike the 1�D dicode channel) does not have a spectral null, showing that the trellis
code construction method applies equally well to channels with and without spectral
nulls. Though we did not construct an outer LDPC code for the inner trellis code of
Figure 4, we conjecture that a properly optimized LDPC code could be constructed to
have the threshold in the gap between C0 and CT .

7 Conclusion

We have proposed a strategy for code design for �nite-input-alphabet channels with inter-
symbol interference memory. The strategy consists of splitting the capacity approaching
code into an inner trellis code and an outer block code. The main contribution of this
paper is a novel method for constructing inner trellis codes. We construct the inner trellis
code such that its trellis code capacity CT matches the channel capacity (or a close lower
bound) at the design rate r of interest. The main tool used for the trellis code construc-
tion is an iterative Monte Carlo algorithm for computing trellis transition probabilities.
We disclosed a trellis code for the dicode (1�D) channel whose trellis code capacity CT

surpasses the channel i.i.d. information rate C0 by 0.42dB. We also demonstrated that
with a properly optimized irregular LDPC code we can achieve within 0.18dB of the code
capacity CT at rate r = 0:5. (Degree coeÆcient distributions and the methodology for
�nding them will be the subject of a future paper.) Although we cannot compute the



channel capacity exactly, we can guarantee that this code performs within 0.7dB of the
channel capacity since its noise tolerance threshold is about 0.7dB away from the tightest
known upper bound on the channel capacity.
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