
Practical Loss-Resilient Codes

Michael G. Luby� Michael Mitzenmachery M. Amin Shokrollahiz

Daniel A. Spielmanx Volker Stemann{

Abstract

We present randomized constructions of linear-time en-
codable and decodable codes that can transmit over lossy
channels at rates extremely close to capacity. The encod-
ing and decoding algorithms for these codes have fast and
simple software implementations. Partial implementations
of our algorithms are faster by orders of magnitude than the
best software implementations of any previous algorithm for
this problem. We expect these codes will be extremely useful
for applications such as real-time audio and video transmis-
sion over the Internet, where lossy channels are common and
fast decoding is a requirement.

Despite the simplicity of the algorithms, their design and
analysis are mathematically intricate. The design requires
the careful choice of a random irregular bipartite graph,
where the structure of the irregular graph is extremely im-
portant. We model the progress of the decoding algorithm
by a set of differential equations. The solution to these equa-
tions can then be expressed as polynomials in one variable

�Digital Equipment Corporation, Systems Research Center, Palo Alto,
CA, and Computer Science Division, University of California at Berkeley.
A substantial portion of this research done while at the International Com-
puter Science Institute. Research supported in part by National Science
Foundation operating grant NCR-9416101, and United States-Israel Bina-
tional Science Foundation grant No. 92-00226.

yDigital Equipment Corporation, Systems Research Center, Palo Alto,
CA. A substantial portion of this research done while at the Computer
Science Department, UC Berkeley, under the National Science Foundation
grant No. CCR-9505448.

z International Computer Science Institute Berkeley, and Institut f¨ur In-
formatik der Universit¨at Bonn, Germany. Research supported by a Habilita-
tionsstipendium of the Deutsche Forschungsgemeinschaft, Grant Sh 57/1–1.

xDepartment of Mathematics, M.I.T. Supported by an NSF mathematical
sciences postdoc. A substantial portion of this research done while visiting
U.C. Berkeley.

{Research done while at the International Computer Science Institute.

with coefficients determined by the graph structure. Based
on these polynomials, we design a graph structure that guar-
antees successful decoding with high probability.

1 Introduction

Studies show that the Internet exhibits packet loss, and
the measurements in [10] show that the situation has become
worse over the past few years. A standard solution to this
problem is to request retransmission of data that is not re-
ceived. When some of this retransmission is lost, another
request is made, and so on. In some applications, this intro-
duces technical difficulties. For real-time transmission this
solution can lead to unacceptable delays caused by several
rounds of communication between sender and receiver. For
a multicast protocol with one sender and many receivers, dif-
ferent sets of receivers can lose different sets of packets, and
this solution can add significant overhead to the protocol.

An alternative solution, often calledforward error-
correction in the networking literature, is sometimes desir-
able. Consider an application that sends a real-time stream
of data symbols that is partitioned and transmitted in logical
units of blocks.1 Suppose the network experiences transient
and unpredictable losses of at most ap fraction of symbols
out of each block. The following insurance policy can be
used to tradeoff the effects of such uncontrollable losses on
the receiver for controllable degradation in quality. Letn be
the block length. Instead of sending blocks ofn data sym-
bols each, place(1 � p)n data symbols in each block, by
either selecting the most important parts from the original
data stream and omitting the remainder, or by generating a
slightly lower quality stream at a(1�p) fraction of the orig-
inal rate. Fill out the block to its original length ofn with
pn redundant (check) symbols. This scheme provides opti-
mal loss protection if the(1 � p)n symbols in the message
can all be recovered from any set of(1� p)n received sym-

1An example of this is an MPEG stream, where agroup of pictures can
constitute such a block, and where each symbol corresponds to the contents
of one packet in the block. The latency incurred by the application is pro-
portional to the time it takes between when the first and last packet of the
block is sent, plus the one-way travel time through the network.

bols from the block. Such a scheme can be used as the ba-
sic building block for the more robust and general protection
scheme described in [1].

To demonstrate the benefits of forward error-correction in
a simplified setting, consider the Internet loss measurements
performed by [14] involving a multicast by one sender to a
number of geographically distributed receivers. In one typi-
cal transmission to eleven receivers for a period of an hour,
the average packet loss rate per receiver was 9.3%, yet 46.5%
of the packets were lost by at least one of the receivers. To
simplify the example, suppose that the maximum loss rate
per block of 1000 packets for any receiver is 200.2 Then, the
sender could use forward error-correction by adding 200 re-
dundant packets to each 800 data packets to form blocks con-
sisting of 100 packets each. This approach sends 25% more
packets total than are in the original data stream, whereas
a naive scheme where the sender retransmits lost packets
would send about 50% more.

It is a challenge to design fast enough encoding and de-
coding algorithms to make forward error-correction feasible
in real-time for high bandwidth applications. In this paper,
we present codes that can be encoded and decoded in linear
time while providing near optimal loss protection. Moreover,
these linear time algorithms can be implemented to run very
quickly in software.

Our results hold whether each symbol is a single bit or a
packet of many bits. We assume that the receiver knows the
position of each received symbol within the stream of all en-
coding symbols. This is appropriate for the Internet, where
packets are indexed. We adopt as our model of losses the
erasure channel, introduced by Elias [6], in which each en-
coding symbol is lost with a fixed constant probabilityp in
transit independent of all the other symbols. This assump-
tion is not appropriate for the Internet, where losses can be
highly correlated and bursty. However, losses on the Inter-
net in general are not sensitive to the actual contents of each
packet, and thus if we place the encoding into the packets
in a random order then the independent loss assumption is
valid.

Elias [6] showed that the capacity of the erasure chan-
nel is 1 � p and that a random linear code can be used to
transmit over the erasure channel at any rateR < 1�p. Fur-
thermore, a standard linear MDS code can be used to con-
vert a message of lengthRn into a transmission of lengthn
from which the message can be recovered from any portion
of length greater thanRn. Moreover, general linear codes
have quadratic time encoding algorithms and cubic time de-
coding algorithms. One cannot hope for better information
recovery, but faster encoding and decoding times are desir-
able, especially for real-time applications.

Reed-Solomon codes can be used to transmit at the ca-
pacity of the erasure channel withn logn encoding time

2This is twice the average loss rate, but due to the bursty nature of losses
in the Internet it is still likely that the maximum loss rate per block exceeds
20%. One can use the results of [1] to simultaneouslyprotect against various
levels of loss while still keeping the overall redundancy modest.

and quadratic decoding time. These codes have recently
been customized to compensate for Internet packet loss in
real-time transmission of moderate-quality video [1]. Even
this optimized implementation required the use of dedicated
workstations. Transmission of significantly higher quality
video requires faster coding algorithms.

In theory, it is possible to decode Reed-Solomon codes
in time O(n log2 n log logn) (see, [4, Chapter 11.7] and
[9, p. 369]). However, for small values ofn, quadratic
time algorithms are faster than the fast algorithms for the
Reed-Solomon based codes, and for larger values ofn the
O(log2 n log logn) multiplicative overhead in the running
time of the fast algorithms (with a moderate sized constant
hidden by the big-Oh notation) is large, i.e., in the hundreds
or larger.

We obtain very fast linear-time algorithms by transmitting
just below channel capacity. We produce rateR = 1�p(1+
�) codes along with decoding algorithms that recover from
the random loss of ap fraction of the transmitted symbols in
time proportional ton ln(1=�) with high probability, where
n is the length of the encoding. They can also be encoded
in time proportional ton ln(1=�). In Section 7, we do this
for all � > 0. The fastest previously known encoding and
decoding algorithms [2] with such a performance guarantee
have run times proportional ton ln(1=�)=�. (See also [3] for
related work.)

The overall structure of our codes are related to codes in-
troduced in [13] for error-correction. We explain the gen-
eral construction along with the encoding and decoding al-
gorithms in Section 2.

Our encoding and decoding algorithms are almost sym-
metrical. Both are extremely simple, computing exactly one
exclusive-or operation for each edge in a randomly chosen
bipartite graph. As in many similar applications, the graph
is chosen to be sparse, which immediately implies that the
encoding and decoding algorithms are fast. Unlike many
similar applications, the graph is not regular; instead it is
quite irregular with a carefully chosen degree sequence. We
describe the decoding algorithm as a process on the graph in
Section 3. Our main tool is a model that characterizes almost
exactly the performance of the decoding algorithm as a func-
tion of the degree sequence of the graph. In Section 4, we use
this tool to model the progress of the decoding algorithm by
a set of differential equations. As shown in Lemma 1, the
solution to these equations can then be expressed as poly-
nomials in one variable with coefficients determined by the
degree sequence. The positivity of one of these polynomials
on the interval(0; 1] with respect to a parameter� guaran-
tees that, with high probability, the decoding algorithm can
recover almost all the message symbols from a loss of up
to a � fraction of the encoding symbols. The complete suc-
cess of the decoding algorithm can then be demonstrated by
combinatorial arguments such as Lemma 3.

Our analytical tools allow us to almost exactly charac-
terize the performance of the decoding algorithm for any

given degree sequence. Using these tools, we analyze reg-
ular graphs in Section 6, and conclude that they cannot yield
codes that are close to optimal. Hence irregular graphs are a
necessary component of our design.

Not only do our tools allow us to analyze a given degree
sequence, but they also help us todesign good irregular de-
gree sequences. In Section 7 we describe, given a parameter
� > 0, a degree sequence for which the decoding is success-
ful with high probability for a loss fraction� that is within
� of 1 � R. Although these graphs are irregular, with some
nodes of degree1=�, the average node degree is onlyln(1=�).
This is the main result of the paper, i.e., a code with encoding
and decoding times proportional toln(1=�) that can recover
from a loss fraction that is within� of optimal.

In Section 9, we show how linear programming tech-
niques can be used to find good degree sequences for the
nodes on the right given a degree sequence for the left nodes.
We demonstrate these techniques by finding the right degree
sequences that are close to optimal for a series of example
left degree sequences.

1.1 Terminology

Theblock length of a code is the number of symbols in the
transmission. In asystematic code, the transmitted symbols
can be divided intomessage symbols andcheck symbols. We
take the symbols to be bits, and writea � b to denote the
exclusive-or of bitsa andb. It is easy to extend our construc-
tions to work with symbols that are packets of bits: where
we would take the� of two bits, just take the bit-wise�
of two packets. The message symbols can be chosen freely,
and the check symbols are computed from the message sym-
bols. Therate of a code is the ratio of the number of message
symbols to the block length. In a code of block lengthn and
rateR, the encoder takes as inputRn message symbols and
producesn symbols to be transmitted. In all of our construc-
tions, we assume that the symbols are bits.

2 The Codes

In this section, we explain the overall construction, as
well as the encoding and decoding algorithms. We begin
by defining a codeC(B) with n message bits and�n check
bits, by associating these bits with a bipartite graphB. The
graphB hasn left nodes and�n right nodes, corresponding
to the message bits and the check bits, respectively.C(B) is
encoded by setting each check bit to be the� of its neighbor-
ing message bits inB (see Figure 1(a)). Thus, the encoding
time is proportional to the number of edges inB.

The main contribution of our work is the design and anal-
ysis of the bipartite graphB so that the repetition of the fol-
lowing simplistic decoding operation recovers all the miss-
ing message bits.

x2

x1

1c

neighbors
modulo 2 of its
computes the sum

1c
x2x +11c +

message
bits

(a) (b)

x

x

x2

3

n

c

c

c2

3

check
bits

βn

x1

Figure 1:(a) A graph defines a mapping from message bits
to check bits.
(b) Bitsx1, x2, andc1 are used to solve forx3.

Decoding Operation

Given the value of a check bit and all but one of
the message bits on which it depends,

set the missing message bit to be the � of the
check bit and its known message bits.

See Figure 1(b) for an example of this operation. The ad-
vantage of relying solely on this recovery operation is that
the total decoding time is (at most) proportional to the num-
ber of edges in the graph. Our main technical innovation is
in the design of sparse random graphs where repetition of
this operation is guaranteed to usually recover all the mes-
sage bits if at most(1� �)�n of the message bits have been
lost fromC(B).

To produce codes that can recover from losses regardless
of their location, we cascade codes of the formC(B): we
first useC(B) to produce�n check bits for the originaln
message bits, we then use a similar code to produce�2n
check bits for the�n check bits ofC(B), and so on (see
Figure 2). At the last level, we use a more conventional loss-
resilient code. Formally, we construct a sequence of codes
C(B1); : : : ; C(Bm) from a sequence of graphsB0; : : : ; Bm,
whereBi has�in left nodes and�i+1n right nodes. We se-
lectm so that�m+1n is roughly

p
n and we end the cascade

with a loss-resilient codeC of rate1� � with �m+1n mes-
sage bits for which we know how to recover from the random
loss of� fraction of its bits with high probability. We then
define the codeC(B0; B1; : : : ; Bm; C) to be a code withn
message bits and

m+1X
i=1

�in+ �m+2n=(1� �) = n�=(1� �)

check bits formed by usingC(B0) to produce�n check bits
for then message bits, usingC(Bi) to form�i+1n check bits

for the�in bits produced byC(Bi�1), and finally usingC
to produce an additionaln�m+2=(1 � �) check bits for the
�m+1n bits output byC(Bm). As C(B0; B1; : : : ; Bm; C)
hasn message bits andn�=(1��) check bits, it is a code of
rate1� �.

message
bits

x

x

x2

3

n
check
bits

x1

conventional
code

Figure 2: The code levels.

Assuming that the codeC can be encoded and decoded
in quadratic time3, the codeC(B0; : : : ; Bm; C) can be en-
coded and decoded in time linear inn. We begin by using
the decoding algorithm forC to recover losses that occur
within its corresponding bits. IfC recovers all the losses,
then the algorithm now knows all the check bits produced
by C(Bm), which it can then use to recover losses in the in-
puts toC(Bm). As the inputs to eachC(Bi) were the check
bits of C(Bi�1), we can work our way back up the recur-
sion until we use the check bits produced byC(B0) to re-
cover losses in the originaln message bits. If we can show
thatC can recover from the random loss of a�(1 � �) frac-
tion of its bits with high probability, and that eachC(B i)
can recover from the random loss of a�(1 � �) fraction of
its message bits with high probability, then we have shown
thatC(B0; B1; : : : ; Bm; C) is a rate1 � � code that can re-
cover from the random loss of a�(1 � �) fraction of its bits
with high probability. Thus, for the remainder of the paper,
we only concern ourselves with finding graphsB so that the
decoding algorithm can recover from a�(1 � �) fraction of
losses in the message bits ofC(B), given all of its check bits.

3 The Graph Process and Degree Sequences

We now relate the decoding process ofC(B) to a pro-
cess on a subgraph ofB, so that hereafter we can use this

3A good candidate for the codeC is the low-density parity-check [7, 12]
version of these codes: only send the messages that cause all the check
bits to be zero. These codes can be decoded in linear time and encoded in
quadratic time with miniscule constants. In the final version of this paper,
we show howC can be replaced with an even simpler codeC 0 that can be
encodedand decoded in linear time but that has a worse decodingguarantee.
UsingC0, we can end the cascade with roughly�n= ln lnn nodes instead
of
p
n for C.

simpler terminology when describing the process. This sub-
graph consists of all nodes on the left that were lost but have
not been decoded thus far, all the nodes on the right, and
all the edges between these nodes. Recall that the decod-
ing process requires finding a check bit on the right such
that only one adjacent message bit is missing; this adjacent
bit can then be recovered. In terms of the subgraph, this is
equivalent to finding a node of degree one on the right, and
removing it, its neighbor, and all edges adjacent to its neigh-
bor from the subgraph. We refer to this entire sequence of
events hereafter as one step of the decoding process. We re-
peat this step until there are no nodes of degree one available
on the right. The entire process is successful if it does not
halt until all nodes on the left are removed, or equivalently,
until all edges are removed.

The graphs that we use are chosen at random from care-
fully chosen degree sequence on sparse bipartite graphs. In
contrast with many applications of random graphs in com-
puter science, our graphs are not regular. Indeed, the analysis
in Section 6 shows that it is not possible to approach channel
capacity with regular graphs.

We refer to edges that are adjacent to a node of degree
i on the left (right) asedges of degree i on the left (right).
Each of our degree sequences is specified by a pair of vectors
(�1; : : : ; �m) and(�1; : : : ; �m) where�i is the initial frac-
tion of edges on the left of degreei and�j is the initial frac-
tion of edges on the right of degreej. Note that our graphs
are specified in terms of fractions ofedges, and notnodes, of
each degree; this form is more convenient for much of our
work. To choose an appropriate random bipartite graphB
withE edges,n nodes on the left, and�n nodes on the right,
we begin with a bipartite graphB 0 with E nodes on both the
left and right hand sides, with each node ofB0 represent-
ing an edge slot. Each node on the left hand side ofB0 is
associated with a node on the left side ofB, so that the dis-
tribution of degrees is given by(�1; : : : ; �m), and similarly
for the right. We then choose a random matching (i.e., a ran-
dom permutation) between the two sets ofE nodes onB0.
This induces a random bipartite graph onB (perhaps with
multi-edges) in the obvious manner with the desired degree
structure.

Note that, in the corresponding subgraph ofB 0 remaining
after each step, the matching remaining onB0 still corre-
sponds to a random permutation. Hence, conditioned on the
degree sequence of the remaining subgraph after each step,
the subgraph that remains is uniform over all subgraphs with
this degree sequence. The evolution of the degree sequence
is therefore a Markov process, a fact we make use of below.

In the next two sections, we develop techniques for the
analysis of the process for general degree sequences. After
using these techniques in Section 6 to analyze regular graphs,
we describe degree sequences that result in codes that ap-
proach the capacity of the erasure channel in Section 7.

4 Differential Equations Description

To analyze the behavior of the process on the subgraph of
B described in the previous section, we begin by establishing
a set of differential equations that describes its behavior in
the limiting case, as the block length goes to infinity. Alter-
natively, one may think of these equations as describing the
expected behavior of the associated random variables. Al-
though these differential equations provide the key insight
into the behavior of the decoding process, additional work is
required to justify the relationship between the limiting and
finite cases.

We begin with the initial random graphB, with n left
nodes and�n right nodes. Consider the two vectors(�i) and
(�i), where�i and�i are the fractions of edges of degreei on
the left and right, with respect to the total numberE of edges
in the original graph. The average node degree on the lefta`
initially satisfiesa�1` =

P
i �i=i, and similarly the average

node degree on the rightar initially satisfiesa�1r =
P

i �i=i.
We scale the passage of time so that each time unit of

length�t := 1
E corresponds to one step of the decoding

process. Let� be the fraction of losses in the message. Ini-
tially, just prior to time0, each node on the left is removed
with probability1 � � (because the corresponding message
bit is successfully received), and thus the initial subgraph of
B contains�n nodes on the left. If the process terminates
successfully, it runs until time�n=E = �=a`. We let`i(t)
andri(t) represent the fraction of edges (in terms ofE) of
degreei on the left and right, respectively, at timet. We
denote bye(t) the fraction of the edges remaining, that is,
e(t) =

P
i `i(t) =

P
i ri(t).

Recall that at each step, a random node of degree one on
the right is chosen, and the corresponding node on the left
and all of its adjacent edges are deleted. (If there is no such
node, the process necessarily stops.) The probability that
the edge adjacent to the node of degree one on the right has
degreei on the left is`i(t)=e(t), and in this case we losei
edges of degreei. This gives rise to the difference equation

Li(t +�t)� Li(t) = � i`i(t)
e(t)

for the expected change of thenumber of edgesLi(t) of de-
greei on the left. Noting that̀ i(t) = Li(t)=E = Li(t)�t,
we see that in the limit asE !1 the solution of this differ-
ence equation is described by that of the differential equation

d`i(t)

dt
= � i`i(t)

e(t)
: (1)

When we remove a node of degreei on the left, we re-
move the one edge of degree one from the right, along with
the i � 1 other edges adjacent to this node. Hence the ex-
pected number of other edges deleted isa(t) � 1, where
a(t) =

P
i`i(t)=e(t). The right endpoints of thesei � 1

other edges on the right hand side are randomly distributed.
If one of these edges is of degreej on the right, we losej

edges of degreej, and gainj � 1 edges of degreej � 1.
The probability that an edge has degreej on the right is just
rj(t)=e(t). For i > 1, then, the difference equation

Ri(t +�t)�Ri(t) = (ri+1(t)� ri(t))
i(a(t) � 1)

e(t)

describes the expected change of thenumber of edgesRi(t)
of degreei on the right. The corresponding differential equa-
tions for theri(t) are therefore

dri(t)

dt
= (ri+1(t)� ri(t))

i(a(t) � 1)

e(t)
: (2)

(We assume thatri(t) is defined for all positivei, and is0 for
sufficiently largei.) The casei = 1 plays a special role, as
we must take into account that at each step an edge of degree
one on the right is removed. Hence, the differential equation
for r1(t) is given as

dr1(t)

dt
= (r2(t) � r1(t))

(a(t) � 1)

e(t)
� 1 (3)

Our key interest is in the progression ofr1(t) at a function
of t. As long asr1(t) > 0, so that we have a node of degree
one on the right, the process continues; whenr1(t) = 0 the
process stops. Hence we would like forr1(t) > 0 until all
nodes on the left are deleted and the process terminates suc-
cessfully.

These differential equations are more easily solved by
definingx so thatdx=x = dt=e(t). The value ofx in terms
of t is thenx := exp(� R t0 d�=e(�)). By substitutingdx=x
for dt=e(t), equation (1) becomesd`i(x)=dx = �i`i(x)=x,
and integrating yields̀i(x) = cix

i. Note thatx = 1 for
t = 0, and`i(t = 0) = ��i. Hence,ci = ��i and

`i(x) = ��ix
i:

Since`i(x) goes to zero ast goes to�=a`, x runs over the
interval[1; 0).

Solving for theri(x) is more involved. The main goal is
to show thatr1(x) > 0 on (0; 1], so that the process does
not halt before completion. Details for solving for theri(x),
and in particular forr1(x), are given in Appendix A; the
proposition below presents the solution forr1(x). The result
is expressed using the degree sequence functions

�(x) =
X
i�1

�ix
i�1

and
�(x) =

X
i�1

�ix
i�1:

These degree sequence functions play an important role in
the remainder of our presentation.

Lemma 1 The solution r1(x) of the differential equation (3)
is given by

r1(x) = ��(x)
�
x� 1 + �

�
1� ��(x)

��
: (4)

From (4), we find that this requires the condition

�(1� ��(x)) > 1� x ; x 2 (0; 1]: (5)

This condition shall play a central role for the remainder
of our work.

5 Using the Differential Equations to Build
Codes

Recall that the differential equations describe the limiting
behavior of the process onB, as the block length goes to
infinity. From this one can derive that if (5) is violated, so
that �(1 � ��(x)) < 1 � x somewhere on(0; 1] then the
process fails for large block lengths with high probability.

Proving the process progresses almost to completion if (5)
is satisfied is possible by relating the differential equations to
the underlying random process (see, e.g., [8, 11]). Proving
the process runs to completion can be handled with a sepa-
rate combinatorial argument. In some cases, however, this
requires small modifications in the graph construction.

Lemma 2 Let B be a bipartite graph chosen at random with
edge-degrees specified by �(x) and �(x). Let � be fixed so
that

�(1 � ��(x)) > 1� x; for x 2 (0; 1]:

For all � > 0, if the message bits of C(B) are lost indepen-
dently with probability �, then the decoding algorithm ter-
minates with more than �n message bits not recovered with
exponentially small probability, as the block length grows
large.

The following combinatorial tail argument is useful in
showing that the process terminates successfully when there
are no nodes on the left of degree one or two. (Such argu-
ments are often required in similar situations; see, for exam-
ple, [5].)

Lemma 3 Let B be a bipartite graph chosen at random with
edge-degrees specified by �(x) and �(x), such that �(x) has
�1 = �2 = 0. Then there is some � > 0, such that with
probability 1 � o(1) (over the choice of B) if at most an �
fraction of the nodes on the left inB remain, then the process
terminates successfully.

Proof : [Sketch] Let S be any set of nodes on the left of
size at most�n. Let a be the average degree of these nodes.
If the number of nodes on the right that are neighbors ofS
is greater thanajSj=2, then one of these nodes has only one
neighbor injSj, and so the process can continue. Thus, we
only need to show that the initial graph is a good expander
on small sets. Since the degree of each node on the left is at
least three, standard proofs (see [12]) suffice to show that the
expansion condition holds with high probability for all sets

containing at most an� fraction of the left nodes, for some
� > 0.

Using Lemmas 2 and 3, we can show that the codes pre-
sented in Section 7 work with high probability. As our results
for asymptototically good general codes use graphs with de-
gree two nodes on the left, we extend the construction and
use more careful arguments to prove that the process com-
pletes, as described in Section 7.

6 Analysis of Regular Graphs

We demonstrate the techniques developed in the previous
section in a simple setting: we analyze the behavior of the
process on random regular graphs. Because random regu-
lar graphs have so often been used in similar situations, it is
natural to consider if they give rise to codes that are close
to optimal. They do not. The following lemma proves a
weak form of this behavior. We have explicitly solved for
the largest value of� which satisfies condition (5) for codes
based on regular graphs for several rate values. In every case,
there is some small degree value that achieves a maximum
value of � far from optimal, and the maximal achievable
value of� decreases as the degree increases thereafter.

Lemma 4 Let B be a bipartite regular graph chosen at ran-
dom, with all edges having left degree d and right degree
d=�, for d � 3. Then condition (5) holds only if

� � 4

1�

�
1

d� 1

� 1
(d=�)�1

!
;

and hence as d ! 1, the maximum acceptable loss rate
goes to 0.

Proof : We have that�(x) = xd�1, and�(x) = x(d=�)�1.
Hence our condition (5) on the acceptable loss rate� be-
comes �

1� �xd�1
�(d=�)�1

> 1� x

for x 2 (0; 1].
We plug in x = 1 � 1

d�1 . Using the fact that(1 �
1

d�1)
d�1 � 1

4 for d � 3 yields the requirement

�
1� �

4

�(d=�)�1

� 1

d� 1
:

This simplifies to the inequality in the statement of the
lemma.

It is easy to check that asd ! 1, the right hand side of
the above equation goes to 0, which concludes the lemma.

Hence, for any fixed�, there is somed which achieves
the maximum value of� possible using regular graphs, and
this � is far from optimal. For example, in the case where
� = 1=2, the best solution is to let the left nodes have degree
three and the right nodes have degree six. In this case the

code can handle any� fraction of losses on the left with high
probability as long as

�
1� �x2

�5 � 1� x

for x 2 (0; 1]. The inequality fails for� � 0:43. When
this one layer code is cascaded as described in Section 2 to a
code with rateR = 1=2, simple calculations show that being
able to incur a loss fraction of at most� = :43 in each layer
implies that the message cannot be recovered from a portion
of the encoding that is smaller than1:14 times the length of
the message, i.e., far from the optimal value of1:00. Simula-
tion runs of the code turn out to match this theory accurately,
demonstrating that these techniques provide a sharp analysis
of the actual behavior of the process.

7 Asymptotically Optimal Codes

In this section, we construct codes that transmit at rates
arbitrarily close to the capacity of the erasure channel. We
do this by finding an infinite sequence of solutions to the
differential equations of Section 4 in which� approachesp.

As the degree sequences we use have degree two nodes on
the left hand side, we cannot appeal to Lemma 3 to show that
they work with high probability. Hence our codes require
some additional structure.

LetB be a bipartite graph withn left nodes and�n right
nodes. We describe our choice for the left and right degree
sequences ofB that satisfy condition (5). Letd be a posi-
tive integer that is used to trade off the average degree with
how well the decoding process works, i.e., how close we can
make� to � = 1 � R and still have the process finish suc-
cessfully most of the time.

The left degree sequence is described by the following
truncated heavy tail distribution. LetH(d) =

Pd
i=1 1=i be

the harmonic sum truncated atd, and thusH(d) � ln(d).
Then, for alli = 2; : : : ; d+1, the fraction of edges of degree
i on the left is given by�i = 1=(H(d)(i� 1)). The average
left degreea` equalsH(d)(d+ 1)=d. Recall that we require
the average right degree,ar , to satisfyar = a`=�. The right
degree sequence is defined by the Poisson distribution with
meanar: for all i � 1 the fraction of edges of degreei on
the right equals

�i =
e���i�1

(i � 1)!
;

where� is chosen to guarantee that the average degree on the
right isar. In other words,� satisfies�e�=(e� � 1) = ar .

Note that we allow�i > 0 for all i � 1, and hence�(x)
is not truly a polynomial, but a power series. However, trun-
cating the power series�(x) at a sufficiently high term gives
a finite distribution of the edge degrees for which the next
lemma is still valid.

We show that when� = �=(1+1=d) in (5), the condition
is satisfied, i.e.,�(1���(x)) > 1�x on(0; 1], where�(x) =P

i �ix
i�1 and�(x) =

P
i �ix

i�1. Note that�(x) is the

expansion of� ln(1�x) truncated at thedth term, and scaled
so that�(1) = 1. Further,�(x) = e�(x�1).

Lemma 5 With the above choices for �(x) and �(x) we
have �(1 � ��(x)) > 1� x on (0; 1] if � � �=(1 + 1=d).

Proof : Recall that�(x) = e�(x�1), hence�(x) increases
monotonically inx. As a result, we have

�(1���(x)) > �(1+� ln(1�x)=H(d)) = (1�x)��=H(d):

Sincea` = H(d)(1 + 1=d) and ar = a`=�, we obtain
��=H(d) = (1 � e��)(1 + 1=d)�=� < �(1 + 1=d)=� � 1,
which shows that the right hand side of the above inequality
is larger than1� x on (0; 1].

A problem is that Lemma 3 does not apply to this system
because there are nodes of degree two on the left. Indeed,
simulations demonstrate that for these choices of�(x) and
�(x) a small number of nodes often do remain. To overcome
this problem, we make a small change in the structure of the
graphB. We split the�n right nodes ofB into two distinct
sets, the first set consisting of(��
)n nodes and the second
set consisting of
n nodes, where
 is a small constant to
be determined. The graphB is then formed by taking the
union of two graphs,B1 andB2. B1 is formed as described
up to this point between then left nodes and the first set of
(��
)n right nodes.B2 is formed between then left nodes
and the second set of
n right nodes, where each of then
left nodes has degree three and the3n edges are connected
randomly to the
n right nodes.

Lemma 6 Let B be the bipartite graph just described. Then,
with high probability, the process terminates successfully
when started on a subgraph of B induced by �n of the left
nodes and all �n of the right nodes, where � = �=(1+1=d).

Proof : [Sketch] In the analysis of the process, we may
think of B2 as being held in reserve to handle nodes not
already dealt with usingB1. Combining Lemma 5 and
Lemma 2, we can show that, for any constant� > 0, with
high probability at most�n nodes on the left remain after
the process runs onB1. The induced graph inB2 between
these remaining�n left nodes and the
n right nodes is then
a random bipartite graph such that all nodes on the left have
degree three. We choose
 to be larger than� by a small
constant factor so that with high probability the process ter-
minates successfully on this subgraph by Lemma 3; note that
the lemma applies since all nodes on the left have degree
three. By choosing� sufficiently small, we may make
 ar-
bitrarilysmall, and hence the decrease in the value of� below
that stated in Lemma 5 can be made arbitrarily small.

Note that the degree of each left node in this modified
construction ofB is at most three bigger than the average
degree of each left node in the construction ofB described
at the beginning of this section. We can use this observation
and the lemma above to immediately prove our main theo-
rem.

Theorem 1 For any R, any positive �, and sufficiently large
block length n, there is a loss-resilient code that, with high
probability, is able to recover from the random loss of a
(1 � R)(1 � �)-fraction of its bits in time proportional to
n ln(1=�).

Proof : [Sketch] Setd = 1=� to get a one level code with
the properties described in Lemma 6. Cascade versions of
these codes as described in Section 2 to get the entire code.
The proof follows since each level of the cascade fails to
recover all its message bits, given all of its check bits, with
small probability.

8 A Linear-Algebraic Interpretation

The�n check bits of the codeC(B) described in Section 2
can be computed by multiplying the vector ofn message bits
by the�n � n matrix,M (B), whose(i; j)-th entry is 1 if
there is an edge inB between left nodei and right nodej
and is 0 otherwise (the multiplication is over the field of two
elements). We choose our graphsB to be sparse, so that the
resulting matrixM (B) is sparse and the multiplication can
be performed quickly.

The efficiency of the decoding algorithm is related to the
ease with which one can perform Gaussian elimination on
submatrices ofM (B). If one knows all the check bits and all
but �n of the message bits, then it is possible to recover the
missing message bits if and only if the�n columns ofM (B)
indexed by the message bits have full rank. These bits can be
recovered by Gaussian elimination. In Section 7, we present
a distribution on graphsB so that these bits can be recovered
by a very simple brute-force Gaussian elimination: for any
� > 0, we present a distribution of graphsB so that almost
all subsets of�=(1+�) columns ofM (B) have full rank and
can be placed in lower-triangular form merely by permuting
the rows of the matrix. Moreover, the average number of 1s
per row inM (B) is n ln(1=�); so, the Gaussian elimination
can be performed in timeO(n ln(1=�)).

To contrast this with other constructions of loss-resilient
codes, observe that most sets of�n�1 columns of a random
�n � n matrix have full rank. In fact, the probability that
some�n � c columns fail to have full rank is exponentiall
small in c. However, we do not know of an algorithm that
solves the resulting elimination problem in less than the time
it takes to do a general matrix multiplication.

Ideally, we would use matrices in which every set of�n
columns have full rank; but, such matrices do not exist over
any constant-size field. However, if we let our field size grow
to n, classical matrices solve this problem. For example, all
subsets of�n columns of a�n� n Vandermonde matrix are
linearly independent.

9 Finding Degree Sequences using Linear
Programming

In this section we describe a heuristic approach that has
proven effective in practice to find a good right degree se-
quence given a specific left degree sequence. The method
uses linear programming and the differential equation analy-
sis of Section 4.

Recall that, from the differential equations, a necessary
condition for the process to complete is that�(1� ��(x)) >
1 � x on (0; 1]. We first describe a heuristic for determin-
ing for a given (finite) vector(�i) representing the left de-
gree sequence and a value for� whether there is an appropri-
ate (finite) vector(�i) representing the right degree sequence
satisfying this condition. We begin by choosing a setM of
positive integers which we want to contain the degrees on the
right hand side. To find appropriate�m, m 2M , we use the
condition given by Lemma 1 to generate linear constraints
that the�i must satisfy by considering different values ofx.
For example, by examining the condition atx = 0:5, we ob-
tain the constraint�(1 � ��(0:5)) > 0:5, which is linear in
the�i.

We generate constraints by choosing forx multiples of
1=N for some integerN . We also include the constraints
�m � 0 for all m 2 M . We then use linear programming
to determine if suitable�m exist that satisfy our derived con-
straints. Note that we have a choice for the function we wish
to optimize; one choice that works well is to minimize the
sum of�(1 � ��(x)) + x � 1 on the values ofx chosen to
generate the constraints. The best value for� for givenN is
found by binary search.

Given the solution from the linear programming problem,
we can check whether the�i computed satisfy the condition
�(1� ��(x)) > 1� x on (0; 1].

Due to our discretization, there are usually someconflict
subintervals in which the solution does not satisfy this in-
equality. Choosing large values for the tradeoff parameter
N results in smaller conflict intervals, although it requires
more time to solve the linear program. For this reason we
use small values ofN during the binary search phase. Once
a value for� is found, we use larger values ofN for that spe-
cific � to obtain small conflict intervals. In the last step we
get rid of the conflict intervals by appropriately decreasing
the value of�. This always works since�(1 � ��(x)) is a
decreasing function of�.

We ran the linear programming approach on left de-
gree sequences of the form3; 5; 9; : : :; 2i + 1 for codes
with rates1=2; 2=3; 3=4;4=5;9=10 and average left degrees
5:70; 6:82;8:01. Figure 3 shows for each code how much of
the encoding is sufficient to recover the entire message as a
fraction of the message length as the message length goes
to infinity. Since these graphs do not have nodes of degree
two on the left, Lemma 3 and Lemma 2 imply that with high
probability the corresponding codes recover the entire mes-
sage from the portion of the encoding indicated in the table,

provided the message length is large enough.

Average Rate
Degree 1=2 2=3 3=4 4=5 9=10
5.70 1.036 1.023 1.016 1.013 1.006
6.82 1.024 1.013 1.010 1.007 1.004
8.01 1.014 1.008 1.007 1.005 1.002

Figure 3: Close to optimal codes for different rates and aver-
age left degrees.

10 Conclusion

We have demonstrated a novel technique for the design
and analysis of loss-resilient codes based on random bipar-
tite graphs. Using differential equations derived from the un-
derlying random process, we have obtained approximations
of the behavior of this process that very closely match ac-
tual simulations. With these tools, we have designed codes
with simple and fast linear-time encoding and decoding al-
gorithms that can transmit over lossy channels at rates ex-
tremely close to capacity. Specifically, for any constant
� > 0 and all sufficiently long block lengthsn, we have
constructed codes of rateR with encoding and decoding al-
gorithms that run in time proportional ton ln(1=�) that can
recover from almost all patterns of at most(1 � R)(1� �)n
losses.

We expect these codes to have many practical applica-
tions. Encoding and decoding speeds are several orders of
magnitude faster than previous software-based schemes, and
are fast enough to be suitable for high bandwidth real-time
applications such as high fidelity video. A preliminary im-
plementation running on an Alpha BRET EV-5 330MHz ma-
chine can sustain encoding and decoding speeds of more than
100 Mbits/second with packets of length 2Kbit bits each and
100K packets per message and block length 200K (and thus
the rate is 1/2).

We have also implemented error-correcting codes that use
our novel graph constructions and decode with belief pro-
pogation techniques. Our experiments with these construc-
tions yield dramatic improvements in the error recovery rate.
We will report these results in a separate paper.

11 Acknowledgements

In the preliminary stages of this research, Johannes
Blömer helped to design and test some handcrafted degree
sequences that gave the first strong evidence that irregular
degree sequences are better than regular degree sequences.
Both Johannes and David Zuckerman worked on some of
the preliminary combinatorial analysis of the decoding algo-
rithm. We thank them for their contributions.

References

[1] A. Albanese, J. Bl¨omer, J. Edmonds, M. Luby, M. Sudan,
“Priority Encoding Transmission”,IEEE Transactions on In-
formation Theory (special issue devoted to coding theory),
Vol. 42, No. 6, November 1996, pp. 1737–1744.

[2] N. Alon, J. Edmonds, M. Luby, “Linear Time Erasure Codes
With Nearly Optimal Recovery”,Proc. of the 36

th Annual
Symp. on Foundations of Computer Science, 1995, pp. 512-
519.

[3] N. Alon, M. Luby, “A Linear Time Erasure-Resilient Code
With Nearly Optimal Recovery”,IEEE Transactions on In-
formation Theory (special issue devoted to coding theory),
Vol. 42, No. 6, November 1996, pp. 1732–1736.

[4] R. E. Blahut,Theory and Practice of Error Control Codes,
Addison Wesley, Reading, MA, 1983.

[5] A. Broder, A. Frieze, E. Upfal, ‘On the Satisfiability and
Maximum Satisfiability of Random 3-CNF Formulas”,Proc.
of the 4

th ACM-SIAM Symp. on Discrete Algorithms, 1993,
pp. 322-330.

[6] P. Elias, “Coding for Two Noisy Channels”Information The-
ory, Third London Symposium, September 1955, Butter-
sworth’s Scientific Publications, pp. 61-76.

[7] R. G. Gallager. Low Density Parity-Check Codes. MIT
Press, Cambridge, MA, 1963.

[8] T.G. Kurtz, Approximation of Population Processes,
CBMS-NSF Regional Conf. Series in Applied Math, SIAM,
1981.

[9] F. J. Macwilliams and N. J. A. Sloane,The Theory of Error-
Correcting Codes, North Holland, Amsterdam, 1977.

[10] V. Paxson, “Measurementsand Analysis of End-to-End Inter-
net Dynamics”,Ph.D. thesis, UC Berkeley, 1997.

[11] A. Shwartz, A. Weiss,Large Deviations for Performance
Analysis, Chapman & Hall, 1995.

[12] M. Sipser and D. Spielman, “Expander codes”,IEEE Trans-
actions on Information Theory (special issue devoted to cod-
ing theory), Vol. 42, No. 6, November 1996, pp. 1710–1722.

[13] D. Spielman, “Linear-Time Encodable and Decodable Error-
Correcting Codes”IEEE Transactions on Information The-
ory (special issue devoted to coding theory), Vol. 42, No. 6,
November 1996, pp. 1723–1731.

[14] M. Yajnik, J. Kurose, D. Towsley, “PacketLoss Correlation in
the MBone Multicast Network”,IEEE Global Internet Con-
ference, London, November, 1996.

A Appendix

In this section we give an explicit solution to the sys-
tem of differential equations given by (2) and (3). We
start with the substitutiondx=x = dt=e(t), which gives
x := exp(� R t0 d�=e(�)). This transforms fori > 1 Equa-
tion (2) to

r0i(x) = i(ri(x)� ri+1(x))
a(x) � 1

x
;

where prime stands for derivative with respect to the variable
x. Note that the average degreea(x) equals

P
i`i(x)=e(x),

which in terms of the function�(x) can be written as1 +
x�0(x)=�(x). Hence, we obtain fori > 1

r0i(x) = i(ri(x) � ri+1(x))
�0(x)

�(x)
:

These equations can be solved recursively, starting with the
highest nonzerori. (In the case where there is no highest
nonzerori, that isri > 0 for all i, the following equations
are still valid, although stronger analysis tools are required
to show that the solution is unique.)

The explicit solution is given by

ri(x) = �(x)i
�
�i
Z x

y=1

ri+1(y)�(y)
�i �

0(y)

�(y)
dx + ci

�
(6)

for some constantsci to be determined from the initial con-
ditions forri. It is straightforward to check that

ri(x) =
X
j�i

(�1)i+j
�
j � 1

i� 1

�
cj(�(x))

j : (7)

Further, one verifies directly that

ci =
X
j�i

�
j � 1

i� 1

�
rj(1):

(Note thatx = 1 corresponds to the beginning of the pro-
cess.) We proceed with the determination of the expected
value ofrj(1): because each node on the left is deleted ran-
domly just prior to time 0 with probability1 � �, and the
graph is a random graph over those with the given degree se-
quence, to the nodes on the right it is as though each edge
is deleted with probability1 � �. Hence, an edge whose
right incident node had degreej before the deletion stage
remains in the graph and has degreei afterwards with prob-
ability

�
j�1
i�1

�
�i(1� �)j�i. Thus

rj(1) =
X
m�j

�m

�
m � 1

j � 1

�
�j(1� �)m�j :

Plugging in the last formula in that ofc i we see that

ci =
X
m�i

�
m� 1

i� 1

�
�m�

i:

(Use the identity
�
m�1
j�1

��
j�1
i�1

�
=
�
m�1
i�1

��
m�j
j�i

�
.) Hence, we

obtain fori > 1 from (7)

ri(x) =
X

m�j�i

(�1)i+j
�
j � 1

i� 1

��
m � 1

j � 1

�
�m(��(x))j :

(8)
To obtain the formula given forr1(x) in Lemma 1, we note
thatr1(x) = e(x) �Pi>1 ri(x). The sum of the right hand
side of (8) over alli � 1 equals

X
m�j

(�1)j�1
�
m� 1

j � 1

�
�m(��(x))j

X
i�j

(�1)i�1
�
j � 1

i� 1

�

= ��(x) :

(The inner sum equals1 if j = 1, and is zero otherwise.)
Hence, we have

r1(x) = e(x) � ��(x)

+��(x)
X
m

�m
X
j�m

(�1)j�1
�
m � 1

j � 1

�
(��(x))j�1

= x��(x)� ��(x) + ��(x)
X
m

�m(1� ��(x))m�1

= ��(x)
h
x� 1 + �

�
1� ��(x)

�i
:

