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Abstract

We define and study the notion of min-wise independent fam-
ilies of permutations. We say that F ⊆ Sn is min-wise inde-
pendent if for any set X ⊆ [n] and any x ∈ X , when π is
chosen at random in F we have

Pr
(
min{π(X)} = π(x)

)
=

1
|X | .

In other words we require that all the elements of any fixed
set X have an equal chance to become the minimum element
of the image of X under π.

Our research was motivated by the fact that such a family
(under some relaxations) is essential to the algorithm used in
practice by the AltaVista web index software to detect and
filter near-duplicate documents. However, in the course of
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our investigation we have discovered interesting and chal-
lenging theoretical questions related to this concept – we
present the solution to some of them and we list the rest as
open problems.

1 Introduction

The classic analysis of hashing schemes often entails the as-
sumption that the hash functions used are random. More pre-
cisely, the assumption is that keys belonging to a universe U
are hashed into a table of size M by choosing a function
h uniformly at random among all the functions U → [M ].
(The notation [M ] stands for the set {0, . . . ,M − 1}. This is
slightly non-standard, but convenient for our purposes.) This
assumption is impractical since just specifying such a func-
tion requires |U| log(M) bits, which usually far exceeds the
available storage.

Fortunately in most cases heuristic hash functions behave
very closely to the expected behavior of random hash func-
tions; but there are cases when rigorous probabilistic guar-
antees are necessary. For instance, various adaptive hashing
schemes presume that a hash function with certain prescribed
properties can be found in constant expected time. This holds
if the function is chosen uniformly at random from all possi-
ble functions until a suitable one is found but not necessarily
if the search is limited to a smaller set of functions.

This situation has led Carter and Wegman [8] to the con-
cept of universal hashing. A family of hash functions H is
called weakly universal if for any pair of distinct elements
x1, x2 ∈ U , if h is chosen uniformly at random from H then

Pr(h(x1) = h(x2)) ≤
1

|M | (1)

and is called (strongly) universal or pair-wise independent
if for any pair of distinct elements x1, x2 ∈ U and arbitrary
y1, y2 ∈ [M ]

Pr(h(x1) = y1 and h(x2) = y2) =
1

|M |2 . (2)

It turns out that in many situations the analysis of various
hashing schemes can be completed under the weaker assump-
tion that h is chosen uniformly at random from a universal



family, rather than the assumption that h is chosen uniformly
at random from among all possible function. In other words
limited randomness suffices. Furthermore there exist univer-
sal families of size O(|M |2) that can be easily implemented
in practice. Thus, universal hash functions are very useful
in the design of adaptive hash schemes (see e.g. [7, 9]) and
are actually used in commercial high-performance products
(see e.g. [13]). Not only that, but the concept of pairwise
independence has important theoretical application. (See the
excellent survey by Luby and Wigderson [11].)

It is often convenient to consider permutations rather than
functions. Let Sn be the set of all permutations of [n]. We
say that a family of permutations F ⊆ Sn is pair-wise inde-
pendent if for any {x1, x2, y1, y2} ⊆ [n] with x1 �= x2 and
y1 �= y2

Pr(π(x1) = y1 and π(x2) = y2) =
1

n(n− 1)
(3)

In a similar vein, in this paper, we say that F ⊆ Sn is
exactly min-wise independent (or just min-wise independent
where the meaning is clear) if for any set X ⊆ [n] and any
x ∈ X , when π is chosen at random in F we have

Pr
(
min{π(X)} = π(x)

)
=

1
|X | . (4)

In other words we require that all the elements of any fixed
set X have an equal chance to become the minimum ele-
ment of the image of X under π. Unless otherwise stated
we shall assume that π is chosen uniformly at random in F ;
otherwise, we shall say π is chosen with a biased distribution
µ. Uniform distributions are natural in this setting, since in
practice they are simple to represent.

As explained below, this definition is motivated by the
fact that such a family (under some relaxations) is essential to
the algorithm currently used in practice by the AltaVista Web
indexing software [12] to detect and filter near-duplicate doc-
uments.

The Web [4] has undergone exponential growth since its
birth, and this has lead to the proliferation of documents
that are identical or near identical. Experiments indicate that
over 20% of the publicly available documents on the web are
duplicates or near-duplicates. These documents arise inno-
cently (e.g. local copies of popular documents, mirroring),
maliciously (e.g., “spammers” and “robot traps”), and erro-
neously (spider mistakes). In any case they represent a se-
rious problem for indexing software for two main reasons:
first, indexing of duplicates wastes expensive resources and
second, users are seldom interested in seeing documents that
are “roughly the same” in response to their queries.

This informal concept does not seem to be well captured
by any of the standard distances defined on strings (Ham-
ming, Levenshtein, etc.). Furthermore the computation of
these distances usually requires the pairwise comparison of
entire documents. For a very large collection of documents
this is not feasible, and a sampling mechanism per document
is necessary.

It turns out that the problem can be reduced to a set in-
tersection problem by a process called shingling. (See [6, 5]
for details.) Via shingling each document D gets an associ-
ated set SD. For the purpose of the discussion here we can
view SD as a set of natural numbers. (The size of SD is
about equal to the number of words in D.) The resemblance
r(A,B) of two documents, A and B, is defined as

r(A,B) =
|SA ∩ SB|
|SA ∪ SB| .

Experiments seem to indicate that high resemblance (that
is, close to 1) captures well the informal notion of “near-
duplicate” or “roughly the same”.

To compute the resemblance of two documents it suf-
fices to keep for each document a relatively small, fixed size
sketch. The sketches can be computed fairly fast (linear in
the size of the documents) and given two sketches the resem-
blance of the corresponding documents can be computed in
linear time in the size of the sketches.

This is done as follows. Assume that for all documents
of interest SD ⊆ {1, . . . , n}. (In practice n = 264.) Let π be
chosen uniformly at random over Sn, the set of permutations
of [n]. Then

Pr
(
min{π(SA)} = min{π(SB)}

)
=

|SA ∩ SB|
|SA ∪ SB| = r(A,B).

(5)

Hence, we can choose say, 100 independent random permu-
tations π1, . . . , π100. For each document D, we store the list

S̄A = (min{π1(SA)},min{π2(SA)}, . . . ,min{π100(SA)}).

Then we can readily estimate the resemblance of A and B
by computing how many corresponding elements in S̄A and
S̄B are common.

In practice, as in the case of hashing discussed above,
we have to deal with the sad reality that it is impossible to
choose π uniformly at random in Sn. We are thus led to
consider smaller families of permutations that still satisfy
the min-wise independence condition given by equation (4),
since min-wise independence is necessary and sufficient for
equation (5) to hold.

In practice we can allow certain relaxations. First we
can accept small relative errors. We say that F ⊆ Sn is
approximately min-wise independent if for any set X ⊆ [n]
and any x ∈ X , when π is chosen at random in F we have∣∣∣∣Pr

(
min{π(X)} = π(x)

)
− 1

|X |

∣∣∣∣ ≤ ε

|X | . (6)

In other words we require that all the elements of any fixed
set X have only an almost equal chance to become the min-
imum element of the image of X under π. The expected
relative error made in evaluating resemblance using approx-
imately min-wise independent families is less than ε.



Second the sets of interest are usually much smaller than
n. (For the situation discussed above the typical set has size
1000 while n = 264.) We say that F ⊆ Sn is restricted min-
wise independent if for any set X ⊆ [n] with |X | ≤ k and
any x ∈ X , when π is chosen at random in F we have

Pr
(
min{π(X)} = π(x)

)
=

1
|X | , |X | ≤ k. (7)

Thirdly and finally, it turns out that whether the distribu-
tion on the family F is uniform or not leads to qualitatively
different results.

Ultimately we are interested in practical families of per-
mutations. Hence we first study what is the minimum size of
a family that satisfies various combinations of requirements.
Clearly if the minimum size is exponential no practical so-
lution exists. It turns out that the exact min-wise property
generally necessitates exponential size but that the approxi-
mate property can be satisfied by polynomial size families.
The complete synopsis of our results is given in Table 1. The
entries for which we have no bounds beyond those implied
by other entries in the table are marked “?” and the entries
for which we have no non-trivial bounds are marked “???”.

Starting from the opposite end we study how good is the
performance provided by various families that are easily im-
plementable in software. We consider pair-wise independent
families, for which there are numerous practical implemen-
tations. In particular we are interested in linear transforma-
tions, since they are used in the AltaVista implementation
and are known to perform better in some situations than other
pair-wise independent families (see [1]).

The way we evaluate this performance is to consider a set
X and study the distribution of the minimum of the image of
X . It suffices to examine the two elements that are respec-
tively most likely and least likely to become the minimum
since all the other elements will become the minimum with
a probability in between the extremal values. We consider
two situations: when X is chosen to be the worst set (far-
thest from uniform) with regard to the property of interest;
and when X is chosen uniformly at random, in which case
we look for the expected value of the bound over the random
choices of X . The synopsis of our answers is given in Table
2, where we follow the same convention as before regarding
the use of “?” and “???”.

2 Exact Min-Wise Independence

In this section, we provide bounds for the size of families that
are exactly min-wise independent. We begin by determining
a lower bound, demonstrating that the size of the family F
must grow exponentially with n.

Theorem 1 Let F be min-wise independent. Then |F| is
at least as large as the least common multiple (lcm) of the
numbers 1, 2, . . . n, and hence |F| ≥ en−o(n).

Proof: Let X be a subset of [n] with |X | = j. Each element
of X must be the minimum under the family F the same

number of times, so j must divide |F|. This holds for every
j ∈ {1, 2, . . . n}, so the lcm of {1, 2, . . . n} must divide |F|.
That the lcm of the first n numbers has size en−o(n) is a well
known fact of number theory [3, p. 76]. ✷

Remark 1 This proof also gives a lower bound of ek−o(k)

for restricted min-wise independent families. Also, note that
the proof does not require that the members of F be distinct.
Hence the theorem holds even if F contains duplicates of
some permutations.

We now describe a min-wise independent family of size
less than 4n, which is significantly smaller than the trivial
bound of n! and of the same form as the lower bound given
above.

Theorem 2 There exists a min-wise independent family F
of size less than 4n.

Proof: We initially assume for convenience, that n = 2r

for some r. We construct the family of permutations recur-
sively in stages. In the first stage, we divide the set [n] into
two equal halves, the top and the bottom. At the first stage,
there are

(
n

n/2

)
ways to partition the set. Each of these can

be described by an n bit string with exactly n/2 ones in it.
Element i goes in the top half if and only if the bit string has
a 1 in the ith position. We proceed to partition each half.
Again this can be done by choosing a n/2 bit string with
n/4 ones in it. There are

(n/2
n/4

)
such strings. Importantly,

we use the same string for each half. At the ith stage, we
have the set divided into 2i−1 parts each of size n/2i−1. We
partition each part into two halves by choosing a n/2i−1 bit
string with n/2i ones and using this string to define the parti-
tion for each of the 2i−1 parts. We continue in this way until
each part has size 1. This process produces a permutation of
the set in a natural way, with the topmost element receiving
the smallest number in the permutation.

The property that each element is the minimum with the
correct probability can be verified directly by calculation.
More intuitively, when we split [n] into two halves, every
element of X has an equal chance to go to the upper half or
to the lower half; furthermore, all elements of X now in the
top half are equally likely to eventually become the topmost
element of X (by induction). If no elements of X are in the
top half, then all lie in the bottom, and again (by induction)
all are equally likely to become eventually the topmost.

The number of permutations in this family is

log n∏
i=1

(
n/2i−1

n/2i

)
.

A simple calculation shows that the size of this family is
4n−O(log2 n).

We can easily remove the assumption that n is a power
of 2. We leave this as an exercise to the diligent reader. ✷



Family type Upper bound Lower bound

Exactly min-wise, uniform
distrib on F 4n en−o(n)

Exactly min-wise, biased dis-
trib on F n2n−1 − 1 Ω

(√
n 2n

)
Exactly min-wise, restricted,
uniform distrib on F ? ek−o(k)

Exactly min-wise, restricted,
biased distrib on F

∑
j≤k

j

(
n

j

)
Ω

(
k2k/2 log

(
n

k

))

Approx min-wise, uniform
distrib on F

O
(
n2/ε2

)
(existential)

??? (constructive)
n2

(
1 −

√
8ε

)
Approx min-wise, biased dis-
trib on F ??? max

r≥1

(n − r)
(

n
r

)
1 + ε

(
n
r

)
Approx min-wise, restricted,
uniform distrib on F

O

(
k2 log(n/k)

ε2

)
(existential)

24k+o(k)k2 log(log n/ε) (constructive)
?

Approx min-wise, restricted,
biased distrib on F ? Ω

(
min

(
log(n/k)

ε1/3
, k2k/2 log(n/k)

))

Table 1: Synopsis of results – minimum size of families

Family type Bounds on the most probable
element

Bounds on the least probable
element

Upper Lower Upper Lower

Pairwise independent – worst
set

O

(
1√
k

)
? ???

1

2(k − 1)

Linear – worst set
?

3

π2

ln k

k

12 ln 2

π2 k
?

Pairwise independent – random
set

1 + 1/
√

2

k
??? ??? ?

Linear – random set ? ??? ??? ?

Table 2: Synopsis of results – quality of approximation

2.1 Exact problem with non-uniform distribution

Although we focus on results for uniform distributions, we
demonstrate here an interesting result: the lower bound of
Theorem 1 can be beaten by using non-uniform distributions.

Theorem 3 There is a family F of size at most n2n−1 − 1,
such that F with an associated distribution µ is min-wise
independent.

Proof: We can write a linear program to find a F and µ
satisfying the theorem. We have a variable xπ for each of the

permutations π ∈ Sn, where xπ represents the weight of π
according to µ. For every X ⊂ [n] and for every x ∈ X , we
express the condition that Pr

(
min{π(X)} = π(x)

)
= 1

|X|
as a linear equation in the variables xπ . We have a total of∑n

k=1 k ·
(
n
k

)
= n2n−1 − 1 constraints. This system clearly

has a feasible solution (choose an element of Sn uniformly
at random, that is, put xπ = 1/n! for all π ∈ Sn), and hence
it has a basic feasible solution with at most n ·2n−1−1 non-
zero variables. This solution yields a family satisfying the
conditions of the theorem. ✷



Remark 2 Although this beats the lower bound of Corol-
lary 1, the size of the family is still exponential in n, and we
will prove an almost tight lower bound in Section 3.3. Also,
for restricted min-wise independence, this same construction
gives an upper bound of

∑k
j=1 j ·

(
n
j

)
.

3 The Approximate Problem

As the exact problem requires exponential sized families, we
turn our attention to the approximate problem.

3.1 Existential Upper Bounds

We can obtain existential upper bounds on the sizes of ap-
proximately min-wise independent families via the proba-
bilistic method [2], by simply choosing a number of random
permutations from Sn. We omit the straightforward proofs.

Theorem 4 There exist families of size O(n2

ε2 ) that are ap-
proximately min-wise independent and there exist families

of size O(k2 log(n/k)
ε2 ) that are approximately and restricted

min-wise independent.

In fact, a family of permutations of size O( n2

ε2 ) chosen
uniformly at random from Sn will be approximately min-
wise independent with high probability. This would appear
to provide a suitable solution for the document similarity
problem discussed in the introduction. In practice, how-
ever, this result does not help us, since one cannot conve-
niently represent a random permutation from Sn. Recall that
a random permutation on n elements requires on average
Ω(n logn) bits to represent, and in practice n = 264. This
leads us to consider simple linear permutations in Section 4.

3.2 Lower Bound for Uniform Families

We will prove a lower bound ofn2(1−
√

8ε) for families with
the uniform probability distribution. This shows that the n2

term in the existential upper bound cannot be improved.

Theorem 5 Let F be an approximate min-wise independent
family. Then |F| ≥ n2(1 −

√
8ε).

Proof: Let |F| = f . There must be some element a such
that π(a) = 1 (that is, a is the second smallest after the
permutation) for at least f/n permutations of F . Fix such an
a and consider z ≤ f/n such permutations. We will choose a
value for z later. Let Z be the set of elements which occur as
the smallest element in these z permutations (that is, b ∈ Z
iff π(b) = 0 for at least one of these z permutations) and let
S = [n] − Z. Clearly a ∈ S and |S| ≥ n− z. Consider for
how many permutations π ∈ F it is the case that π(a) is the
smallest element of π(S). This happens at least whenever
π(a) = 0 and also for the z permutations discussed above,
where π(a) = 1 but an element not in S has image 0 under
π. But π(a) = 0 for at least f

n (1 − ε) permutations, because
F is an approximately min-wise independent family; and for

the same reason, π(a) can be the minimum element of S for
at most f

|S|(1 + ε) ≤ f(1+ε)
n−z permutations. Hence

f(1 − ε)
n

+ z ≤ f(1 + ε)
n− z

.

Solving this equation for f and (almost) optimizing for z
(z =

√
2εf/n) yields

f ≥ n2 1 −
√

2ε
1 +

√
2ε− ε

.

Simplifying the above yields a lower bound of n2(1 −
√

8ε)
on |F|. ✷

3.3 Lower Bound for Non-Uniform Families

We will prove a lower bound on the size of any approxi-
mately min-wise independent family, even non-uniform fam-
ilies with an associated probability distribution µ. Our lower
bound proof also yields a lower bound for non-uniform ex-
actly min-wise independent families that is very close to the
upper bound of n2n−1 − 1 obtained in Section 2.1.

Theorem 6 Let F be an approximate min-wise independent
family, possibly with an associated probability distribution

µ. Then |F| ≥ (n−r)(n
r)

1+ε2r(n
r)

, for any r < n.

Proof: Fix an element a and a set Z = {x1, x2, . . . xr} ⊆
[n] with a /∈ Z. Let us say that the pair (Z, a) is satisfied
if there is a permutation π in F that has all the elements of
π(Z) as the r smallest elements of π in any order (that is,
π(Z) = [r]) and has a as the (r+1)st smallest element (that
is, π(a) = r + 1). We will show that most pairs (Z, a) must
be satisfied for F to be an approximately min-wise indepen-
dent family, and that in fact all pairs (Z, a) must be satisfied
for F to be an exactly min-wise independent family,

Let Y = [n] − Z. By definition a ∈ Y . We consider the
sets Yi = Y ∪ xi and count how often π(a) is the smallest
element of π(Yi). Let BS be the event that a is the minimum
of π(S) when we choose a permutation from F under the
distribution µ. Let B =

⋃r
i=1 BYi . Then B ⊆ BY , and

hence Pr(BY − B) = Pr(BY ) − Pr(B). On the other
hand, the event BY − B is precisely the event that (Z, a) is
satisfied.

We now use the inclusion-exclusion principle to calculate
Pr(B) = Pr(

⋃r
i=1 BYi). It is helpful to note the following

facts. First if a ∈ S2 ⊆ S1 then BS1 ⊆ BS2 and if a ∈
S1∩S2 thenBS1∩BS2 = BS1∪S2 . Second, by the definition
of approximate min-wise independence, 1−ε

|S| ≤ Pr(BS) ≤
1+ε
|S| . We will abbreviate this by saying that Pr(BS) = 1±ε

|S| ,
where the meaning is clear. Third, the union of i distinct Yi’s
has size n− r + i. Hence

Pr(B) = Pr(BY1) + Pr(BY2) + · · · + Pr(BYn)
−Pr(BY1 ∩BY2) − · · ·



+ Pr(BY1 ∩BY2 ∩BY3) + · · ·
= Pr(BY1) + Pr(BY2) + · · · + Pr(BYn)

−Pr(BY1∪Y2) − · · · + Pr(BY1∪Y2∪Y3) + · · ·

=
r∑

i=1

(−1)i+1

(
r

i

)
1 ± ε

n− r + i

Hence

Pr(BY −B)

=
1 ± ε

n− r
−

r∑
i=1

(−1)i+1

(
r

i

)
1 ± ε

n− r + i

=
r∑

i=0

(−1)i

(
r

i

)
1 ± ε

n− r + i

=
r∑

i=0

(−1)i

(
r

i

)
1

n− r + i
± ε

r∑
i=0

(
r

i

)
1

n− r + i

To evaluate the first term in the expression above, note that
it equals Pr(BY − B) when ε is 0. That is, the term is the
probability that (Z, a) is satisfied for an exactly min-wise in-
dependent family. Note that it depends only on n and r, and
not on the family under consideration! In particular, we can
calculate it easily by computing the probability that (Z, a)
is satisfied for the family Sn, which is 1

(n−r)(n
r)

. (Thus we

obtain the combinatorial identity

r∑
i=0

(−1)i

(
r

i

)
1

n− r + i
=

1
(n− r)

(
n
r

) .
The hint for its algebraic derivation is [10, equation 1.2.6.24].)

The magnitude of the coefficient of ε is at most 2r

n−r .
Hence

1
(n− r)

(
n
r

) + ε
2r

n− r

≥ Pr(BY −B) ≥
1

(n− r)
(

n
r

) − ε
2r

n− r

(8)

Since Pr(BY − B) ≤ 1

(n−r)(n
r)

+ ε 2r

n−r , the total prob-

ability mass of the permutations that satisfy any given pair
(Z, a) is at most p = 1

(n−r)(n
r)

+ ε 2r

n−r . Hence the number

of distinct pairs (Z, a) which have some permutation satis-
fying them must be at least 1/p. But every permutation sat-
isfies exactly one (Z, a) pair. This means that there must be
at least 1/p permutations, that is, the size of the family is at

least
(n−r)(n

r)
1+ε2r(n

r)
. ✷

Corollary 1 Let F be exact min-wise independent family,
possibly with an associated probability distribution µ. Then
|F| ≥ �n

2 �
(

n
�n/2�

)
.

Proof: Plug ε = 0 and r = �n
2 � in the result of Theorem 6

✷

Actually, Theorem 6 proves an even stronger corollary:
Equation (8) shows that the probability that (Z, a) is satis-
fied is positive as long as ε < 1/2r

(
n
r

)
. Hence, for any

approximate min-wise independent family with such an ε,
all

(
n
r

)
(n − r) possible pairs (Z, a) are satisfied, and hence

there are at least this many permutations. This is maximized
for r = �n

2 �, and hence the bound of Corollary 1 also holds
for approximate families with an exponentially small ε.

4 Linear and Pairwise Independent Families

We now focus on the behavior of permutations most likely
to be used in practice, linear transformations. In particular,
we focus on the situation where the universe of elements is
[p] for some prime p, and the family of permutations is given
by all permutations of the form π(x) = ax + b mod p (with
a �= 0). Linear transformations are easy to represent and
efficiently calculable, making them suitable for real applica-
tions. Our results suggest that although this family of permu-
tations is not min-wise independent, its performance should
be sufficient in many practical situations.

4.1 General Upper and Lower Bounds

As the results for linear permutations require significant cal-
culations, we do not provide proofs for all the results here.
We begin with a simple lower bound that holds not just for
linear transformations but for any pairwise independent fam-
ily of permutations; many of our results have this form.

Theorem 7 For any X ⊆ [n] with |X | = k and for any
x ∈ X ,

Pr
(
min{π(X)} = π(x)

)
>

1
2(k − 1)

if π is chosen from a pairwise independent family of permu-
tations.

Proof: Consider a set X = {x0, . . . xk−1}. We will show
that π(x0) is the smallest element of π(X) as often as re-
quired by the theorem. Suppose that π(x0) = z. If π is cho-
sen from a pairwise independent family, then Pr(π(xi) <
z|π(x0) = z) = z/n. Since the probability that π maps xi

to something smaller than π(x0) is z/n, the probability that
π maps any element of X to something smaller than π(x0)
is at most (k − 1)z/n, and hence π(x0) is the minimum of
π(X) with probability at least 1 − (k − 1)z/n. This is non-
negative for 0 ≤ z ≤ � n

k−1�. Hence

Pr(min{π(X)} = π(x0)) ≥
1
n

�n/(k−1)�∑
z=0

(
1 − (k − 1)z

n

)

>
1

2(k − 1)

✷



We have an upper bound on Pr
(
min{π(X)} = π(x)

)
for all pairwise independent families of permutations that is
O(1/

√
k), based on a linear programming formulation of the

problem. Subsequent to our original proof, Piotr Indyk sug-
gested a simpler proof for this bound.

4.2 Linear Families, Upper and Lower Bounds

We can derive further bounds by considering specifically lin-
ear transformations. For instance, we can show that the fam-
ily of linear transformations is not even approximately min-
wise independent for any constant ε. Here we sketch this
result.

Theorem 8 Consider the set Xk = {0, 1, 2 . . . k}, as a sub-
set of [p]. As k, p → ∞, with p � k,

Pr(min{π(X)} = π(0)) ∼ 3
π2

ln k
k

when π is a randomly chosen linear transformation of the
form π(x) = ax+ b mod p (with a �= 0).

Proof: The proof will use some basic facts about Farey se-
ries. We first remind the reader of the definition and some
basic facts regarding Farey series; more information can be
found in most standard number theory texts.

Definition 1 The Farey series of order k consists of all irre-
ducible fractions less than 1 with denominator at most k, in
increasing order.

If n1
d1

and n2
d2

are two consecutive fractions in the order k
Farey series then

1. n2d1 − n1d2 = 1.

2. (d1, d2) = 1.

3. the first fraction inserted between n1
d1

and n2
d2

in a higher
order Farey series is n1+n2

d1+d2
.

To compute the fraction of time that π(0) is the minimum
element of {π(Xk)}, let us first consider all transformations
π with multiplier a. Let za = mini=1,...,k{−a · i mod p}.
Then π(0) is minimal only for those π = ax + b mod p
where b < za (note that za is positive!), since for the other
values of b the image of the minimal element will lie behind
π(0) = b.

Hence, to find the fraction of the time that 0 is the min-
imum element of {π(Xk)}, it suffices to find the expected
value of 1

p mini=1,...,k{−a · i mod p}, which conveniently

is also the expected value of 1
p mini=1,...,k{a · i mod p}. We

concentrate on the latter expression.
Consider what happens to the numbers {a · i mod p|i =

1 . . . k} as we increase the value of the multiplier a from 1
to p − 1. It is useful to think of the numbers 0, . . . , p − 1
as arranged clockwise around a circle. Consider k tokens,
corresponding to the numbers 1, . . . , k from the set Xk. For

each i, we view a · i mod p as the position of the ith token at
time a. Token i starts in position i. As we increase the value
of the multiplier a from 1 to p−1 all tokens move around the
circle in clockwise direction but at different speeds: token i
moves i steps for every time tick.

If p is sufficiently larger than k, we can think of this mo-
tion as being continuous. That is, we scale the circle so that
its circumference is 1. Let f = a

p . Then the distance of token
i from the origin along the circle when the multiplier is a is
the fractional part of fi. Henceforth we think of this motion
of the tokens as being continuous, with the “time” f increas-
ing uniformly from 0 to 1. We need to compute the aver-
age distance of the token closest to the origin as f increases
uniformly from 0 to 1, where distance here is measured as
clockwise distance along the circumference. This average
distance is (asymptotically) 1

p mini=1,...,k{a · i mod p}, the
term we wish to compute. (Asymptotically this approxima-
tion yields the correct answer, as the approximation affects
only lower order terms.)

The token closest to the origin changes whenever a token
reaches the origin. This happens whenever the value of f is
n
d for integers n and d with 1 ≤ n < d ≤ k, as at that point
the token with speed d reaches the origin. Thus the times
where the token closest to the origin changes are precisely
the proper (less than 1) fractions of denominator at most k,
that is, the terms of the Farey sequence of order k. Let n1

d1
and n2

d2
be two consecutive fractions in the Farey sequence of

order k. For n1
d1

≤ f ≤ n2
d2

, the token with speed d1 is closest
to the origin. This time interval has length n2

d2
− n1

d1
= 1

d1d2
.

During this time interval, the token starts at the origin and
moves with a speed of d1. Thus the average distance of this
token from the origin during this interval is 1

2 ·d1· 1
d1d2

= 1
2d2

.
To obtain the average distance over the entire interval, it

suffices to take the appropriate weighted sum over all pairs of
consecutive Farey fractions. By the above, the contribution
from each interval [n1

d1
, n2

d2
] is 1

d1d2
· 1

2d2
= 1

2d1d2
2

.

To find a simple form for the resulting sum, we build up,
starting the appropriate sum forX1 = {0, 1} and building up
to the set Xk. Alternatively, we may think of how the sum
changes as we build up from the order j−1 Farey series to the
order j Farey series and use this to derive the appropriate sum
for the order k Farey series. The order j Farey series is de-
rived from the order j−1 Farey series by adding all fractions
of the form a

j with (a, j) = 1 in their proper position. (Note
we use the standard shorthand (a, j) for gcd(a, j).) Corre-
spondingly, this changes the contribution to the summation
in all intervals where a new fraction is inserted. Suppose
a fraction is inserted between n1

d1
and n2

d2
. Then the inserted

fraction must be n1+n2
d1+d2

, where d1+d2 = k. Before the inser-
tion, the contribution of this interval was 1

2d1d2
2

. After the in-

sertion, the contribution becomes 1
2d1(d1+d2)2

+ 1
2(d1+d2)d2

2
.

Thus the change is

1
2d1(d1 + d2)2

+
1

2(d1 + d2)d2
2

− 1
2d1d2

2



=
d2
2 + d1(d1 + d2) − (d1 + d2)2

2d1(d1 + d2)2d2
2

=
−1

2(d1 + d2)2d2

Note that d1 + d2 = j. Further (j, d2) = 1. In fact, for every
a such that (a, j) = 1, there exists two consecutive Farey
fractions n1

d1
and n2

d2
such that d1 + d2 = j and d2 = a. Thus

the change in the summation caused by building up from or-
der j−1 to order j Farey sequences is −1

2j2

∑
(a,j)=1,1≤a≤j

1
a .

For the order 1 Farey sequence, the value of the appropriate
summation is obviously 1

2 . Thus the value for the order k
Farey sequence is

1
2


1 −

k∑
j=2

1
j2

∑
(a,j)=1,1≤a≤j

1
a




From here one must simply evaluate the value of this ex-
pression asymptotically to obtain the theorem. We spare the
reader the apparently unenlightening algebraic details. ✷

Theorem 8 shows that it is possible to find sets for which
some element is minimal for Ω( log k

k ) of the time when ran-
dom linear transformations are used. Similarly, we can show
that π(�(k − 1)/2�) is asymptotically the minimum element
of π(Xk) with probability 12 ln 2

π2k ≈ 0.843
k . This result pro-

vides an example of how much less often than 1
k of the time

an element can be minimal when random linear transforma-
tions are used.

Despite the seemingly bad worst-case behavior of lin-
ear transformations, we believe that in practice they are suit-
able for applications, because they perform well on random
sets. For a set X = {x0, . . . , xk−1} of size k, let F (X)
be maxi

|{π | min{π(X)}=π(xi)}|
p(p−1) . That is, F (X) is the frac-

tion of the permutations for which the most likely element
to be the minimum is actually the minimum. (And we have
just seen that F (X) ≥ 3

π2
ln k
k in the worst case.) We now

prove that the expected value of F (X) when X is chosen
uniformly at random from all sets of size k as k, p → ∞ can
be bounded by (1 + 1/

√
2)/k +O(1/k2). In this sense, lin-

ear transformations are approximately min-wise independent
with respect to random sets.

Theorem 9 As k, p → ∞, with p � k2, EX [F (X)] is
bounded above by (1 + 1/

√
2)/k + O(1/k2).

Proof: We define

fi(X) =
|{π | min{π(X)} = π(xi)}|

p(p− 1)
,

and

gi(z,X) =
|{π | min{π(X)} = π(xi) and π(xi) = z · p}|

p− 1
,

That is, consider the subset of permutations that map the ith
element to zp. Then gi is the fraction of these permutations
for which the the ith element is minimal.

Hereafter we suppose that the universe size p is suffi-
ciently large that we may think of z as varying continuously
on the unit circle from 0 to 1, instead of jumping discretely
by 1/p. This simplification allows us to dismiss many lower
order terms. Similarly, we will suppose that p is sufficiently
large compared to k so that we may suppose that the k val-
ues of X are chosen with replacement, and the results will
be equivalent asymptotically.

The value we wish to bound is

F (X) = EX [ max
i=0,...,k−1

fi(X)],

where we use EX to denote that the expectation is over the
random choice of the set X . Note also that we have the fol-
lowing relation:

fi(X) =
∫ 1

0

gi(z,X)dz.

Let the fi(X) have mean µ and variance σ2. (Note the
mean and variance are the same for all fi.) To bound F (X),
we make use of a simple bound on the expected value of
the maximum of several identically distributed random vari-
ables.

Lemma 1 LetX1, X2, . . . , Xk be identically distributed ran-
dom variables with mean µ and variance σ2. Then

E[ max
i=1,...,k

Xi] ≤ µ+ σ
√
k.

Proof: We show equivalently that(
E[ max

i=1,...,k
Xi − µ]

)2

≤ kσ2.

(
E[ max

i=1,...,k
Xi − µ]

)2

≤ E

[
( max
i=1,...,k

Xi − µ)2
]

≤ E

[
max

i=1,...,k
(Xi − µ)2

]

≤ E


 ∑

i=1,...,k

(Xi − µ)2




≤
∑

i=1,...,k

E[(Xi − µ)2]

= kσ2

✷

Clearly, by symmetry EX [fi(X)] = 1/k. Hence, to find
an upper bound on F , we just have to bound σ2, the variance
of fi(X). Specifically, we bound the variance of f0(X).

We define some helpful notation. Let πa,z denote the
unique linear permutation such that ax0 + b = z · p mod
p. That is, πa,z is the linear permutation with multiplier a



that maps x0 to z · p. Let Ma(z,X) be an indicator ran-
dom variable that is 1 if min{πa,z(X)} = πa,z(x0). Thus,
g0(z,X) = 1

p

∑
a Ma(z,X). Now the variance of f0 is just

σ2 = EX

[
(f0(X) −EX [f0(X)])2

]
= EX

[(∫ 1

0

g0(z,X)dz −EX

[∫ 1

0

g0(z,X)dz
])2

]

= EX

[(∫ 1

0

(g0(z,X) −EX [g0(z,X)]) dz
)2

]

=
1
p2 EX

[(∫ 1

0

(∑
a

Ma(z,X)

−EX

[∑
a

Ma(z,X)
])

dz

)2
]

=
1
p2 EX

[(∫ 1

0

∑
a

(
Ma(z,X)

−EX

[
Ma(z,X)

])
dz

)2
]

Let µa(z) = EX [Ma(z,X)]. From this definition, it is
apparent that µa(z) = (1 − z)k−1, as each of the images of
the other randomly chosen k − 1 elements has probability
1 − z of being greater than z · p.

Hence, continuing from the last line above,

σ2 =
1
p2 EX

[(∫ 1

0

∑
a

(
Ma(z,X)−EX [Ma(z,X)]

)
dz

)2]

=
1
p2 EX

[∫ 1

z=0

∫ 1

y=0

( ∑
a1,a2

(
Ma1(z,X)− µa1(z)

)

×
(
Ma2(y,X) − µa2(y)

))
dy dz

]

=
1
p2

∫ 1

z=0

∫ 1

y=0

( ∑
a1,a2

(
EX [Ma1(z,X)Ma2(y,X)]

− µa1(z)µa2(y)
))

dy dz

(9)

We now bound the last term. This will in turn bound the
variance and yield the theorem. In order to do this, we derive
an alternative expression for EX [Ma1(z,X)Ma2(y,X)] that
can be be appropriately bounded.

Let

qa1,a2(z, y) = Prx∈[p](πa1,z(x) > y·p and πa2,y(x) > z·p).

Then

EX [Ma1(z,X)Ma2(y,X)] = (qa1,a2(z, y))
k−1

,

again since the other k− 1 terms of X are chosen uniformly
at random.

We thus have expressed the value we wish to bound as
the sum of the (k − 1)st powers of qa1,a2 terms. The next
lemma shows that the sum of these qa1,a2 terms is fixed. As
the maximum possible value of the sum of the (k − 1)st
powers is achieved when the terms in the sum take on ex-
tremal values, together these results will allow us to bound∑

a1,a2 EX [Ma1(z,X)Ma2(y,X)].

Lemma 2 ∑
a1,a2

qa1,a2(z, y) = p2(1 − z)(1 − y).

Proof: Consider the following experiment. We choose three
values a1, a2, x ∈ [p] independently and uniformly at ran-
dom. The experiment succeeds if both πa1,z(x) > y · p
and πa2,y(x) > z · p. Clearly, the probability of success
is (1 − z)(1 − y). The summation

∑
a1,a2

p · qa1,a2(z, y) is
simply the number of the p3 triples (a1, a2, x) for which the
experiment succeeds. The lemma follows. ✷

Since the total sum of the terms qa1,a2 is fixed, the sum∑
a1,a2 EX [Ma1(z,X)Ma2(y,X)] is maximized when the

qa1,a2 terms take on extremal values. Let us assume that
z ≥ y. Then qa1,a2(z, y) ∈ [1 − z − y, 1 − z]. (Of course
qa1,a2(z, y) ≥ 0, and hence the above range may not be cor-
rect if z + y > 1.) A simple calculation then yields the
following bound (for z + y ≤ 1):∑

a1,a2

EX [Ma1(z,X)Ma2(y,X)]

≤ p2
(
z(1 − z)k−1 + (1 − z)(1 − z − y)k−1

)
.

We will use this bound for the range z ≤ 1/2. For z > 1/2,
we have qa1,a2(z, y) ≤ 1 − z ≤ 1/2. Hence,∑

a1,a2

EX [Ma1(z,X)Ma2(y,X)] ≤ p2(1/2k−1).

Substituting this bound in (9), we get:

σ2 =
1
p2 EX

[∫ 1

z=0

∫ 1

y=0

( ∑
a1,a2

(
Ma1(z,X)Ma2(y,X)

− µa1(z)µa2(y)
))

dy dz

]

=
2
p2

∫ 1

z=0

∫ z

y=0

( ∑
a1,a2

EX

[
Ma1(z,X)Ma2(y,X)

− µa1(z)µa2(y)
])

dy dz

≤ 2
∫ 1/2

z=0

∫ z

y=0

(
z(1− z)k−1 + (1 − z)(1 − z − y)k−1

− (1 − z)k−1(1 − y)k−1
)
dy dz

+ 2
∫ 1

z=1/2

∫ z

y=0

1
2k−1

dy dz



To prove Theorem 1, we need merely to compute this in-
tegral thus bounding the variance. This calculation is easily
performed, yielding

σ2 ≤ 1
2k3

+ O(1/k4).

This proves Theorem 9. ✷

Simulations suggest that in fact the behavior of families
of linear transformations on a random set X is much better
than this. We conjecture that the expected value of F (X)
converges to 1/k asymptotically.

Also, we note that Theorem 9 actually generalizes quite
straightforwardly to all pairwise independent families. The
notation becomes slightly more difficult, but the proof fol-
lows the same course.
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