
SRC Technical Note
1998 - 003

February 8, 1998

A Digital Fountain Approach to

Reliable Distribution of Bulk Data

John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Digital Equipment Corporation 1998. All rights reserved

A Digital Fountain Approach to
Reliable Distribution of Bulk Data

John W. Byers ∗ Michael Luby† Michael Mitzenmacher‡ Ashutosh Rege

Abstract

The proliferation of applications that must reliably distribute bulk data to a large number of au-
tonomous clients motivates the design of new multicast and broadcast protocols. We describe an ideal,
fully scalable protocol for these applications that we call a digital fountain. A digital fountain allows any
number of heterogeneous clients to acquire bulk data with optimal efficiency at times of their choosing.
Moreover, no feedback channels are needed to ensure reliable delivery, even in the face of high loss rates.

We develop a protocol that closely approximates a digital fountain using a new class of erasure codes
that are orders of magnitude faster than standard erasure codes. We provide performance measurements
that demonstrate the feasibility of our approach and discuss the design, implementation and performance
of an experimental system.

1 Introduction

Software companies that plan to efficiently disseminate new software over the Internet to millions of users
simultaneously will require multicast or broadcast transmission [18]. These transmissions must be fully reli-
able, have low network overhead, and support vast numbers of receivers with heterogeneous characteristics.
Other activities which have similar requirements include distribution of video and financial information,
database replication, and popular web site access. These applications require more than just a reliable mul-
ticast protocol, since users wish to access the data at times of their choosing and these access times will
overlap with those of other users.

While unicast protocols successfully use receiver-initiated requests for retransmission of lost data to
provide reliability, it is widely known that the multicast analog of this solution is unscalable. For exam-
ple, consider a video server distributing a movie over the Internet to thousands of clients. As clients lose
packets, their requests for retransmission can quickly overwhelm the server in a process known as feedback
implosion. Even in the event that the server can handle the requests, the retransmitted packets are often of
use only to a small subset of the clients. More sophisticated solutions which address these limitations by
using techniques such as local repair, polling, or the use of a hierarchy have been proposed [3, 7, 10, 11, 21],
but these solutions as yet appear inadequate. Moreover, whereas retransmission-based solutions are at best
unscalable and inefficient on terrestrial networks, they are unworkable on satellite networks, where the back
channel typically has high latency and limited capacity, if it is available at all.

∗UC Berkeley and International Computer Science Institute, Berkeley, California. Research supported in part by National
Science Foundation operating grant NCR-9416101. Contact author: byers@cs.berkeley.edu

†International Computer Science Institute, Berkeley, California. Research supported in part by National Science Foundation
operating grant NCR-9416101.

‡Digital Systems Research Center, Palo Alto, California.
International Computer Science Institute, Berkeley, California. Research supported in part by National Science Foundation

operating grant NCR-9416101.

1

The problems with solutions based on retransmission have led many researchers to consider applying
Forward Error Correction based on erasure codes1 to reliable multicast [4, 12, 13, 14, 16, 17, 18, 19]. The
basic principle behind the use of erasure codes is that the original source data, in the form of a sequence of
k packets, along with additional redundant packets, are transmitted by the sender, and the redundant data
can be used to recover lost source data at the receivers. A receiver can reconstruct the original source data
once it receives a sufficient number of packets. The main benefit of this approach is that different receivers
can recover from different lost packets using the same redundant data. In principle, this idea can greatly
reduce the number of retransmissions, as a single retransmission of redundant data can potentially benefit
many receivers simultaneously.

The recent work of Nonnenmacher, Biersack and Towsley [14] defines a hybrid approach to reliable
multicast, coupling requests for retransmission with transmission of redundant codewords, and quantifies
the benefits of this approach in practice. Their work, and the work of many other authors, focus on erasure
codes based on Reed-Solomon codes [5, 11, 12, 13, 16, 17, 18]. The limitation of these codes is that encoding
and decoding times are slow, effectively limiting k to small values for practical applications. Hence, their
solution involves breaking the source data into smaller blocks of packets and encoding over these blocks.
Receivers which have not received a packet from a given block request retransmission of an additional
codeword from that block. They demonstrate that this approach is effective for dramatically reducing the
number of retransmissions, when packet loss rates are low (they typically consider 1% loss rates). However,
this approach cannot eliminate the need for retransmissions, especially as the number of receivers grows
large or for higher rates of packet loss. Their approach also does not enable receivers to join the session
dynamically.

To eliminate the need for retransmission and to allow receivers to access data asynchronously, the use
of a data carousel or broadcast disk approach can ensure full reliability [1]. In a data carousel approach, the
source repeatedly loops through transmission of all data packets. Receivers may join the stream at any time,
then listen until they receive all distinct packets comprising the transmission. Clearly, the reception overhead
at a receiver, measured in terms of unnecessary receptions, can be extremely high using this approach. As
shown in [17, 18], adding redundant codewords to the carousel can dramatically reduce reception overhead.
Using Reed-Solomon codes, these papers advocate adding a fixed amount of redundancy to blocks of the
transmission. The source then repeatedly loops through the set of blocks, transmitting one data or redundant
packet about each block in turn until all packets are exhausted, and then repeats the process. This interleaved
approach enables the receiver to reconstruct the source data once it receives sufficiently many packets from
each block. The limitation of using this approach over lossy networks is that the receiver may still receive
many unnecessary transmissions, especially while waiting for the last packets from the last few blocks it
needs to reconstruct.

The approaches described above that eliminate the need for retransmission requests can be thought of as
weak approximations of an ideal solution, which we call a digital fountain. A digital fountain is conceptually
simpler, more efficient, and applicable to a broader class of networks than previous approaches. A digital
fountain injects a stream of distinct encoding packets into the network, from which a receiver can reconstruct
the source data. The key property of a digital fountain is that the source data can be reconstructed intact
from any subset of the encoding packets equal in total length to the source data. Our approach is to construct
better approximations of a digital fountain as a basis for protocols that perform reliable distribution of bulk
data.

The body of the paper is organized as follows. In the next section, we describe in more detail the char-
acteristics of the problems we consider. In Section 3, we describe the digital fountain solution. In Section

1Erasure codes are often called forward-error correcting codes (FEC codes) in the networking community. However, in the
satellite community, FEC codes refer to codes that detect and correct errors in individual packets, and these codes are typically
implemented in special purpose hardware. To avoid confusion, we always refer to the codes we consider as erasure codes.

2

4, we describe how to build a good theoretical approximation of a digital fountain using erasure codes. A
major hurdle in implementing a digital fountain is that standard Reed-Solomon codes have unacceptably
high running times for these applications. Hence, in Section 5, we describe Tornado codes, a new class of
erasure codes that have extremely fast encoding and decoding algorithms. These codes yield a far superior
approximation to a digital fountain than can be realized with Reed-Solomon codes in practice, as we show
in Section 6. Finally, in Section 7, we describe the design and performance of a working prototype system
for bulk data distribution based on Tornado codes that is built on top of IP Multicast. The performance of
the prototype bears out the simulation results, and it also demonstrates the interoperability of this work with
the layered multicast techniques of [19]. We conclude with additional research directions for the digital
fountain approach.

2 Requirements for an Ideal Protocol

We recall an example application in which millions of clients want to download a new release of software
over the course of several days. This software download application highlights several important features
common to many similar applications which must distribute bulk data. In addition to keeping network traffic
to a minimum, a scalable protocol for distributing the software using multicast should be:

• Reliable: The file is guaranteed to be delivered in its entirety to all receivers.

• Efficient: The time to download the file and any additional processing time should incur minimal
overhead. Ideally, the end-user should not be able to distinguish between service over a multicast
group and service over a point-to-point connection.

• On demand: Clients may initiate the download at their discretion, implying that different clients
may start the download at widely disparate times. Clients may sporadically interrupt and continue the
download at a later time.

• Tolerant: The protocol should tolerate a heterogeneous population of receivers, especially a variety
of end-to-end packet loss and data rates.

We also state our assumptions regarding channel characteristics. IP multicast on the Internet, satellite
transmission, wireless transmission, and cable transmission are representative of channels we consider. Per-
haps the most important property of these channels is that the return feedback channel from the clients to the
server is typically of limited capacity, or is non-existent. This is especially applicable to satellite transmis-
sion. These channels are generally packet based, and each packet has a header including a unique identifier.
They are best-effort channels designed to attempt to deliver all packets, but frequently packets are lost or
corrupted. Wireless networks are particularly prone to high rates of packet loss and all of the networks we
describe are prone to bursty loss periods. We assume that error-correcting codes are used to correct and
detect errors within a packet. But if a packet has too many errors to correct, it is discarded and treated as a
loss.

3 The Digital Fountain Solution

In this section, we outline an idealized solution that achieves all the objectives laid out in the previous section
for the channels of interest to us. In subsequent sections, we describe and measure an experimental system
which implements an approximation to this ideal solution that is superior to previous approaches.

3

A server wishes to allow a universe of clients to acquire source data consisting of a sequence of k equal
length packets. In the idealized solution, the server sends out a stream of distinct packets, called encoding
packets, which constitute an encoding of the source data. The server will transmit the encoding packets
whenever there are any clients listening in on the multicast session. A client accepts encoding packets
from the channel until it obtains exactly k packets. In this idealized solution, the data can be reconstructed
regardless of which k encoding packets the client obtains. Therefore, once k encoding packets have been
received the client can disconnect from the channel. We assume that in this idealized solution that there is
very little processing required by the server to produce the encoding of packets and by the clients to recover
the original data from k encoding packets.

We metaphorically describe the stream of encoding packets produced by the server in this idealized
solution as a digital fountain. The digital fountain has properties similar to a fountain of water for quenching
thirst: drinking a glass of water, irrespective of the particular drops that fill the glass, quenches one’s thirst.
The digital fountain protocol has all the desirable properties listed in the previous section and functions over
channels with the characteristics outlined in the previous section.

4 Building a Digital Fountain with Erasure Codes

An ideal way to implement a digital fountain is to directly use an erasure code that takes source data con-
sisting of k packets and produces sufficiently many encoding packets to meet user demand. Indeed, standard
erasure codes such as Reed-Solomon erasure codes have the ideal property that a decoder at the client side
can reconstruct the original source data whenever it receives any k of the transmitted packets. However,
erasure codes are designed to stretch a file consisting of k packets into n encoding packets, where both k and
n are input parameters. For the remainder of the paper, we refer to the ratio n/k as the stretch factor of an
erasure code. This limits the extent to which an erasure code can achieve the properties of a digital fountain.

An obvious way to approximate a digital fountain also proposed by other researchers (e.g., [13, 16, 17,
19]) is to set n to be a multiple of k, and repeatedly cycle through and send the n encoding packets. Then, the
client is guaranteed to be able to recover the original file as long as k distinct packets are received. However,
as detailed in subsequent sections, the encoding and decoding processing times for standard erasure codes
are prohibitive even for moderate values of k and n. We avoid this cost by using the much faster Tornado
codes.

Throughout the paper we set n to be a small multiple of k, in particular n = 2k, in order to keep the
processing and memory requirements for the erasure codes reasonable. The disadvantage of choosing such
a small value for n is that under sufficiently high loss rates a client may not receive k out of n packets in
one cycle. Therefore a client may receive useless duplicate packets, which decreases the channel efficiency.
Our experimental results indicate that while this degradation is non-negligible under very high loss rates,
channel efficiency still remains high. The next step is to lay out the properties of Tornado codes in more
detail.

In particular, we will consider erasure codes that take a set of k packets and produce a set of � redundant
packets for a total of n = k + � encoding packets all of a fixed length P .

5 Tornado Codes

In this section, we lay out the theoretical properties of Tornado codes in more detail. We outline how
these codes differ from traditional Reed-Solomon erasure codes, and focus in particular on performance
comparisons. For the rest of the discussion, we will consider erasure codes that take a set of k packets and
produce a set of � redundant packets for a total of n = k + � encoding packets all of a fixed length P .

4

Bipartite
graph

Bipartite
graph

Bipartite
graph

= source data

= redundancy

k

l

n

a

h

g

f

e

d

c

b

a + b + f

a + b + c + d + g

c + e + g + h

c + d + e + f + h

+ denotes exclusive-or

Figure 1: Structure of Tornado Codes

Tornado Codes Reed-Solomon Codes

Reception overhead ε > 0 required 0
Encoding times (k + �) ln(1/ε)P k(1 + �)P
Decoding times (k + �) ln(1/ε)P k(1 + x)P
Basic operation Simple XOR Complex field operations

Table 1: Properties of Tornado vs. Reed-Solomon codes

5.1 Theory

We briefly describe the structure of a Tornado code. Tornado codes are based on a series of random bipartite
graphs, as depicted on the left side of Figure 1. The leftmost layer stores the original source data. For
simplicity, we consider the case in which each node corresponds to one packet, although this need not
be the case in practice. Packets in subsequent layers constitute the redundancy. The redundant packets
are generated by taking the exclusive-or of the contents of the neighboring packets to the left, as depicted
on the right side of Figure 1. The structure of the bipartite random graphs must be specially chosen to
guarantee both rapid encoding and decoding and the erasure property described below. A detailed, technical
description of these codes is provided in [8] and [9].

Tornado codes have the following erasure property: to reconstruct the source data, it suffices to recover
slightly more than k of the n packets stored in the graph. We say the reception overhead is ε if (1 + ε)k
encoding packets are required to reconstruct the source data.2 The advantage of Tornado codes over standard
codes is that they trade off a negligible increase in reception overhead for a substantial decrease in encoding
and decoding times, thus making their overall efficiency far superior.

Furthermore, the decoding algorithm can detect when it has received enough encoding packets to recon-
struct the original file. Thus, the client can run the Tornado decoding algorithm in real-time as the encoding
packets arrive, and reconstruct the original file as soon as it determines that sufficiently many packets have
arrived. This discussion assumes that the source and the clients have agreed to the graph structure in ad-
vance.

Standard erasure codes typically have encoding times proportional to k(1 + �)P and decoding times
proportional to k(1 + x)P , where x is the number of source data packets not received, and which therefore

2Because our codes use random graphs, our codes do not have a fixed reception overhead threshold ε. The variation in reception
overhead for Tornado codes is detailed in Figure 2.

5

Encoding Benchmarks
Reed-Solomon Codes Tornado Codes

SIZE Vandermonde Cauchy Tornado A Tornado B

250 KB 9.0 seconds 4.6 seconds 0.06 seconds 0.11 seconds
500 KB 39 seconds 19 seconds 0.12 seconds 0.15 seconds

1 MB 150 seconds 93 seconds 0.26 seconds 0.25 seconds
2 MB 623 seconds 442 seconds 0.53 seconds 0.50 seconds
4 MB not available 1717 seconds 1.06 seconds 0.96 seconds
8 MB not available 6994 seconds 2.13 seconds 1.72 seconds

16M Bytes not available 30802 seconds 4.33 seconds 3.23 seconds

Table 2: Comparison of encoding times for erasure codes.

Decoding Benchmarks
Reed-Solomon Codes Tornado Codes

SIZE Vandermonde Cauchy Tornado A Tornado B

250 KB 11.0 seconds 2.06 seconds 0.06 seconds 0.88 seconds
500 KB 32 seconds 8.4 seconds 0.09 seconds 1.02 seconds

1 MB 161 seconds 40.5 seconds 0.14 seconds 1.27 seconds
2 MB 1147 seconds 199 seconds 0.19 seconds 1.55 seconds
4 MB not available 800 seconds 0.40 seconds 2.00 seconds
8 MB not available 3166 seconds 0.87 seconds 2.90 seconds

16 MB not available 13629 seconds 1.75 seconds 4.70 seconds

Table 3: Comparison of decoding times for erasure codes.

must be reconstructed from redundant data. Standard erasure codes also require somewhat complex finite
field operations, further increasing their encoding and decoding times. As a result, standard erasure codes
can only be applied in practice when k and � are small. (Values used in [14, 17, 19, 18] have k and � ranging
from 8 to 256).

In contrast, Tornado codes have encoding and decoding times that are proportional to (k + �) ln(1/ε)P ,
where ε is the reception overhead. The encoding and decoding times of Tornado codes in practice are
orders of magnitude faster than Reed-Solomon codes for large values of k and � and for very low reception
overhead ε ≈ 0.05, as we detail in Section 5.2. Moreover, Tornado codes are simple to implement and use
only exclusive-or operations, further enhancing their advantage over standard codes.

A summary comparing the properties of Tornado codes and standard Reed-Solomon codes is given in
Table 1.

5.2 Practice

In practice, Tornado codes where values of k and � are on the order of tens of thousands can be encoded and
decoded in just a few seconds. In this section, we compare the efficiency of Tornado codes with standard
codes that have been previously proposed for network applications [4, 14, 16, 17, 18, 19]. The erasure codes
listed in Tables 2 and 3 as Vandermonde [16] and Cauchy [2] are standard implementations of Reed-Solomon
erasure codes, based on Vandermonde matrices and Cauchy matrices, respectively. Both Tornado A and

6

Tornado A, 10,000 Runs
Percent Unfinished vs. Length Overhead

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Length Overhead

Tornado B, 10,000 Runs
Percent Unfinished vs. Length Overhead

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05 0.06

Length Overhead

Figure 2: Reception Overhead Variation

Tornado B codes were designed using some of the principles described in [8] and [9]. The implementations
were not carefully optimized, so their running times could be improved by constant factors. All experiments
were benchmarked on a Sun 167 MHz UltraSPARC 1 with 64 megabytes of RAM running Solaris 2.5.1.
All runs are with packet length P = 1KB. For all runs, a file consisting of k packets is encoded into n = 2k
packets, i.e., the stretch factor is 2.

For the decoding, for both the Cauchy and the Vandermonde codes, we assume that k/2 original file
packets and k/2 redundant packets were used to recover the original file. This assumption approximately
holds when a carousel encoding is used and half the packets are redundant packets (that is, the stretch factor
is 2). Tornado A has an average reception overhead of 0.05, so on average 1.05 · k/2 original file packets
and 1.05 · k/2 redundant packets were used to recover the original file. Tornado B uses a slightly different
code structure that is slower to decode but yields a smaller average reception overhead of 0.03.

We note that there is a small variation in the reception overhead for decoding Tornado codes depending
on which particular set of encoding packets are received. In Figure 2, we show the percentage of 10,000
trials in which the receiver could not reconstruct the source data for specific percentage overheads for both
Tornado A and Tornado B codes. For example, using Tornado A codes, after receiving 6% overhead, 90% of
the clients could reconstruct the source data and only 10% of the clients needed to receive more packets. For
Tornado A, the average overhead was 0.0548, the maximum overhead was 0.0850 and the standard deviation
was 0.0052. For Tornado B, the average overhead was 0.0306, the maximum overhead was 0.0550 and the
standard deviation was 0.0031.

6 Simulation Comparisons

From the previous section, it is clear that using Reed-Solomon erasure codes to encode over large files for
bulk data distribution has prohibitive encoding and decoding overhead. But another approach, described
in the introduction, is the method of interleaving suggested in [14, 16, 17, 18]. Interleaved codes are con-
structed as follows: Suppose K + L encoding packets are to be produced from K file packets. Partition the
K file packets into blocks of length k, so that there are B = K/k blocks in total. Stretch each block of k
packets to an encoding block of k +� packets using a standard erasure code by adding � = kL/K redundant
packets. Then, form the encoding of length K + L by interleaving the encoding packets from each block,

7

k

B blocks

= source data

= redundancy

Figure 3: Waiting for the last blocks to fill using interleaved codes ...

i.e., the encoding consists of sequences of B packets, each of which consist of exactly one packet from each
block.

The choice of the value of the parameter k for interleaved codes is crucial. The smaller the value of k,
the faster the decoding algorithms can reconstruct the source data. But as k shrinks, the number of blocks
comprising the source data grows. As the number of blocks grows, the receiver will have to wait longer
to receive sufficiently many packets to fill each and every block, since the distribution of received packets
across blocks is non-uniform. This effect is depicted in Figure 3. Therefore, to compare various protocols,
one quantity we measure is the reception efficiency at a receiver, η, defined as:

η = # of source data packets

of packets received prior to reconstruction

Of course the reception overhead and the reception efficiency are related; when the reception overhead is ε

the reception efficiency is 1
1+ε

. The tradeoff between reception efficiency and coding time for interleaved
codes motivates the following set of experiments.

• Suppose we choose k in the interleaved setting so that the reception efficiency is comparable to that
of Tornado codes. How does the decoding time compare?

• Suppose we choose k in the interleaved setting so that the decoding time is comparable to that of
Tornado codes. How does the reception efficiency compare?

In our initial simulations, we assume probabilistic loss patterns in which each transmission to each receiver
is lost independently with a fixed probability p. Later in this section, we run on trace data taken from
MBone sesssions in which different receivers have different loss rates and the loss patterns are bursty. In
our implementation section, we consider additional sources of inefficiency which arise in practice.

6.1 Equating Reception Efficiency

Our first simulation compares the decoding time of Tornado codes with an interleaved code with reception
efficiency comparable to those of Tornado codes. In Section 5, we determined experimentally that Tornado
A codes have the property that the reception overhead is greater than 0.07 less than 1% of the time. In

8

Speedup factor for Tornado codes
erasure probabilities

SIZE 0.01 0.05 0.10 0.20 0.50

250 KB 4.7 11.0 16.7 33.3 33.3
500 KB 6.2 17.8 29.5 44.4 88.9

1 MB 10.3 25.4 37.9 76.1 114
2 MB 16.1 42.1 74.7 112 224
4 MB 18.2 47.3 75.2 128 256
8 MB 17.9 47.9 80.9 138 294

16 MB 20.4 52.4 86.6 151 311

Table 4: Speedup of Tornado A codes over interleaved codes with comparable efficiency.

Table 4, we present the ratio between the running time of an interleaved code for which k is chosen so that
this property is also realized and the running time of a Tornado code. Of course, this ratio changes as the
loss probability and file size change.

We explain how the entries in Table 4 are derived. To compute the running time for interleaved codes, we
first use simulations to determine for each loss probability value the maximum number of blocks the source
data can be split into while still maintaining a reception overhead less than 0.07 for less than 1% of the
time. (For example, a two megabyte file consisting of 2000 one kilobyte packets can be split into at most six
blocks while maintaining this property.) We then calculate the decoding time per block, and multiply by the
number of blocks to obtain the decoding time for the interleaved code. With a stretching factor of two, one
half of all packets injected into the system are redundant encoding packets and the other half are source data
packets. Therefore, in computing the decoding time per block, we assume that half the packets received
are redundant encoding packets. Based on the data previously presented in the Cauchy codes column of
Table 3, we approximate the decoding time for a block of k source data packets by k2/31250 seconds. To
compute the running time for Tornado codes, we simply use the decode times for Tornado A as given earlier
in Table 3.

As an example, suppose the encoding of a 16 MB file is transmitted over a 1 Mbit/second channel with
a loss rate of 50%. It takes just over 4 minutes to receive enough packets to decode the file using either a
Tornado A or an interleaved code (with the desired reception overhead guarantee), but then the decoding time
is almost 10 minutes for the interleaved code compared with under 2 seconds for Tornado A. Comparisons
for encoding times yield similar results. We note that even better speedup results can be obtained for large
source data files using Tornado B codes due to their stronger decoding guarantee, which interleaved codes
are hard-pressed to achieve.

6.2 Equating Decoding Time

Our second simulation establishes interleaved codes which have comparable decoding time to Tornado
codes. Although the decoding time is both a function of the block length and the amount of packet loss
for Cauchy codes, even small block sizes such as k = 20 and k = 50 are slower to decode than Tornado
codes. (Cauchy codes with k = 20 are roughly half as fast as Tornado codes.)

Using these block sizes, we now study the maximum reception overhead as we scale to a large number
of receivers. The sender carousels through a two megabyte encoding of a one megabyte file, while receivers
asynchronously attempt to download it. We simulate results for the case in which packets are lost inde-
pendently and uniformly at random at each receiver at a rates of 10% and 50%. The 10% loss rates are

9

Reception Efficiency on a 1MB File, p = 0.1

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

Receivers

R
ec

ep
ti

on
 E

ff
ic

ie
nc

y

Tornado A

Interleaved, k = 50

Interleaved, k = 20

Reception Efficiency on a 1MB File, p = 0.5

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

Receivers

R
ec

ep
ti

on
 E

ff
ic

ie
nc

y

Tornado A

Interleaved, k = 50

Interleaved, k = 20

Figure 4: Comparison of reception efficiency for codes with comparable decoding times.

representative of congested Internet connections, while the 50% loss rates are near the upper limits of what
a mobile receiver with poor connectivity might reasonably experience. The results we give can be inter-
polated to provide intuition for performance at intermediate rates of loss. For channels with very low loss
rates, such as the 1% loss rates studied in [14], use of interleaved codes is probably acceptable, even though
Tornado codes perform equally well.

Figure 4 shows the average case and worst case reception efficiency experienced by a set of receivers
using interleaved codes with block sizes of 20 and 50, respectively. The average case is represented by
the leftmost points in each graph, corresponding to the single receiver case. These results are computed by
taking the average of 100 experiments for each receiver set size. In these figures, k refers to the block size
(in terms of number of packets) used in the interleaving scheme and p refers to the probability a packet is
lost at each receiver.

For packet loss rates of 10% and a block size of k = 50, the average efficiency of interleaved codes is
comparable to that of Tornado codes. But as packet loss rates increase, or if a smaller block size is used,
efficiency of interleaved codes drops off dramatically. Also, efficiency of the worst-case receiver does not
scale with interleaved codes as the receiver size grows large. Tornado code efficiency exhibits full scalability
and much better tolerance for high loss rates.

6.3 Scaling to Large Files

Our next experiments demonstrate that Tornado codes also scale substantially better than an interleaved
approach as the file size grows large. This is due to the fact that the number of packets a client must receive
to reconstruct the source data when using interleaving grows super-linearly in the size of the source data.
(This is the well-known “coupon collector’s problem.”) In contrast, the number of packets the receivers
require to reconstruct the source data using Tornado codes grows linearly in the size of the source data, and
in particular the reception efficiency does not decrease as the file size increases.

The effect of this difference is easily seen in Figure 5. In this case both the average reception overhead
and the maximum reception overhead grow with the length of the file when using the interleaving. This
effect is completely avoided by using Tornado codes.

10

Reception Efficiency with 500 Receivers, p = 0.1

0.2

0.4

0.6

0.8

1

100 1000 10000

File Size, KB

R
ec

ep
ti

on
 E

ff
ic

ie
nc

y

Tornado A, Avg.
Tornado A, Min.
Interleaved, k = 50, Avg.
Interleaved, k = 50, Min.
Interleaved, k = 20, Avg.
Interleaved, k = 20, Min.

Reception Efficiency with 500 Receivers, p = 0.5

0

0.2

0.4

0.6

0.8

1

100 1000 10000

File Size, KB

R
ec

ep
ti

on
 E

ff
ic

ie
nc

y

Tornado A, Avg.
Tornado A, Min.
Interleaved, k = 50, Avg.
Interleaved, k = 50, Min.
Interleaved, k = 20, Avg.
Interleaved, k = 20, Min.

Figure 5: Comparison of reception efficiency as file size grows.

6.4 Trace Data

To study the effects of real loss patterns, we perform a similar comparison using publicly available MBone
trace data collected by Yajnik, Kurose, and Towsley [20]. Over a period of several months, clients from
across the US and abroad subscribed to MBone broadcasts each of roughly an hour in length and reported
which packets they received. Clients experienced loss rates ranging from less than 1% to over 30% over the
course of these broadcasts. Sampling from these loss traces, we simulate the process of downloading files
of various lengths using interleaving and Tornado codes. The trace sampling consists of choosing a random
initial point within each trace for each file size. We plot the average reception efficiency for 120 receivers
for various file sizes in Figure 6.

The average loss rate over the parts of the traces considered was approximately 18%. Although this
appears high, there is a great deal of variance in the loss rate; some clients experience large bursts of loss
rates over significant periods of time. Given this loss rate, it is therefore not surprising that Figure 6 looks
similar to the plot in Figure 5 with loss probability p = 0.1. Notice that Tornado codes retain their superior
reception efficiency even in the face of high rates of bursty packet loss, as we expected.

For the traces we considered, the loss rates were generally below fifty percent, and hence the reception
efficiency for the Tornado codes remains extremely high. If the loss rate exceeds fifty percent, however,
and we use only a stretch factor of 2, then the reception efficiency necessarily declines. This reduction in
efficiency occurs because the carousel cycles, and hence receivers obtain duplicate packets before being able
to decode. We examine this phenomenon further with our prototype implementation in the next section.

7 Implementation of a Reliable Distribution Protocol using Tornado Codes

In this section, we describe an experimental system designed to distribute bulk data to a large number of
heterogeneous receivers who may access the data asynchronously. We separate our description of the design
into two subsections: the design of the server and the design of the client. Then we describe the experimental
setup and performance results of our system.

11

Reception Efficiency, Trace Data

0.2

0.4

0.6

0.8

1

100 1000 10000 100000

File Size, KB

R
ec

ep
ti

on
 E

ff
ic

ie
nc

y

Tornado A, Avg.

Interleaved, k = 50, Avg.

Interleaved, k = 20, Avg.

Figure 6: Comparison of reception efficiency for trace data.

7.1 Design of the Server

As described in earlier sections, the server must initially choose a stretch factor and generate an encoding
of the source data. In our earlier simulations, the server then simply cycled through a random permutation
of the source and redundant packets. These simulations ignore the issue of congestion control and do not
specify the rate at which packets were injected into the network. Receiver heterogeneity and varying rates of
network congestion motivate the need for distribution protocols which can support a variety of end-to-end
bandwidth and packet loss rates.

7.1.1 Layering Across Multiple Multicast Groups

The approach we take follows the lead of other authors who advocate layered multicast [10, 13, 19]. The
main idea underlying this approach is to enable the source to transmit data across multiple multicast groups,
thereby allowing the receiver to subscribe to an appropriate subset of these layers. A receiver’s subscription
level is based on factors such as the width of its bottleneck link to the source and network congestion. The
basic ideas common to the proposed layered schemes are:

• The server organizes the data into g layers, numbered 0, . . . , g − 1, each corresponding to a multicast
group. The layers are typically organized in order of increasing transmission rate.

• The layers are cumulative in that a receiver subscribing to layer i also subscribes to all layers beneath
it. We say that a receiver subscribes to level i when it subscribes to layers 0 through i .

Letting Bi denote the ratio of the rate used at layer i to the rate at the base layer 0, our protocol uses
geometrically increasing rates: Bi = 2i−1. Thus, a receiver at subscription level i would receive bandwidth
proportional to 2Bi , for i ≥ 1. The protocol we use is based on the scheme described in [19] which proposes
the following two novel ideas, summarized here briefly:

• Congestion control is achieved by the use of synchronization points (SP’s) which are specially marked
packets in the stream. A receiver can attempt to join a higher layer only immediately after an SP,
and keeps track of the history of events only from the last SP. The rate at which SP’s are sent in a
stream is inversely proportional to the bandwidth: lower bandwidth receivers are given more frequent
opportunities to move up to higher levels.

12

Bandwidth Packets sent during
Layer per Round Rd 1 Rd 2 Rd 3 Rd 4 Rd 5 Rd 6 Rd 7 Rd 8

3 4 0-3 4-7 0-3 4-7 0-3 4-7 0-3 4-7
2 2 4-5 0-1 6-7 2-3 4-5 0-1 6-7 2-3
1 1 6 2 4 0 7 3 5 1
0 1 7 3 5 1 6 2 4 0

Table 5: Packet transmission scheme for 4 layers

• Instead of explicit join attempts by clients, the server generates periodic bursts during which packets
are sent at twice the normal rate on each layer. This has the effect of creating network congestion con-
ditions similar to those which receivers would experience following an explicit join. So if a receiver
feels no congestion during the burst, it can safely increase its level at the next SP. Receivers drop to a
lower subscription level in the event of congestion.

Both the sending of SP’s and burst periods are driven by the sender, with the receivers reacting ap-
propriately. The attractive features of this approach are that receivers do not need to provide congestion
control feedback to the source and receivers need not coordinate join attempts to prevent disruption to other
receivers. These features are particularly important in the context of a digital fountain in which receiver-to-
source and inter-receiver communication are undesirable.

7.1.2 Scheduling Packet Transmissions Across Multiple Multicast Groups

As described earlier, a receiver at level i subscribes to all layers 0 through i . Therefore, it is important to
schedule packet transmissions carefully across the multiple layers, so as to minimize the number of duplicate
packets that a client would receive. The stretch factor c limits the number of distinct packets which can be
transmitted, and therefore also has a strong effect on the number of duplicates a client receives, especially in
the presence of high packet loss rates. Of course, use of a large stretch factor provides more flexibility, but
slows decoding time and increases the space requirements for decoding.3 For these reasons, we typically
choose a stretch factor c = 2 as compared to c = 8 used in [17, 18]. However, we find that this choice is
often suitable in practice because we use a packet transmission scheme which has the following property:

One Level Property: If a receiver remains at a fixed subscription level throughout the transmission and
packet loss remains sufficiently low (below c−1−ε

c , where ε is the reception overhead of the Tornado code),
it can reconstruct the source data before receiving any duplicate transmissions.

The packet scheduling scheme we use to realize this property is illustrated in Table 5 for 4 layers with
source data 4 packets in length and stretch factor 2.

• The source data is stretched into an encoding with stretching factor c, using an appropriate Tornado
code.

• The encoding is divided into blocks of size
∑g−1

i=0 Bi = B packets each. (This division into blocks
is not to be confused with that used in interleaved schemes - this division is solely for the purpose of
determining which packets are sent at which layer at a given time interval; the encoding is done over
the entire source data.)

3The memory required for decoding Tornado codes is proportional to the length of the encoding, not to the size of the source
data.

13

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Block 1

Block 2

0 1 2 3 4 5 6 7Block k/B

Round 4

Layer: 1 0 2 3

Figure 7: Packet send pattern for g = 4 at round 4

• Within each block, the packets are numbered sequentially from 0 to B − 1.

• The encoded data is sent in rounds. At each round a given layer i will receive a different subset of
packets from a block. Within a round, the sending pattern is the same in all blocks (e.g., as shown in
Figure 7 for g = 4 at round 4). This pattern is obtained using reverse binary encoding of g − 1 bit
numbers, the pattern at round j is determined as follows: Let j′ = j mod 2g−1 and let bitp(j ′) denote

the pth least significant bit of j′ (with bit0(j ′) denoting the least significant bit). Then, for layer g−1,
at round j , the packets sent within a block are those numbered (in g − 1 bit binary numbers):

bit0(j ′)0 . . . 0 to bit0(j ′)1 . . . 1 inclusive

For layer g − 2 similarly, at round j , the packets sent are

bit0(j ′) bit1(j ′)0 . . . 0 to bit0(j ′) bit1(j ′)1 . . . 1 inclusive

and so on for the lower layers.

It is not hard to prove that this sending pattern satisfies the One Level Property. In fact, we note that the
sender transmits a permutation of the entire encoding both to each multicast layer and to each cumulative
subscription level before repeating a packet. However, in practice, receivers which change their subscription
level over time do not witness this ideal behavior. While we show in Section 7.3 that reception efficiency
remains high even when receiver subscription levels change frequently, optimizing properties of the schedule
further for this scenario is one of the important and interesting questions which remain open in our approach.

7.2 Design of the Client

As detailed in the previous subsection, the client is responsible for observing SPs and modifying its sub-
scription level as congestion warrants. The other activity that the client must perform is the reconstruction
of the source data. There are two ways to implement the client decoding protocol. The first is an incremen-
tal approach in which the client performs preliminary decoding operations after each packet arrives. The
second is a statistical approach in which the client waits until a fixed number of packets arrive from which
it is likely that the source can be reconstructed. If the quantity of packets is insufficient, it acquires more

14

packets from the source stream. While the incremental approach has the benefit of enabling some decoding
computation to be overlapped with packet reception, we found the statistical approach to be simpler and
sufficiently fast in practice. Therefore, we chose this statistical approach for our final implementation.

7.3 Experimental Setup and Results

Now we turn to measurements of reception efficiency using our experimental system. Recall that the recep-
tion efficiency of a receiver is defined as

η = # of source data packets

Total # of packets received prior to reconstruction

The reception efficiency can be further separated into two components:

1. The coding efficiency, ηc, which captures the loss in efficiency due to the use of Tornado codes, and
is defined as:

ηc = # of source data packets

of distinct packets received prior to reconstruction

2. The distinctness efficiency, ηd , which captures the loss in efficiency due to receipt of duplicate packets,
usually caused by changes in receiver subscription layers described in Section 7.1.2. It is defined as:

ηd = # of distinct packets received

Total # of packets received

Thus, η = ηcηd .
The experimental results measure our prototype implementation. Besides testing the layered protocol we

have described, we also test a single layer protocol. That is, we also measure the reception efficiency when
the server transmits the file on a single multicast group at a fixed rate. These results allow us to focus on
the efficiency of the packet transmission scheme independent of the layering scheme for congestion control.
In both cases the server encodes using Tornado A to produce the encoding. The server runs two threads: a
UDP unicast thread which provides various control information such as multicast group information and file
length to the client and a multicast transmission thread. The clients for both protocols connect to the server’s
known UDP port for control information and on receipt of the information, subscribe to the appropriate
multicast groups.

Our test source data consisted of a Quicktime movie (a clip available from www.nfl.com) with size
slightly over two megabytes. The encoding algorithm used a stretch factor of c = 2 to produce 8264 packets
of size 500 bytes. The packets were additionally tagged with 12 bytes of information (packet index, serial
number and group number) to give a final packet size of 512 bytes. The server and clients were on three
different subnets, located at Berkeley, CMU and Cornell. There were 16 hops on the path from Berkeley
to CMU, and the bottleneck bandwidth (obtained by using mtrace and pathchar [6]) was 8 Mb/s with an
RTT of 60 ms. There were 17 hops on the path from Berkeley to Cornell, and the bottleneck bandwidth
was 9.3 Mb/s with an RTT of 87 ms. Base layer bandwidth was set at rates ranging from 64 Kb/sec to 512
Kb/sec. We ran experiments with the server both at Berkeley and at CMU and with the clients located at
the other two subnets. Locating the server at CMU tended to generate higher packet loss rates for the same
transmission bandwidth. The machines used at CMU and Berkeley were 167 MHz UltraSPARC-1’s running
Solaris 2.5.1. The client at Cornell ran on a 60 MHz Sparc. When running the layered protocol, we used 4
layers.

The data from the two sets of experiments are shown in Figure 8. As seen from the graphs for the single
layered case, for packet losses of less than 50% , the distinctness efficiency is almost always 100%. This

15

Distinctness Efficiency

50

60

70

80

90

100

0 20 40 60

Packet Loss (%)

η
d

(%
)

Coding Efficiency

50

60

70

80

90

100

0 20 40 60

Packet Loss (%)

η
c

(%
)

Total Protocol Efficiency

50

60

70

80

90

100

0 20 40 60

Packet Loss (%)

η
 (

%
)

Experimental data - 4 layers

Distinctness Efficiency

50

60

70

80

90

100

0 50 100

Packet Loss (%)

η
d

(%
)

Coding Efficiency

50

60

70

80

90

100

0 50 100

Packet Loss (%)

η
c

(%
)

Total Protocol Efficiency

50

60

70

80

90

100

0 50 100

Packet Loss (%)

η
 (

%
)

Experimental data - single layer

Figure 8: Experimental Results of the Prototype

16

is to be expected because of the One Level Property.4 Thus, for low loss rates, the protocol efficiency is
effectively the decoding efficiency, which in our example was roughly 94% on average. We further observe
that the transmission scheme is robust even under severe loss rates - at nearly a 70% loss rate, the reception
efficiency is over 75%.

The graphs on the right hand side of Figure 8 shows experimental data for the multilayered case. We
observe that the use of multiple layers for congestion control has a deleterious effect on distinctness effi-
ciency. In our set of experiments, the efficiency fell below 100% at loss rates of as low as 13%. This is
not unexpected since switching between subscription levels can cause the client to receive packets that had
already been obtained at previous subscription levels. We note however, that most of our experimental runs
had over 80% total reception efficiency even with loss rates exceeding 30%. Distinctness efficiency can
be further reduced using larger stretch factors. An interesting direction we intend to pursue further is to
study how the reception efficiency varies with the rates of change in receiver subscription level. A related,
challenging question would be determining packet transmission schedules which maximize the reception
efficiency for receivers which change levels frequently.

8 Conclusion

The introduction of Tornado codes yields significant new possibilities for the design of reliable multicast
protocols. To explore these possibilities, we formalized the notion of an ideal digital fountain and explained
how Tornado codes can yield a much closer approximation to a digital fountain than previous systems based
on standard Reed-Solomon erasure codes. Our prototype multicast data distribution system demonstrates
that simple protocols using Tornado codes are effective in practice. We plan to extend and improve our
prototype system to further explore the problem of multicast distribution. In particular, we plan to test our
prototype system with large numbers of users to fully demonstrate its effectiveness.

Given that we can closely approximate a digital fountain with Tornado codes, we conclude with other
possible applications for such an encoding scheme. One application is dispersity routing of data from
endpoint to endpoint in a packet-routing network. With packets generated by a digital fountain, the source
can inject packets along multiple paths in the network. Those packets which experience congestion are
delayed, but the destination can recover the data once a sufficient number of packets arrive, irrespective of
the paths they took. This application dates back to the seminal information dispersal work of Rabin [15] who
suggested using standard erasure codes. We expect Tornado codes will lead to improved practical dispersity
routing schemes.

Another application for which the Tornado code approximation might be useful arises in the context of
mirrored data. Currently, to minimize response time, clients search for a lightly loaded server on an uncon-
gested path. If the sources use ideal digital fountains to transmit the data, clients can access multiple sources
simultaneously, and aggregate all the packets they receive to recover the data efficiently. The problem with
a Tornado code solution is that if the stretch factor is small, one receives duplicate packets frequently; if the
stretch factor is large, the space and time requirements for decoding become prohibitive. We expect that in
some situations, parameters may be set appropriately to yield a viable solution.

References

[1] S. Acharya, M. Franklin, S. Zdonik, “Dissemination-Based Data Delivery Using Broadcast Disks,”

4Note that it is possible to have a cumulative loss rate which is less than 50% but in which losses initially are higher than 50%
in the first cycle so that the client receives some duplicates. This is precisely what happened for the outlying point at 35% packet
loss in the single layer distinctness efficiency graph.

17

IEEE Personal Communications, December 1995, pp. 50-60.

[2] J. Blömer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, D. Zuckerman, “An XOR-Based Erasure-
Resilient Coding Scheme,” ICSI Technical Report No. TR-95-048, August 1995.

[3] S. Floyd, V. Jacobson, C. G. Liu, S. McCanne, L. Zhang, “A Reliable Multicast Framework for Light-
Weight Sessions and Application Level Framing.” In ACM SIGCOMM ’95, pp. 342-356, August 1995.

[4] J. Gemmell, “ECRSM – Erasure Correcting Scalable Reliable Multicast,” Microsoft Research Techni-
cal Report MS-TR-97-20, June 1997.

[5] C. Huitema, “The Case for Packet Level FEC.” In Proc. of IFIP 5th Int’l Workshop on Protocols for
High Speed Networks, Sophia Antipolis, France, October 1996.

[6] V. Jacobson, “pathchar”, http://www-nrg.ee.lbl.gov/pathchar.

[7] J. C. Lin, S. Paul, “RMTP: A Reliable Multicast Transport Protocol.” In IEEE INFOCOM ’96, pp.
1414-1424, March 1996.

[8] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, V. Stemann, “Practical Loss-Resilient
Codes.” In Proceedings of the 29th ACM Symposium on Theory of Computing, 1997.

[9] M. Luby, M. Mitzenmacher, A. Shokrollahi, “Analysis of Random Processes via And-Or Tree Eval-
uation.” In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, January
1998.

[10] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven Layered Multicast.” In Proc. of ACM
SIGCOMM ’96, pp. 117-130, 1996.

[11] C. K. Miller, “Reliable Multicast Protocols: A Practical View.” In Proc. of the 22nd Annual Conference
on Local Computer Networks (LCN ’97), 1997.

[12] J. Nonnenmacher and E. W. Biersack, “Reliable Multicast: Where to Use Forward Error Correction.” In
Proc. of IFIP 5th Int’l Workshop on Protocols for High Speed Networks, pp. 134-148, Sophia Antipolis,
France, October 1996. Chapman and Hall.

[13] J. Nonnenmacher and E.W. Biersack, “Asynchronous Multicast Push: AMP.” In Proc. of International
Conference on Computer Communications, Cannes, France, November 1997.

[14] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-Based Loss Recovery for Reliable Multicast
Transmission.” In Proc. of ACM SIGCOMM ’97, 1997.

[15] M. O. Rabin, “Efficient Dispersal of Information for Security, Load Balancing, and Fault Tolerance.”
In Journal of the ACM, Volume 38, pp. 335-348, 1989.

[16] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communication Protocols.” In Computer
Communication Review, April 1997.

[17] L. Rizzo and L. Vicisano, “A Reliable Multicast data Distribution Protocol Based on Software FEC
Techniques.” In Proc. of HPCS ’97, Greece, June 1997.

[18] E. Schooler and J. Gemmell, “Using multicast FEC to solve the midnight madness problem,” Microsoft
Research Technical Report MS-TR-97-25, September 1997.

18

[19] L. Vicisano, L. Rizzo, and J. Crowcroft. “TCP-like congestion control for layered multicast data trans-
fer.” To appear in INFOCOM ’98.

[20] M. Yajnik, J. Kurose, and D. Towsley, “Packet Loss Correlation in the MBone Multicast Network.” In
Proceedings of IEEE Global Internet ’96, London, November 1996.

[21] R. Yavatkar, J. Griffoen and M. Sudan, “A Reliable Dissemination Protocol for Interactive Collabora-
tive Applications.” In Proceedings of ACM Multimedia ’95, San Francisco, 1995, pp. 333-344.

19

