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Abstract

Overlay networks have emerged as a powerful and highly flexible
method for delivering content. We study how to optimize through-
put of large transfers across richly connected, adaptive overlay net-
works, focusing on the potential of collaborative transfers between
peers to supplement ongoing downloads. First, we make the case
for an erasure-resilient encoding of the content. Using the digital
fountain encoding approach, end-hosts can efficiently reconstruct
the original content of size n from a subset of anyn symbols drawn
from a large universe of encoded symbols. Such an approach af-
fords reliability and a substantial degree of application-level flex-
ibility, as it seamlessly accommodates connection migration and
parallel transfers while providing resilience to packet loss. How-
ever, since the sets of encoded symbols acquired by peers during
downloads may overlap substantially, care must be taken to enable
them to collaborate effectively. Our main contribution is a collec-
tion of useful algorithmic tools for efficient estimation, summariza-
tion, and approximate reconciliation of sets of symbols between
pairs of collaborating peers, all of which keep message complexity
and computation to a minimum. Through simulations and experi-
ments on a prototype implementation, we demonstrate the perfor-
mance benefits of our informed content delivery mechanisms and
how they complement existing overlay network architectures.
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1 Introduction

Consider the problem of distributing a large new file across a
content delivery network of several thousand geographically dis-
tributed machines. Transferring the file with individual point-to-
point connections from a single source incurs two performance lim-
itations. First, the bandwidth consumption of such an approach is
wasteful. Second, the rate of each individual transfer is limited by
the characteristics of the end-to-end path between the source and
that destination. The problem of excessive bandwidth consumption
can be solved by a reliable multicast-based approach. With multi-
cast, only a single copy of each packet payload transmitted by the
server traverses each link in the multicast tree en route to the set
of clients. Providing reliability poses additional challenges, but one
elegant and scalable solution is the digital fountain approach [8],
whereby the content is first encoded via an erasure-resilient encod-
ing [18, 24, 17], then transmitted to clients. In addition to providing
resilience to packet loss, this approach also accommodates asyn-
chronous client arrivals and, if layered multicast is also employed,
heterogeneous client transfer rates.

Although multicast-based dissemination offers near-optimal scal-
ing properties in bandwidth and server load, IP multicast suffers
from limited deployment. This lack of deployment has led to the de-
velopment of end-systemapproaches [10, 13, 9], along with a wide
variety of related schemes relevant to peer-to-peer content delivery
architectures [25, 27, 29, 30, 32]. Many of these architectures over-
come the deployment hurdle faced by IP multicast by requiring no
changes to routers nor additional router functionality. Instead, these
architectures construct overlay topologies, comprising collections
of unicast connections between end-systems, in which each edge
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Figure 1: Possibilities for content delivery. Shaded content within a node in the topology represents the working set of that node. Connections
in (b) supplement (a); connections in (c) supplement (a)+(b). Source S and peer F have the content in its entirety. A, B each have different,
but overlapping halves of the full content. C, D, E each have 25% of the content.

(or connection) in the overlay is mapped onto a path in the under-
lying physical network by IP routing.

End-system multicast differs from IP multicast in a number of fun-
damental aspects. First, overlay-based approaches do not use a mul-
ticast tree; indeed, they may map multiple virtual connections onto
the same network links. Second, unlike IP multicast trees, overlay
topologies may flexibly adapt to changing network conditions. For
example, applications using overlay networks may reroute around
congested or unstable areas of the Internet [2, 28]. Finally, end-
systems are now explicitly required to cooperate. This last point
is crucial and forms the essence of the motivation for our work:
given that end-systems are required to collaborate in overlays, does
it necessarily follow that they should operate like routers, and sim-
ply forward packets? We argue that this is not the case, and that
end-systems in overlays have the opportunity to improve perfor-
mance provided they have the ability to actively collaborate, in an
informed manner.

We now return to the second limitation with traditional service
models based on tree topologies: the transfer rate to a client in
such a topology is bounded by the available bandwidth of the bot-
tleneck link on the path from the server. In contrast, overlay net-
works can overcome this limitation. In systems with ample band-
width, transfer rates across overlay networks can substantially ben-
efit from additional cross-connections between end-systems, if the
end-systems collaborate appropriately. Assuming that a given pair
of end-systems has not received exactly the samecontent, this ex-
tra bandwidth can be used to fill in, or reconcile, the differences in
received content, thus reducing the total transfer time.

Our approach to addressing these limitations is illustrated in the
content delivery scenario of Figure 1. In the initial scenario de-
picted in Figure 1(a), S is the source and all other nodes in the
tree (nodes A through E) represent end-systems downloading a
large file via end-system multicast. Each node has a working setof
packets, the subset of packets it has received (for simplicity, we as-
sume the content is not encoded in this example). Even if the over-
lay management of the end-system multicast architecture ensured
the best possible embedding of the virtual graph onto the network

graph (for some appropriate definition of best), there is still consid-
erable room for improvement. A first improvement can be obtained
by harnessing the power of parallel downloads[7], i.e. establishing
concurrent connections to multiple servers or peers with complete
copies of the file (Figure 1(b)). More generally, additional signif-
icant performance benefits may be obtained by taking advantage
of “perpendicular” connections between nodes whose working sets
are complementary, as pictured in Figure 1(c). Benefits of estab-
lishing concurrent connections to multiple peers have been demon-
strated by popular peer-to-peer file sharing systems such as Kazaa,
Grokster and Morpheus. The improvements in transfer rates that
these programs obtain provide preliminary, informal evidence of
availability of bandwidth for opportunistic downloads between col-
laborating peers. The legend of 1(d) depicts the portions of content
which can be beneficially exchanged via opportunistic transfers be-
tween pairs of end-systems in this scenario.

As discussed earlier, the tree and directed acyclic graph topologies
of Figures 1(a) and 1(b) impede the full flow of content to down-
stream receivers, as the rate of flow monotonically decreases along
each end-system hop on paths away from the source. In contrast,
the opportunistic connections of the graph of Figure 1(c) allow for
higher transfer rates, but simultaneously demand a more careful
level of orchestration between end-systems to achieve those rates.
In particular, any pair of end-systems in a peer-to-peer relationship
must be able to determine which packets lie in the set difference of
their working sets, and subsequently make an informed transfer of
those packets, i.e. they must reconcile the two working sets.

When working sets are limited to small groups of contiguous blocks
of sequentially indexed packets, reconciliation is simple, since each
block can be succinctly specified by an index and a size. How-
ever, restricting working sets to such simple patterns greatly limits
flexibility to the frequent changes which arise in adaptive overlay
networks, as we argue in Section 2. In that section, we also elab-
orate the numerous benefits of using encoded content. The main
drawback of the added flexibility provided by the use of erasure-
resilient content is that reconciliation becomes a more challenging
problem. To address this challenge, in Sections 3, 4 and 5, we pro-
vide a set of tools for estimating, summarizing, and approximately
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reconciling working sets of connected clients, all of which keep
message complexity and computation to a minimum. In Section 6,
we demonstrate through simulations and experiments on a proto-
type implementation that these tools, coupled with the encoding
approach, form a highly effective delivery method which can sub-
stantially reduce transfer times over existing methods. We provide
a recap of our results and draw conclusions in Section 7.

2 Content Delivery Across Overlay Networks

We motivate our approach first by sketching fundamental chal-
lenges that must be addressed by any content delivery architecture
and outlining the set of opportunities that an overlay approach af-
fords. Next, we argue the pros and cons of encoded content, the
cons primarily being a small amount of added complexity and the
pros being greatly improved flexibility and scalability. We outline
the encoding building blocks we use and enumerate the benefits
they provide and the costs they incur.

2.1 Challenges and Opportunities

When operating in the context of the fluid environment of the In-
ternet, there are a number of fundamental problems that a content
delivery infrastructure must cope with, including:

� Asynchrony: Receivers may open and close connections or
leave and rejoin the infrastructure at arbitrary times.

� Heterogeneity: Connections vary in speed and loss rates.

� Transience: Routers, links and end-systems may fail and
their performance may fluctuate over time.

� Scalability: The service must scale to large receiver popula-
tions and large content.

Overlay networks should tolerate asynchrony and heterogeneity
and should adapt to transient behavior, all in a scalable manner. For
example, a robust overlay network should have the ability to adap-
tively detect and avoid congested or temporarily unstable [15, 2]
areas of the network. Continuous reconfiguration of virtual topol-
ogy by overlay management strives to establish paths with the most
desirable end-to-end characteristics. While optimal paths may be
difficult to identify, an overlay node can often identify paths that
are better than default Internet paths [2, 28]. Such reactive behavior
of the virtual topology may frequently force the nodes to reconnect
to better-suited peers. But of course this adaptive behavior then ex-
acerbates the fundamental problems enumerated above.

Another consequence of the fluidity of the environment is that
content is likely to be disseminated non-uniformly across peers.
For example, discrepancies between working sets may arise due
to uncorrelated losses, bandwidth differences, asynchronous joins,
and topology reconfigurations. More specifically, receivers with
higher transfer rates and receivers who initiate the download ear-
lier will simply have more content than their peers. As the transfers
progress, and different end-systems peer with one another, working
sets will become further divergent and fragmented. By carefully or-
chestrating connections, one may be able to manage the level of
fragmentation, but only at the expense of restricting potential peer-
ing arrangements, thereby limiting throughput.

Finally, we also want to take advantage of a significant opportunity
presented by overlay networks discussed in the introduction: the

ability to download content across multiple connections in parallel.
Or more generally, we wish to make beneficial use of any available
connection present in an adaptive overlay, including ephemeral con-
nections which may be short-lived, may be preempted, or whose
performance may fluctuate over time. This opportunity raises the
further challenge of delivering content which is not only useful, but
which is useful even when other connections are being employed
in parallel, and doing so with a minimum of set-up overhead and
message complexity.

2.2 Limitations of Stateful Solutions

Solutions to the problems and concerns of the preceding subsection
cannot be scalably achieved with techniques that require state to be
stored at connection endpoints. For example, while issues of con-
nection migration, heterogeneity, and asynchrony are tractable, so-
lutions to each problem generally require significant per-connection
state. The retained state makes such approaches highly unscalable.
Moreover, bulky per-connection state can have significant impact
on performance, since this state must be maintained in the face of
reconfiguration and reconnection.

Parallel downloading using stateful approaches is also problematic,
as discussed in [7]. The natural approach is to divide the range of
the missing packets into disjoint sets in order to download different
ranges from different sources. With heterogeneous bandwidth and
transient network conditions, effectively predicting the correct dis-
tribution of ranges among sources is difficult, and hence frequent
renegotiation may be required. Also, there is a natural bottleneck
that arises from the need to obtain “the last few packets.” If an end-
system has negotiated with multiple sources to obtain certain packet
ranges, and one source is slow in sending the last necessary packets,
the end-system must either wait or pursue a fine-grained renegoti-
ation with other sources. Both of these problems are alleviated by
the use of encoded content, as we describe below. While we do not
argue that parallel downloading with unencoded content is impos-
sible (for example, see [26]), the use of encoding facilitates simpler
and more effective parallel downloading.

One other complication is that in order to maximize the advantage
of obtaining useful content from multiple peers, it is actually ben-
eficial to have partially downloaded content distributed unevenly
across participating end-systems, so that there is considerable dis-
crepancy between working sets. As noted earlier, discrepancies in
working sets will naturally arise due to factors such as uncorre-
lated losses, bandwidth differences, asynchronous joins, and topol-
ogy reconfigurations. But stateful approaches in which end-systems
attempt to download contiguous blocks of unencoded packets work
against this goal, since end-systems effectively strive to reduce the
discrepancies between the packets they obtain. Again, in schemes
using encoded content, this problem is not a consideration.

2.3 Benefits of Encoded Content

An alternative to using stateful solutions as described above is the
use of the digital fountain paradigm [8] running over an unreliable
transport protocol. The digital fountain approach was originally de-
signed for point-to-multipoint transmission of large files over lossy
channels. In this application, scalability and resilience to packet loss
is achieved by using an erasure correcting code[17, 18, 24] to pro-
duce an unbounded stream of encoding symbols derived from the

3



source file. The encoding stream has the guarantee that a receiver is
virtually certain to be able to recover the original source file from
any subset of distinct symbols in the encoding stream equal to the
size of the original file. In practice, this strong decoding guarantee
is relaxed in order to provide efficient encoding and decoding times.
Some implementations are capable of efficiently reconstructing the
file having received only a few percent more than the number of
symbols in the original file [17, 16, 8], and we assume such an im-
plementation is used. A digital fountain approach provides a num-
ber of important benefits which are useful in a number of content
delivery scenarios [8, 7, 16].

� Continuous Encoding: Senders with a complete copy of a
file may continuously produce encoded symbols from the con-
tent.

� Time-Invariance: New encoding symbols are produced in-
dependently from symbols produced in the past.

� Tolerance: Digital fountain streams are useful to all receivers
regardless of the times of their connections or disconnections
and their rates of sampling the stream.

� Additivity: Fountain flows generated by senders with differ-
ent sources of randomness are uncorrelated, so parallel down-
loads from multiple servers with complete copies of the con-
tent require no orchestration.

While the full benefits of encoded content described above apply
primarily to a source with a copy of the entire file, some benefits can
be achieved by end-systems with partial content, by re-encoding the
content as described in Section 5.4. The flexibility provided by the
use of encoding frees the receiver from receiving all of a set of dis-
tinct symbols and enables fully statelessconnection migrations, in
which no state need be transferred among hosts and no dangling re-
quests for retransmission need be resolved. It also allows the nodes
of the overlay topology to connect to as many senders as necessary
and obtain distinct encoding symbols from each, provided these
senders are in possession of the entire file.

There is one significant disadvantage from using encoded content,
aside from the small overhead associated with encoding and decod-
ing operations. In a scenario where encoding symbols are drawn
from a large, unordereduniverse, end-systems that hold only part
of the content must take care to arrange transmission of useful infor-
mation between each other. The digital fountain approach handles
this problem in the case where an end-system has decoded the en-
tire content of the file; once this happens, the end-system can gen-
erate new encoded content at will. It does not solve this problem
when an end-system can only forward encoding packets, since the
receiving end-system may already have obtained those packets. To
avoid redundant transmissions in such scenarios, we describe mech-
anisms for estimating and reconciling differences between working
sets and subsequently performing informed transfers.

2.4 Suitable Applications

Reliable delivery of large files leveraging erasure-resilient encod-
ings is only one representative example of content delivery sce-
narios that can benefit from the approaches proposed in this paper.
More generally, any content delivery application which satisfies the
following conditions may stand to benefit.

� The architecture employs a rich overlay topology potentially
involving multiple connections per peer.

� Peers may only have a portion of the content, with potentially
complex correlation between the working sets of peers.

� Working sets of peers are drawn from a large universe of pos-
sible symbols.

Another natural application which satisfies these criteria is video-
on-demand. This application also involves reliable delivery of a
large file, but with additional complications due to timeliness con-
straints, buffering issues, etc. Our methods for informed content
delivery can naturally be utilized in conjunction with existing ap-
proaches for video-on-demand such as [19] to move from a pure
client-server model to an overlay-based model. While the methods
of [19] also advocate the use of erasure-resilient codes, our methods
for informed content delivery for video-on-demand apply whether
or not codes are used. Similarly, informed content delivery can be
used for near real-time delivery of live streams. For this application,
where reliability is not necessarily essential, collaboration may im-
prove best-effort performance. Finally, our approach may be used
for peer-to-peer applications relying on a shared virtual environ-
ment, such as distributed interactive simulation or networked multi-
player games. For these applications, peers may only be interested
in reconstructing a small subspace of what can be a very large-scale
environment. Here, in addition to issues of scalable naming and
indexing, summarization is also essential for facilitating effective
collaboration between peers.

3 Reconciliation and Informed Delivery

The preceding sections have established expectations for informed
collaboration: an adaptive overlay architecture designed for scal-
able transmission of rich content. We abstract our solutions away
from the issues of optimizing the layout of the overlay over time
[10, 13, 2], as well as distributed naming and indexing [25, 29, 27];
our system supplements any set of solutions employed to address
these issues.

The approaches to reconciliation which we wish to address are local
in scope, and typically involve a pair or a small number of end-
systems. In the setting of wide-area content delivery, many pairs of
systems may desire to transfer content in an informed manner. For
simplicity, we will consider each such pair independently, although
we point to the potential use of our techniques to perform more
complex, non-local orchestration.

Our goal is to provide the most cost-effective reconciliation mech-
anisms, measuring cost both in computation and message com-
plexity. In the subsequent sections, we propose the following ap-
proaches:

Coarse-grained reconciliation employs working set sketches, ob-
tained by random sampling or min-wise sketches. Coarse ap-
proaches are not resource-intensive and allow us to estimate
the fraction of symbols common to the working sets of both
peers.

Speculative transfers involve a sender performing “educated
guesses” as to which symbols to generate and transfer. This
process can be fine-tuned using results of coarse-grained rec-
onciliation.
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Fine-grained reconciliation employs compact, searchable work-
ing set summaries such as Bloom filters or approximate rec-
onciliation trees. Fine-grained approaches are more resource-
intensive and allow a peer to determine the symbols in the
working set of another peer with a quantifiable degree of cer-
tainty.

The techniques we describe provide a range of options and are
useful in different scenarios, primarily depending on the resources
available at the end-systems, the correlation between the work-
ing sets at the end-systems, and the requirements of precision.
The sketches can be thought of as an end-system’s calling card:
they provide some useful high-level information, are extremely
lightweight, can be computed efficiently, can be incrementally up-
dated at an end-system, and fit into a single 1KB packet. Generat-
ing the searchable summaries requires a bit more effort: while they
can still be computed efficiently and incrementally updated, they
require a modest amount of space at the end-system and a gigabyte
of content will typically require a summary on the order of 1MB
in size. Finally, recoded content optimizes transfers by tuning, or
personalizing, the content across a particular peer-to-peer connec-
tion based on information presented in sketches. We describe these
methods and their performance tradeoffs in the following sections.

4 Estimating Working Set Similarity

In this section, we present simple and quick methods for estimat-
ing the resemblance of the working sets of pairs of nodes prior to
establishing connections. Knowledge of the resemblance allows a
receiver to determine the extent to which a prospective peer can
offer useful content. We also use the resemblance to optimize our
recoding strategy described in Section 5.4. Since it is essential that
the data to compute the resemblance be obtained as quickly as pos-
sible, our methods are designed to give accurate answers when only
a single 1KB packet of data is transferred between peers. We em-
phasize that there are different tradeoffs involved in each of the ap-
proaches we describe; the best choice may depend on specifics of
the application.

We first establish the framework and notation. Let peers A and B
have working sets SA and SB containing symbols from an encoding
of the file.

Definition 1 (Containment) The containment of B in A is the
quantity jSA\SB j

jSBj
.

Definition 2 (Resemblance) The resemblance of A andB is the
quantity jSA\SB j

jSA[SB j
.

These definitions are due to Broder [5] and were applied to deter-
mine the similarity of documents in search engines [1]. The contain-
ment represents the fraction of elements B that are useless (already
known) to A. If this quantity is close to zero, the containment is
small, and B rates to be a useful source of information for A. We
point out that containment is not symmetric while resemblance is.
Also, given jSAj and jSB j, an estimate for one can easily be used
to calculate an estimate for the other.

We suppose that each element of a working set is identified by an
integer key; sending an element entails sending its key. We will

think of these keys as unique, although they may not be; for exam-
ple, if the elements are determined by a hash function seeded by the
key, two keys may generate the same element with small probabil-
ity. This may introduce small errors in estimating the containment,
but since we generally care only about the approximate magnitude
of the containment, this will not have a significant impact. With 64-
bit keys, a 1KB packet can hold roughly 128 keys, which enables
reasonable estimates for the techniques we describe. Finally, we
assume that the integer keys are distributed over the key space uni-
formly at random, since the key space can always be transformed
by applying a (pseudo)random hash function.

The first approach we consider is straightforward random sampling:
simply select k elements of the working set at random (with re-
placement) and transport those to the peer. (We may also send the
size of the working set, although this is not essential.) Suppose
A sends B a random sample KA from SA. The probability that
each element in KA is also in SB is jSA\SBj

jSB j
, and hence jKA\SBj

k

is an unbiased estimate of the containment. Random samples can
be incrementally updated upon acquisition of new elements using
reservoir sampling [31]. Random sampling suffers the drawback
that B must search for each element of KA in its own list SB .
Although such searches can be implemented quickly using stan-
dard data structures (interpolation search will take O(log log jSB j)
average time per element), they require some extra updating over-
head. One remedy, suggested in [5], is to sample only those ele-
ments whose keys are 0 modulo k for an appropriately chosen k,
yielding samples KA and KB . (Here we specifically assume that
the keys are random.) In this case jKA\KB j

jKB j
is an unbiased esti-

mate of the containment; moreover, all computations can be done
directly on the small samples, instead of on the full working sets.
However, this technique generates samples of variable size, which
can be awkward, especially when the size of the working sets varies
dramatically across peers. Another concern about both of these ran-
dom sampling methods is that they do not easily allow one peer to
check the resemblance between prospective peers. For example, if
peer A is attempting to establish connections with peers B and C,
it might be helpful to know the resemblance between the working
sets of B and C.
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Another clever sampling technique from [5] avoids the drawbacks
of the first two approaches. This approach, which we employ, cal-
culates working set resemblance based on min-wise sketches, fol-
lowing [5, 6]; the method is depicted in Figure 2. Let �j repre-
sent a random permutation on the key universe U . For a set S =
fs1; s2; : : : ; sng, let �j(S) = f�j(s1); �j(s2); : : : ; �j(sn)g, and
let min�j(S) = mink �j(sk). Then for two working sets SA and
SB containing symbols of the file F , we have x = min�j(SA) =
min�j(SB) if and only if ��1

j (x) 2 SA \ SB . That is, the min-
imum element after permuting the two sets SA and SB matches
only when the inverse of that element lies in both sets. In this case,
we also have x = min�j(SA [ SB). If �j is a random permu-
tation, then each element in SA [ SB is equally likely to become
the minimum element of �j(SA [ SB). Hence we conclude that
min�j(SA) = min�j(SB) with probability r = jSA\SBj

jSA[SBj
. Note

that this probability is the resemblance of A and B. Now to es-
timate the resemblance, peer A computes min�j(SA) for some
fixed number of permutations �j (as shown on Figure 2), and simi-
larly for B and SB . The peers must agree on these permutations in
advance; we assume they are fixed universally off-line.

For B to estimate jSA\SBj

jSA[SBj
, A sends B a vector containing A’s

minima, v(A). B then compares v(A) to v(B), counts the num-
ber of positions where the two are equal, and divides by the total
number of permutations, as depicted in Figure 2. The result is an
unbiased estimate of the resemblance r since each position is equal
with probability r.

In practice, truly random permutations cannot be used, as the stor-
age requirements are impractical. Instead, we may use simple per-
mutations, such as �j(x) = ax + b (mod jU j) for randomly
chosen a and b and when U is prime, without affecting overall per-
formance significantly [4, 6].

The min-wise sketches above allow similarity comparisons given
any two sketches for any two peers. Moreover, these sketches can
be combined in natural ways. For example, the sketch for the union
of SA and SB is easily found by taking the coordinate-wise min-
imum of v(A) and v(B). Estimating the resemblance of a third
peer’s working set SC with the combined working set SA[SB can
therefore be done with v(A); v(B), and v(C). Min-wise sketches
can also be incrementally updated upon acquisition of new content,
with constant overhead per receipt of each new element.

5 Reconciling Differences

As shown in the previous section, a single packet can allow peers to
estimate the resemblance in their working sets. If the difference is
sufficient to allow useful exchange of data, the peers may then act
to determine what data to exchange. We provide methods for this
problem that generally require transmission of only a handful of
packets. There are a number of related performance considerations
that we develop below.

The problem we consider is a set difference problem. Specifically,
suppose peer A has a working set SA and peer B has a working set
SB , both sets being drawn from a universe U with jU j = u. Peer A
sends peer B some message M with the goal of peer B determining
as many elements in the set SB � SA as possible.

The set difference problem has been widely studied in communi-
cation complexity. The focus, however, has generally been on de-

termining the exact difference SB � SA. With encoded content, a
peer does not generally need to acquire all of the symbols in this
difference. For example, two peers may each have 3/4 of the sym-
bols necessary to reconstruct the file with no overlap between them.
Hence we do not need exact reconciliation of the set difference; ap-
proximations will suffice. One of our contributions is this insight
that approximatereconciliation of the set differences is sufficient
and allows us to determine a large portion of SB � SA with very
little communication overhead.

In this section, we describe how to quickly determine approximate
differences using Bloom filters [3]. We also introduce a new data
structure, which we call an approximate reconciliation tree. Ap-
proximate reconciliation trees are especially useful when the set
difference is small but still potentially worthwhile.

There are several performance considerations in designing these
data structures:

� Transmission size of the message (data structure).

� Computation time.

� Accuracy of the approximation (defined below).

Definition 3 (Accuracy) A method for set reconciliation has accu-
racya if it can identify a given discrepancy between the sets of two
peers with probabilitya.

Traditional approaches which we will describe briefly in Section 5.1
provide perfect accuracy (i.e. accuracy equal to 1) but are pro-
hibitive in either computation time or transmission size. Bloom fil-
ters and approximate reconciliation trees trade off accuracy against
transmission size and computation time and will be described in
Sections 5.2 and 5.3.

5.1 Exact Approaches

To compute differences exactly, peer A can obviously send the
entire working set SA, but this requires O(jSAj log u) bits to be
transmitted. A natural alternative is to use hashing. Suppose the
set elements are hashed using a random hash function into a uni-
verse U 0 = [0; h). Peer A then hashes each element and sends
the set of hashes instead of the actual working set SA. Now only
O(jSAj log h) bits are transmitted. Strictly speaking, this process
may not yield the exact difference: there is some probability that an
element x 2 SB n SA will have the same hash value as an element
y of SA, in which case peer B will mistakenly believe x 2 SA.
The miss probability can be made inversely polynomial in jSAj by
setting h = poly(jSAj), in which case �(jSAj log jSAj) bits are
sent.

Another approach is to use set discrepancy methods of [22]. If the
discrepancy d = jSB � SAj + jSA � SB j is known, then peer A
can send a data collection of size only O(d log u) bits, or if hashing
is done as pre-processing, of size only O(d log h) bits. However,
if d is not known, a reasonable upper bound on d must be deter-
mined through multiple rounds of communication. In the special
case where SA � SB , this information is used to find coefficients
of a characteristic polynomial which is factored to recover the dif-
ferences. Otherwise, a rational polynomial is interpolated and fac-
tored to recover the difference. In either case, the amount of work is
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�(d3). This protocol was later improved in [21] to run in expected
O(d) time at the cost of requiring more rounds of communication.
For our application, multiple rounds of communication are unde-
sirable, since the duration of each round is at least one round-trip
time.

5.2 A Bloom Filter Approach

In our applications, it is sufficient for peer B to be able to find most
or even just someof the elements in jSB � SAj. We describe how
to use Bloom filters in this case.

We first review the Bloom filter data structure [3]. More details and
other applications can be found in [12]. A Bloom filter is used to
represent a set S = fs1; s2; : : : ; sng of n elements from a universe
U of size u, and consists of an array ofm bits, initially all set to 0. A
Bloom filter uses k independent random hash functions h1; : : : ; hk
with range f0; : : : ;m� 1g. For each element s 2 S, the bits hi(s)
are set to 1 for 1 � i � k. To check if an element x is in S, we
check whether all hi(x) are set to 1. If not, then clearly x is not
a member of S. If all hi(x) are set to 1, we assume that x is in
S, although we are wrong with some probability. Hence a Bloom
filter may yield a false positive, where it suggests that an element
x is in S even though it is not. The probability of a false positive f
depends on the number of bits used per item m=n and the number
of hash functions k according to the following equation: f = (1�
e�kn=m)k:

For an approximate reconciliation solution, peer A sends a Bloom
filter FA of SA; peer B would then check for each element of SB in
FA. When a false positive occurs, peer B assumes that peer A has
a symbol that it does not have, and so peer B fails to send a symbol
that would have been useful. However, the Bloom filter does not
cause peer B to ever mistakenly send peer A a symbol that is not
useful. As we have argued, if the set difference is large, the failure
to send some useful symbols is not a significant problem.

The number of bits per element can be kept small while still achiev-
ing high accuracy. For example, using just four bits per element and
three hash functions yields an accuracy of 85:3%; using eight bits
per element and five hash functions yields an accuracy of 97:8%.
Using four bits per element, we can create filters for 10,000 symbols
using just 40,000 bits, which can fit into five 1 KB packets. Further
improvements can be had by using the recently introduced com-
pressed Bloom filter, which reduces the number of bits transmitted
between peers at the cost of using more bits to store the Bloom filter
at the end-systems and requiring compression and decompression
at the peers [23]. For simplicity, we use only standard Bloom filters
in the experiments in this paper. For computation time, O(jSAj)
preprocessing is required to set up the Bloom filter, and O(jSB j)
work is required to find the set difference.

The requirement for O(jSAj) preprocessing time and O(jSAj) bits
to be sent may seem excessive for large jSAj, especially when far
fewer than jSAj packets will be sent along a given connection.
There are several possibilities for scaling this approach up to larger
numbers of packets. For example, for large jSAj or jSB j, peer A
can create a Bloom filter only for elements of SA that are equal to
� modulo  for some appropriate � and . PeerB can then only use
the filter to determine elements in SB � SA equal to � modulo 
(still a relatively large set of elements). The Bloom filter approach
can then be pipelined by incrementally providing additional filters

for differing values of � as needed.

5.3 Approximate Reconciliation Trees
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Figure 3: Example of creation and Bloom filtering of an approxi-
mate reconciliation tree. (M is O(poly jSAj); in this case, M =
jSAj

2 = 49, h is 64, and example permutation functions are as
shown.

Bloom filters are the preferred data structures when the working
sets of the two peers have small resemblance. However, our overlay
approach can be useful even when the resemblance is large, and
less than 1% of the symbols at peer B might be useful to peer A
(this difference may still be hundreds of symbols). For this case we
suggest a potentially faster approach, using a new data structure we
have developed called approximate reconciliation trees.

Our approximate reconciliation trees use Bloom filters on top of a
tree structure that is similar in spirit to Merkle trees, which are used
in cryptographic settings to minimize the amount of data transmit-
ted for verification [20]. We limit ourselves here to an introductory
description focused on our applications here; other useful proper-
ties and applications will be detailed in a subsequent paper.

Our tree structure is most easily understood by considering the fol-
lowing construction. Peer A (implicitly) constructs a binary tree of
depth log u. The root corresponds to the whole working set SA.
The children correspond to the subsets of SA in each half of U ;
that is, the left child is SA \ [0; u=2 � 1] and the right child is
SA \ [u=2; u � 1]. The rest of the tree is similar; the jth child at
depth k corresponds to the set SA \ [(j � 1) � u=2k; j � u=2k � 1].
Similarly, peer B constructs a similar tree for elements in SB . Now
suppose nodes in the tree can be compared in constant time, and
peer A sends its tree to peer B. If the root of peer A matches the
root of peer B, then there are no differences between the sets. Oth-
erwise, there is a discrepancy. Peer B then recursively considers the
children of the root. If x 2 SB�SA, eventually peer B determines
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that the leaf corresponding to x in its tree is not in the tree for peer
A. Hence peer B can find any x 2 SB � SA. The total work for
peer B to find all of SB�SA is O(d log u), since each discrepancy
may cause peer B to trace a path of depth log u.

The above tree has �(u) nodes and depth �(log u), which is un-
suitable when the universe is large. However, almost all the nodes in
the tree correspond to the same sets. In fact there are only O(jSAj)
non-trivial nodes. The tree can be collapsed by removing edges be-
tween nodes that correspond to the same set, leaving only �(jSAj)
nodes. Unfortunately, the worst-case depth may still be 
(jSAj). To
solve this problem we hash each element initially before inserting
it into the virtual tree, as shown in Figure 3(a,b). The range of the
hash function should be at least poly(jSAj) to avoid collisions. We
assume that this hash function appears random, so that for any set
of values, the resulting hash values appear random. In this case, the
depth of the collapsed tree can easily be shown to be �(log jSAj)
with high probability. This collapsed tree is what is actually main-
tained by peers A and B.

As seen in Figure 3(b), each node can represent a set of �(n) el-
ements, which would make comparing nodes in constant time dif-
ficult. We solve this problem again with hashing, so that each set
of elements corresponds to a value. The hash associated with each
internal node of the tree is the XOR of the values of its children,
as shown in Figure 3(d). Unfortunately, the high order bits of the
first hash values of adjacent leaves in the tree are highly correlated,
since this first hash determines placement in the tree. Therefore, we
hash each leaf element again into a universe U0 = [1; h) to avoid
this correlation. It is these second hash values that are used when
computing the XOR of hashes in a bottom-up fashion up the tree.
Checking if two nodes are equal can be done in constant time by
checking the associated values, with a small chance of a false pos-
itive due to the hashing. As with Bloom filters, false positives may
cause peer B to miss some nodes in the set difference SB � SA.

The advantage of the tree over a Bloom filter is that it allows for
faster search of elements in the difference, when the difference is
small; the time is O(d log jSBj) using the tree instead of O(jSB j)
for the Bloom filter. To avoid some space overhead in sending an
explicit representation of the tree, we instead summarize the hashes
of the tree in a Bloom filter. For peer B to see if a node is matched
by an appropriate node from peer A, peer B can simply check the
Bloom filter for the corresponding hash. This use of a Bloom filter
introduces false positives but allows a small constant number of bits
per element to be used while maintaining reasonable accuracy.

A false positive from the Bloom filter prematurely cuts off the
search for elements in the difference SB � SA along a path in
the tree. If the false positive rate is high, the searching algorithm
may never follow a path completely to the leaf. We can amelio-
rate this weakness by not terminating a search at the first match
between nodes. Instead, we add a correction level c correspond-
ing to the number of consecutive matches allowed without pruning
the search, i.e. setting c = 0 terminates the search at the first match
found, while setting c = 1 terminates the search only when matches
are identified both at an internal node and a child of that node, and
so on. If the correction level is greater than d, then any node in the
bottom d levels of the tree is at greater risk of leading to a false pos-
itive. To cope with this problem, we use separate Bloom filters for
internal hashes and leaf hashes, giving finer control over the overall

false positive probability.

Figure 4 shows the results of experiments using approximate rec-
onciliation trees. These experiments used sets of 10; 000 elements
with 100 differences. For larger sets, keeping the bits per element
constant will cause the error rate to increase slowly due to the tree
traversals - we note that only 
(log log `) bits per element are
needed to avoid this for ` elements. Figure 4(a) demonstrates both
the tradeoff involved when changing the number of bits used for the
internal nodes and leaves while keeping the total constant and the
benefits of using more levels of correction. The figure shows that
using more correction levels and protecting the leaf hashes with a
large number of bits per element significantly improves the frac-
tion of differences found. For example, at c = 5, internal nodes
are well protected against false positives, so the best performance
is achieved when nearly 6 of the 8 available bits per element are
allocated to the leaf filters.

Table 4(b) shows the accuracy for various numbers of bits per ele-
ment and levels of correction using the optimal distribution of bits
between the filters for leaves and interior nodes. The accuracy is
roughly 62% when using 4 bits per element and over 90% with 8
bits per element.

Finally, the main tradeoffs between optimized Bloom filters and ap-
proximate reconciliation trees are presented in Figure 4(c). With 8
bits per element, both data structures have over 90% accuracy, but
the search time on the Bloom filter scales linearly with the size of
the set, not the set difference.

5.4 Recoded Content
The final technique we describe is recoding, a technique which can
be applied only when encoded content is employed (sketches and
approximate reconciliation methods can be employed whether or
not erasure correcting codes are used). Recoding is best applied
when collaborating peers are known to have correlated working sets
but do not yet know what elements are shared, i.e. in conjunction
with coarse-grained reconciliation. One obvious possibility is for
peers to send random encoding symbols, but this leads to a large
amount of useless data being transmitted in many circumstances.
For example, if the containment of B in A is 0.8, then sending a
random symbol will be useless 80% of the time. On the other hand,
as we explain more clearly below, sending a combination (using
XOR) of 9 distinct output symbols is useless with probability only
0:89 � 14%. To describe recoding, we begin by providing rele-
vant details for erasure correcting codes in Section 5.4.1. We then
introduce recoding functionality in Section 5.4.2.

5.4.1 Sparse Parity Check Codes

To describe the recoding techniques we employ, we must first pro-
vide some additional details and terminology of sparse parity-check
codes now advocated for error-correction and erasure resilience,
and used in constructions which approximate an idealized digital
fountain. Detailed performance evaluation of these codes in net-
working applications is detailed in [8]. A piece of content is di-
vided into a collection of ` fixed-length blocks x1; : : : ; x`, each of
size suitable for packetization. For convenience, we refer to these
as input symbols. An encoder produces a potentially unbounded
sequence of output symbols, or encoding packets, y1; y2; : : : from
the set of input symbols. With parity-check codes, each symbol is
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(a) Accuracy tradeoffs at 8 bits per element

Correction Bits per Element
2 4 6 8

0 0.0000 0.0087 0.0997 0.2540
1 0.0063 0.1615 0.3950 0.6246
2 0.0530 0.3492 0.6243 0.8109
3 0.1323 0.4800 0.7424 0.8679
4 0.2029 0.5538 0.7966 0.9061
5 0.2677 0.6165 0.8239 0.9234

(b) Accuracy of approximate reconciliation trees

Data Structure Size in bits Accuracy Speed
Bloom filters 8jSAj 98% O(jSAj)
A.R.T. (c = 5) 8jSAj 92% O(d log jSAj)

(c) Comparison of data structures at 8 bits per element

Figure 4: Approximate Reconciliation Statistics

simply the bitwise XOR of a specific subset of the input symbols.
A decoder attempts to recover the content from the encoding sym-
bols. For a given symbol, we refer to the number of input symbols
used to produce the symbol as its degree, i.e. y3 = x3 � x4 has
degree 2. The time to produce an encoding symbols from a set of
input symbols is proportional to the degree of the symbol, while de-
coding from a sequence of symbols takes time proportional to the
total degree of the symbols in the sequence, using the substitution
rule defined in [17]. Encoding and decoding times are a function of
the averagedegree; when the average degree is constant, we say the
code is sparse.

Well-designed sparse parity check codes typically require recovery
of a few percent (less than 5%) of symbols beyond `, the minimum
needed for decoding. The decoding overheadof a code is defined
to be �d if (1 + �d)` encoding symbols are needed on average to
recover the original content.

Provably good degree distributions have been developed and an-
alyzed in [17, 16]. Our experience has been that heuristic ap-
proaches to generate degree distributions that leverage ideas from
these works also perform well in practice for our application [11].

O RI O RIO RI

Peer A Peer B

TRANSMISSION OF ENCODED CONTENT

TRANSMISSION OF RECODED CONTENT

Full Server

Encode Decode Network transfer

Figure 5: Example of transmission of encoded an recoded content.
I: input symbols (original data blocks), O: encoded output symbols,
R: recoded output symbols.

5.4.2 Recoding Methods

A recoded symbol is simply the bitwise XOR of a set of encoded
symbols. Like a regular encoded symbol, a recoded symbol must
be accompanied by a specification of the symbols blended to cre-
ate it. To specify the input symbols combined, a recoded symbol
must also list identifiers for the encoded symbols from which it was
produced. As with normal sparse parity check codes, irregular de-
gree distributions work well, although we advocate use of a fixed
degree limit primarily to keep the listing of identifiers short. En-
coding and decoding are performed in a fashion analogous to the
substitution rule. For example, a peer with output symbols y5, y8
and y13 can generate recoded symbols z1 = y13, z2 = y5� y8 and
z3 = y5 � y13. A peer that receives z1, z2 and z3 can immediately
recover y13. Then by substituting y13 into z3, the peer can recover
y5, and similarly can recover y8 from z2. As the output symbols are
recovered, the normal decoding process proceeds. The overall flow
from input symbols to recoded symbols and back in an example
where a server is directly connected to two peers and the two peers
are engaged in an additional collaboration is illustrated in Figure 5.

To get a feel for the probabilities involved, we consider the proba-
bility that a recoded symbol is immediately useful. Assume peer B
is generating recoded symbols from file F for peer A and by virtue
of a transmitted sketch, knows the containment c = jSA\SBj

jSB j
. The

probability that a recoded symbol of degree d immediately yields

a new encoded symbol is
(cjSB j
d�1 )(

(1�c)jSB j
1 )

(jSBj
d
)

. This is maximized

for d =
�

c
1�c

�
. (Note that as recoded symbols are received, con-

tainment naturally increases and the target degree increases accord-
ingly.) Using this formula for d maximizes the probability of imme-
diate benefit but is actually not optimal, since a recoded symbol of
this degree runs a large risk of being useless. Thus we use this value
of d as a lower limit on the actual degree generated, and generate
degrees between this value and the maximum allowable degree, in-
clusively. Recoded symbols which are not immediately useful are
often eventually useful with the aid of recoded (or encoded) sym-
bols which arrive later. By increasing the degree at the cost of im-
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Figure 6: Scenarios considered in our experiments. (a) Peer-to-peer
reconciliation, (b) Peer-to-peer collaboration augmenting a down-
load, (c) Download from multiple peers in parallel.

mediate benefit, the probability of completely redundant symbols is
substantially reduced.

6 Experimental Results

Our experiments focus on showing the overhead and potential
speedups of using our methods in peer-to-peer reconciliation as
well as in the setting of downloads augmented by collaborative
transfers. We first show the feasibility of reconciling with a peer
with partial content, by demonstrating the overhead in receiving
symbols from such a sender. Next, we evaluate the use of senders
with partial content, alone or supplementing full senders, and show
the potential for speedups from parallel collaborative transfers. The
simple scenarios we present are designed to be illustrative and high-
light the primary benefits of our methods; the performance im-
provements we demonstrate can be extrapolated onto more complex
scenarios.

6.1 Simulation Parameters

All of our experiments focus on collaborative transfers of a 128MB
file. We assume that the origin server divides this file into 95,870 in-
put symbols of 1400 bytes each, and subsequently encodes this file
into a large set of output symbols. We associate each output sym-
bol with an identifier representing the set of input symbols used to
produce it; our simulations used 64-bit identifiers. The irregular de-
gree distribution used in the codes was generated using heuristics
based on the discussion in Section 5.4 and described in [11]. This
degree distribution had an average degree of 11 for the encoded
symbols and average decoding overhead of 2:3%. The experiments
used the simplifying assumption of a constant decoding overhead
�d = 2:5%. For recoding, we generated degree distributions in the
same fashion with a maximum degree of 50. Rather than generate
recoding degree distributions on the fly, we instead generated them
off-line and parameterized by containment and the percentage of
available symbols desired by the receiving peer, both in increments
of 0:05. We note that using more sophisticated techniques for gen-
erating degree distributions and reducing decoding overhead such
as those described in [17, 16] will improve our results accordingly.
Min-wise summaries employed 180 permutations, yielding 180 en-
tries of 64 bits each for a total of 1440 bytes per summary. Fine-
grained reconciliation used Bloom filters with 6 hash functions and
8(1 + �d) bits per input symbol, for a total of 96 KB per filter.
Overhead measurements presented in this section using the faster
approximate reconciliation tree methods are visually indistinguish-
able from those using Bloom filters and are not included. Additional

experiments comparing approximate reconciliation trees to Bloom
filters will be detailed in a subsequent paper.

6.2 Collaboration Methods

We compare the following three methods of orchestrating collab-
oration in our experiments, described both in increasing order of
complexity and performance. While our methods may be combined
in other ways, these scenarios illustrate the basic tradeoffs. The de-
tails of the scenarios are as follows.

Uninformed Collaboration The sending peer randomly picks an
available symbol to send. This simple strategy is used by
Swarmcast [30] and works best when working sets are un-
correlated.

Speculative Collaboration The sending peer uses a min-wise
summary from the receiving peer to estimate the containment
and heuristically tune the degree distribution of recoded sym-
bols which it encodes and sends. The containment estimated
from the min-wise summary and the number of symbols re-
quested are used to pick a pre-generated distribution tuned
as described earlier. Fractions used in picking pre-generated
distributions were rounded down to multiples of 0:05 except
when the desired fraction would be zero. This choice of distri-
bution does not take into account correlation with other send-
ing peers but will be at least as efficient as uninformed collab-
oration (arguably a special case) and frequently more so.

Reconciled Collaboration The sending peer uses either a Bloom
filter or an approximate reconciliation tree from the receiving
peer to filter out duplicate symbols and sends a random per-
mutation of them without repetition. The Bloom filter and ap-
proximate reconciliation trees are made large enough to con-
tain all of the output symbols at the end of the process since
they will be updated incrementally as output symbols are re-
covered. Random permutations of the transmitted encoding
symbols are used to minimize the likelihood that two distinct
sending peers send identical encoding symbols to the receiv-
ing peer.

Techniques from speculative collaboration can be combined with
the methods for reconciled collaboration to optimize performance
over lossy channels or when transfers from peers with highly cor-
related working sets are employed in parallel.

6.3 Scenarios and Evaluation

In the scenarios we examine, we vary three components; the set of
connections in the overlay formed between sources and peers, the
distribution of content among collaborating peers, and the slack of
the scenario, defined as follows.

Definition 4 (Slack) Theslack s associated with a set of peersY

is
j
S
X2Y

SX j

`
whereSX is the working set of peerX and` is the

total number of input symbols.

By this definition, in a scenario of slack s, there are s` distinct out-
put symbols in the working sets of peers in Y . Clearly, when the
slack is less than 1 + �d, the set of peers Y will be unable to re-
cover the file even if they use an exact reconciliation algorithm,
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Figure 7: Overhead of peer-to-peer reconciliation.

since the decoding overhead alone is �d. When the slack is larger
than 1 + �d, and if peers are using a reconciliation algorithm with
accuracy a, then they can expect to be able to retrieve the file if
(1 + �d) � sa. Our methods provide the most significant benefits
over naive methods when there is only a small amount of slack; as
noted earlier, approximate reconciliation is not especially difficult
when the slack is large. We use slack values of 1:1, 1:2, and 1:3 for
comparison between compact scenarios with little available redun-
dancy and looser scenarios. When varying slack has little effect on
the results, only the results for a slack value of 1:1 are shown.

For simplicity, we assume that each connection has the same
amount of available bandwidth; our methods apply irrespective of
this assumption. The receiving peer A for whom we measure the
overhead always starts with 0:5` output symbols from the server.
The output symbols known to the sending peers are determined by
the slack of the scenario and the containment defined in Section 4;
this will be discussed in detail for each particular scenario below.

To evaluate each technique, we measure the overall overhead of
each strategy where an overhead of � means that (1 + �)` symbols
need to be received on average to recover a file of ` input symbols.
In case of a server sending encoded content without aid from peers
with partial content, the overhead is merely the decoding overhead,
i.e. � = �d. In other scenarios, there may be additional reception
overheadarising from duplicate or useless received encoding sym-
bols or recoding overheadfrom useless recoded symbols. The x-
axis of each plot is the range of containment of the sending peers
by the receiving peer. Each data point is the average of 50 simula-
tions.

6.3.1 Peer-to-Peer Reconciliation

The simplest scenario to consider is composed of two peers with
partial content where one peer sends symbols to the other. This sce-
nario is illustrated in Figure 6(a), and is designed to illustrate the
feasibility of our approach even in the worst case when servers with
a complete copy of the file are no longer available and reconcilia-
tion and recovery is barely possible.

For receiving peer A, sending peer B, with a file consisting of `
input symbols and slack s,

`s = jSAj+ jSB j � jSA \ SB j: (1)
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Figure 8: Overhead of peer-augmented downloads, slack = 1:1

By the definition of containment, c = jSA\SBj

jSB j
,

jSB j =
`s� jSAj

1� c
: (2)

These two equations therefore uniquely determine jSAj, jSB j and
jSA\SB j as a function of the slack and the containment. The jSA[
SB j symbols are then distributed as follows: jSA \ SBj symbols
are distributed to both A and B, jSAj � jSA \ SB j symbols are
distributed to A, and the remainder are distributed to B.

Before continuing, we note that one additional constraint is needed
to keep the scenarios realistic, namely, neither A nor B alone
should be able to recover the file (otherwise, no transfer is necessary
or B can generate fresh symbols). That is, jSA; SB j � (1 + �d)`,
where �d is the decoding overhead. This gives an upper bound on
feasible values of c for a given slack s, explaining the variation be-
tween values on the x-axes of our plots.

Figure 7 shows the results of our experiments for this scenario.
In each experiment, uninformed collaboration performs poorly and
degrades significantly as containment increases. This result is in-
tuitive and can be precisely analyzed using analysis similar to that
of the well known Coupon Collector’s problem [14]. Essentially,
the rate of useless symbols transmitted increases with the number
of symbols shared between peers. The degree of sharing increases
both as the initial containment increases and as the transfer pro-
gresses.
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Figure 9: Overhead collaborating with multiple peers in parallel.

Speculative collaboration is more efficient than uninformed collab-
oration, but the overhead still increases slowly with containment.
In comparison, the overhead of reconciled collaboration is virtu-
ally indistinguishable from plain encoded transfers from a server
and does not increase with containment. The extra overhead of rec-
onciled collaboration is purely from the cost of reconciliation (i.e.
transmitting a Bloom filter or approximate reconciliation tree) so it
is less than a percent when sending 8 bits for every symbol (1400
bytes).

6.3.2 Peer-Augmented Downloads

The next scenario we consider consists of a download from a server
with complete content, supplemented by a perpendicular transfer
from a peer as illustrated in Figure 6(b). In contrast to the previous
scenario, this scenario demonstrates the utility of additional band-
width in parallel with an ongoing download from a server. As in the
case of peer-to-peer reconciliation, the distribution of symbols be-
tween peers at the beginning of the scenario is precisely determined
by the slack and containment.

The results of this scenario are shown in Figure 8 and are similar
regardless of the slack. The overhead of uninformed collaboration
is considerably lower than in the scenarios of Figure 7, primarily
because a larger fraction of the content is sent directly via fresh
symbols from the server. Using our methods, speculative collabora-
tion performs similarly to uninformed collaboration in this scenario,
as the recoding methods used are not highly optimized – some im-
provements are possible with additional effort. In all cases, recon-
ciled collaboration still has overhead just slightly higher than that
of only receiving symbols directly from the server, but the trans-
fer time is substantially reduced when the additional connection is
employed.

For this scenario, it is natural to consider the speedup that is ob-
tained by augmenting the download with an additional connection.
Defining the speedup to be the ratio between the transfer time using
a single sender with full content (and incurring no decoding over-
head) and the transfer time we achieve, we have:

speedup =
number of senders
1 + overhead

;

since all connections are assumed to have equal bandwidth and are
fully utilized. Therefore, a reconciled transfer with 0.025 overhead
achieves a speedup of 1.95, while an uninformed transfer with 0.20
overhead achieves a more modest speedup of 1.67 over a vanilla
download.

6.3.3 Collaborating with Multiple Peers in Parallel

Finally, we consider a peer collaborating concurrently with four
peers, all with partial content, as illustrated in Figure 6(c). This
scenario demonstrates that given appropriate reconciliation algo-
rithms, one can leverage bandwidth from peers with partial content
with only a slight increase in overhead.

When encoding symbols are allocated across multiple peers, slack
and containment no longer uniquely determine the initial distribu-
tion of symbols. We employ the following allocation method. As
before, the receiver initially has exactly 0:5` symbols. One of these
symbols is known to a sending peer with probability c. The remain-
ing symbols are known to a sending peer with probability p such
that p

1�(1�p)4
= (0:5=t)(1�c)

1�(0:5=t)
. Any of these symbols not known to

any sending peers is discarded and replaced. This results in each
peer having an expected 0:5` symbols at the beginning of the ex-
periment

The results of this scenario are shown in Figure 9. As one would
expect, uninformed collaboration performs extremely poorly. For
low values of containment, speculative collaboration performs the
same as uninformed collaboration, but dramatically improves as
containment increases. We again recall that the degree distribution
was tuned to the according to the containment. In contrast to pre-
vious experiments, reconciled collaboration has much higher over-
head than before. This arises from correlation across multiple peers.
For example, sending peers D and E may identify shared symbol x
as being in SD�SA and SE�SA, respectively, and then both send
x to receiving peer A. When a symbol is received multiple times, it
directly contributes to the overhead. For similar reasons, the perfor-
mance of speculative collaboration is also degraded, as the recoding
algorithm is optimized only for transfers between pairs of peers.

Given the relatively poor performance of reconciled collaboration
when there is sharing between sending peers, we now consider the
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Figure 10: Overhead of collaborating with multiple peers in parallel and updating periodically. Slack = 1:1.

effects of periodically updating the summaries, in contrast to the
previous experiments, which performed fine-grained reconciliation
only once, at the beginning of the scenario. We repeat the exper-
iments for this scenario with the containment constrained to zero
(the worst case for reconciled collaboration) and modulate the fre-
quency of reconciliation. Figure 10(a) shows the results of this ex-
periment. In this graph, the update frequency f means that an up-
date is performed after receiving `=f symbols, i.e. a frequency of
20 implies that updates are triggered after every 5% of the down-
load progresses. The bottom curve reflects the extra bandwidth of
traffic to the receiving peer. The top curve adds the bandwidth con-
sumed by updates, thus accounting for the total amount of extra
communication in both directions. For example, as f increases,
the bandwidth spent on reconciliation updates becomes significant,
and ultimately would dominate the bandwidth of the actual trans-
fer. When optimizing total bandwidth consumption, we find that a
reasonable reconciliation frequency is roughly 10 � 20 depending
on the slack of the scenario, meaning that there is an update after
every 0:05` � 0:10` symbols that are transferred.

Figure 10(b) shows the results of using these updates in the scenar-
ios of Figure 9, i.e. speculative collaboration updates the min-wise
summary and reconciled collaboration updates the Bloom filters.
An update frequency of 10 is used and both speculative and recon-
ciled collaboration show dramatic improvement.

7 Conclusions

Overlay networks offer a powerful alternative to traditional mech-
anisms for content delivery, especially in terms of flexibility, scal-
ability and deployability. In order to derive the full benefits of the
approach, some care is needed to provide methods for represent-
ing and transmitting the content in a manner that is as flexible and
scalable as the underlying capabilities of the delivery model. We
argue that straightforward approaches at first appear effective, but
ultimately suffer from similar scaling and coordination problems
that have undermined other multipoint service models for content
delivery.

In contrast, we argue that a digital fountain approach to encoding
the content affords a great deal of flexibility to end-systems per-
forming large transfers. The main drawback of the approach is that
the large space of possible symbols in the system means that co-
ordination across end-systems is also needed here, in this case to
filter useful content from redundant content. Our main contribu-
tions furnish efficient, concise representations which sketch the rel-
evant state at an end-system in a handful of packets and then pro-
vide appropriate algorithmic tools to perform well under any cir-
cumstances. With these methods in hand, informed and effective
collaboration between end-systems can be achieved, with all of the
benefits of using an encoded content representation.
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