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Studying Balanced Allocations with Differential Equations ∗

Michael Mitzenmacher y

Abstract

Using differential equations, we examine the GREEDY algorithm studied by Azar, Broder, Karlin, and
Upfal for distributed load balancing [1]. This approach yields accurate estimates of the actual load distribu-
tion, provides insight into the exponential improvement GREEDY offers over simple random selection, and
allows one to prove tight concentration theorems about the loads in a straightforward manner.

1 Introduction

Suppose that n balls are placed into n bins, with each ball being placed into a bin chosen independently and
uniformly at random. Let the load of a bin be the number of balls in that bin after all balls have been thrown.
It is well known that with high probability, the maximum load upon completion will be approximately log n

log log n

[8]. (We use with high probability to mean with probability at least 1− O(1/n), where n is the number of balls.
Also, log will always mean the natural logarithm, unless otherwise noted.)

Azar, Broder, Karlin, and Upfal considered how much more evenly distributed the load would be if each ball
had two (or more) choices [1]. Suppose that the balls are placed sequentially, and each ball is placed into the
less full of two bins chosen independently and uniformly at random with replacement (breaking ties arbitrarily).
In this case, they showed that the maximum load drops to log log n

log 2 + O(1) with high probability. If each ball

instead has d choices, then the maximum load will be log log n
log d + O(1) with high probability. Having two choices

hence yields a qualitatively different type of behavior from the single choice case, leading to an exponential
improvement in the maximum load; having more than two choices further improves the maximum load by only
a constant factor. This result has important implications for distributed load balancing, hashing, and PRAM
simulation [1].

Following Azar et al., we refer to the algorithm in which each ball has d random choices as GREEDY(d).
In this paper, we develop an alternative method of studying the performance of GREEDY(d) using differential
equations. The differential equations describe the limiting performance of of GREEDY(d) as the number of balls
and bins grows to infinity. As we will demonstrate, the description of the limiting performance proves highly

∗A preliminary version of this work appeared in the Proceedings of the 37th Annual Symposium on the Foundations of Computer
Science, October 1996.

yMuch of this work was done at U.C. Berkeley, supported by a fellowship from the Office of Naval Research and by NSF grant
CCR-9505448.
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accurate, even when n is relatively small. Besides giving perhaps more insight into the actual performance of

GREEDY, our methods provides a great deal of intuition behind the proof of the behavioral difference between
one and two choices.

Our motivation in studying this problem is twofold. First, we wish to demonstrate and highlight this methodol-
ogy, and encourage its use for studying random processes. While this methodology is by no means new, its uses

have been surprisingly limited. The technical results justifying the relationship between families of Markov
processes and differential equations date back at least to Kurtz [13, 14]. Karp and Sipser provided and early use
of this technology to study an algorithm for finding maximum matchings in sparse random graphs [11]. Other
past applications in the analysis of algorithms include [9, 12], and more recently many more have been found

(see, for example, [2, 3, 15, 17, 21] to name a few).

Our second motivation is to demonstrate the power of using two choices. This idea dates back at least as far as
the work of Eager, Lazowska, and Zahorjan [7], who examined the problem in a dynamic load balancing setting
based on viewing processors as single server queues. In the static setting, this idea was also studied by Hajek

[9], who used the same approach we undertake to determine the fraction of empty bins. The aforementioned
exponential improvement in behavior was noted and proven first in a paper by Karp, Luby, and Meyer auf der
Heide [10]. The work by Azar et. al. examined a simpler model that clarified the argument as well as provided
many new results. Related work by the author [16, 17], as well as by others [20], examines the power of two

choices in dynamic settings. Continued work in the area includes recent work by Stemann [19] and Czumaj
and Stemann [6].

In the rest of the paper, we explain the derivation of the differential equations that describe the GREEDY strategy
of [1] and compare the results from the differential equations with simulations. We also demonstrate how the

equations give more insight into the behavior of GREEDY and how the equations relate to the work in [1].

2 The Differential Equations

In this section, we demonstrate how to establish a family of differential equations that can be used to model the

behavior of the GREEDY strategy of [1]. Recall that we begin with m balls and n bins. Balls arrive sequentially,
and upon arrival, each ball chooses d bins independently and uniformly at random (with replacement); the ball
is then placed in the least loaded of these bins (with ties broken arbitrarily).

We first ask how many bins remain empty after the protocol GREEDY(d) terminates. This question has a natural
interpretation in the task-processor model: how many of our processors are not utilized? The question can also
be seen as a matching problem on random bipartite graphs: given a bipartite graph with n vertices on each side
such that each vertex on the left has d edges to vertices chosen independently and uniformly at random on the
right, what is the expected size of the greedy matching obtained by sequentially matching vertices on the left

to a random unmatched neighbor? Our attack, again, is to consider this system as n → ∞. This question has
been previously solved by Hajek using entirely similar techniques [9]. We shall begin by briefly repeating his
argument with some additional insights. Once we show how to answer the question of the number of empty
bins, we shall extend it to the more general load balancing problem.

2



2.1 The empty bins problem

We set up the problem of the number of empty bins by developing a Markov chain with a simple state that

describes the balls ans bins process. We first establish a concept of time. Let Y (T ) be the number of non-empty
bins after T balls have been thrown. Then {Y (i)}, i = 0 . . . m, is clearly a Markov chain. Moreover

E[Y (T + 1) − Y (T )] = 1 −
(

Y (T )

n

)d

,

since the probability that a ball finds all non-empty bins among its d choices is (Y (T )/n) d .

The notation becomes somewhat more convenient if we scale by a factor of n. We let t be the time at which
exactly nt balls have been thrown, and we let y(t) be the fraction of non-empty bins. The the claim is the

random process described above is well approximated by the the trajectory of the differential equation

dy

dt
= 1 − yd, (1)

where this equation has been obtained by using for the limiting value dy the expected change in y. That the
random process given by the Markov chain closely follows the trajectory given by the differential equation

follows easily from known techniques, such as for example Kurtz’s Theorem, or the similar work on random
graphs by Wormald. (As previously mentioned, the balls and bins process has a natural interpretation in terms
of random bipartite graphs.) This connection with the differential equation yields the following theorem:

Theorem 1 Suppose cn balls are thrown into n bins according to the GREEDY(d) protocol for some constant

c. Let Ycn be the number of non-empty bins when the process terminates. Then limn→∞ E[Ycn
n ] = yc, where

yc < 1 satisfies

c =
∞∑

i=0

yid+1
c

(id + 1)
.

Proof: The preconditions for Kurtz’s theorem (see [18, Theorem 5.3] or [14, Chapter 8]) are easily checked

for the one-dimensional system described by (1), so by Kurtz’s theorem we have that this differential equation
is the correct limiting process.1 Instead of solving (1) for y in terms of t , we solve for t in terms of y: dt

dy =
1

1−yd = ∑∞
i=0 yid . We integrate up to some time t , yielding

t =
∞∑

i=0

y(t)id+1

(id + 1)
. (2)

From equation (2), given d we can solve for y(t) for any value of t using for example binary search. One can
also attempt to find an equation for y in terms of d and t ; standard integral tables give such equations when
d = 2, 3 and 4, for example. When t = c, all of the balls have been thrown, and the process terminates.

1It appears that there might be a problem here since we consider events occurring at discrete time steps, instead of according to
random times from a Poisson process. One can always adopt the convention that each discrete time step corresponds to an amount of
time given by an exponentially distributed random variable. In the limiting case, this distinction disappears.
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Plugging t = c into equation (2) yields the theorem, with yc = y(c).

We may actually use Kurtz’s Theorem to obtain a concentration result (again, see [18, Theorem 5.3] or [14,
Chapter 8]).

Theorem 2 In the notation of Theorem 1, | Ycn
n − yc| is O

(√
log n

n

)
with high probability, where the constant

depends on c.

One can also obtain entirely similar bounds using Ycn more straightforward martingale arguments. In the
following, we assume familiarity with basic martingale theory; see, for example, [4, Chapter 7] for more
information. We use the following form of the martingale tail inequality due to Azuma [5]:

Lemma 3 [Azuma] Let X0, X1, . . . Xm be a martingale sequence such that for each k,

|Xk − Xk−1| ≤ 1.

Then for any α > 0,

Pr(|Xm − X0| > α
√

m) < 2e−α2/2.

Theorem 4 In the notation of Theorem 1, Pr(|Ycn − E[Ycn]| > α
√

cn) < 2e−α2/2 for any α > 0.

Proof: For 0 ≤ j ≤ cn, let Fj be the σ -field of events corresponding to the possible states after j balls have
been placed, and Zj = E[Ycn|Fj ] be the associated conditional expectation of Ycn . Then the random variables
{Zj }cn

j=0 form a Doob martingale, and it is clear that |Z j − Zj−1| ≤ 1. The theorem now follows from Lemma 3.

Theorem 4 implies that Ycn is within O(
√

n log n) of its expected value with high probability; however, the
martingale approach does not immediately lead us to the value to which Ycn/n converges. This is a standard
limitation of the martingale approach: in contrast, the differential equations approach allows us to find the mean
as well as prove concentration around the mean.

2.2 Bins with fixed load

We can extend the previous analysis to find the fraction of bins with load k for any constant k as n → ∞. We

first establish the appropriate Markov chain. Let si(t) be the fraction of bins with load at least i at time t , where
again at time t exactly nt balls have been thrown. Then the corresponding differential equations regarding the
growth of the si (for i ≥ 1) are easily determined:


dsi

dt
= (sd

i−1 − sd
i ) for i ≥ 1 ;

s0 = 1.
(3)
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d = 2 1 million d = 3 1 million
Prediction Simulation Prediction Simulation

s1 0.7616 0.7616 0.8231 0.8230

s2 0.2295 0.2295 0.1765 0.1765

s3 0.0089 0.0089 0.00051 0.00051

s4 0.000006 0.000007 < 10−11 0

s5 < 10−11 0 < 10−11 0

Table 1: Predicted behavior for GREEDY(d) and average results from 100 simulations with 1 million balls.

The differential equations have the following simple interpretation: for there to be an increase in the number of
bins with at least i balls, the d choices of a ball about to be placed must all be bins with load at least i − 1, but
not all bins with load at least i.

In contrast to Section 2.1, where we could derive a formula for the fraction of empty bins, we are not aware of
how to determine explicit formulae for si(t) in general. These systems of differential equations can be solved
numerically using standard methods, however; for up to any fixed k and t , we can accurately determine sk(t).
By applying Kurtz’s theorem (as in Theorem 2) or martingale arguments (as in Theorem 4) one can show that
these results will be accurate with high probability.

We also demonstrate that our technique accurately predicts the behavior of the GREEDY(d) algorithm by com-
paring with simulation results. The first and third columns of Table 1 shows the values of s i(1) for d = 2 and
d = 3 as caclulated from the differential equations. We use these values as predictions for the process where
we throw n balls into n bins. From the predictions with d = 2, one would not expect to see bins with load

five until billions of balls have been thrown. Similarly, choosing d = 3 one expects a maximum load of three
until billions of balls have been thrown. These results match our simulations of several hundred runs with up
to thirty-two million balls, the largest simulation we have attempted. We also present the averages from one
hundred simulations of one million balls for d = 2 and d = 3, which demonstrate the accuracy of the technique

in predicting the behavior of the system. Further simulations reveal that, in general, the solution given by the
limiting system of differential equations becomes more accurate as n grows, and the deviation from this solu-
tion is small, as one would expect. This accuracy is a marked advantage of this approach; previous techniques
have not provided ways of concretely predicting actual performance.

2.3 Relationship to O(log log n) bounds

We can also use the differential equations to provide an alternative derivation of a key idea from the proof of
the upper bounds on the maximum load of GREEDY(d). The approach of looking at the underlying differential
equations provides insight into how the s k decrease, which is essential to determining the O(log log n) bounds.

We begin by focusing on the case where the number of balls n equals the number of bins n, and consider the

limiting description given by the differential equations as n → ∞.

Lemma 5 For the family of differential equations given by (3), s i(1) ≤ [si−1(1)]d .
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Proof: We wish to know the values of si(1). Because the si are all non-decreasing over time and non-negative,

from (3)
dsi

dt
= sd

i−1 − sd
i ≤ [si−1(1)d]

for all t ≤ 1 and hence by integrating

si(1) ≤ [si−1(1)]d . (4)

One can calculate s1(1) directly from Theorem 1, and it follows from a simple induction on (4) that

si(1) ≤ [s1(1)]di−1
.

In other words, the si(1), which represent the limiting fraction of bins with load at least i after all balls have
been thrown, decrease doubly exponentially, as the i is in the second level of the exponent. Using Kurtz’s
theorem one obtains a high probability result for the case of a finite number of balls n.

Theorem 6 Let wn
i be the fraction of bins with load at least i when n balls are thrown into n bins using

GREEDY(d). Then for any ε > 0 and fixed i, wn
i ≤ (1 + ε)[s1(1)]di−1

with probability at least 1 − ec(log i)nε2
for

some suitable constant c.

Proof: The proof is a direct application of Kurtz’s Theorem, with the error bounds as given in [18, Theorem
5.3].

This doubly exponential decrease in the si(1) (or, equivalently, of the wn
i ) is a key step of the proof of Azar et

al in [1], where it is proven via an inductive use of Chernoff bounds. Theorem 6 shows that this induction can
be replaced by applying Kurtz’s theorem to the differential equations, at least up to any fixed constant value

of i. This approach has some advantages. Most importantly, Lemma 5 and the corresponding inductive bound
for si(1) seem quite natural and make transparent how the si decrease. Additionally, using this approach can
improve the additive O(1) term in Theorem 4 of [1].

Intuitively, this doubly exponential decrease suggests that if we look at bins with load at least i ∗ = � log log n
log d +γ �,

where γ = (log 2 − log log(1/s1(1)))/ log d, then then

si∗+1 ≤ [s1(1)]d log log n/ log d+γ ≤ 1

n2
,

and hence with high probability there will be no bins with load at least i ∗ + 1.

Note, however, that as stated in Theorem 6 the high probability bounds only hold up to any fixed i, and not

for values of i up to (log log n). This weakness in the result stems from directly applying the differential
equations approach and Kurtz’s theorem, which requires the underlying state space to be finite dimensional,
and hence loads up to only some fixed constant can be considered. By reverting back to the explicit martingale
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argument that underlies Kurtz’s Theorem, we can circumvent this restriction somewhat (up until the point where

si is 1/n1/2+δ for any δ > 0), but at some point when si is sufficiently small it seems we have to explicitly handle
this case directly, as is done in Theorem 4 of [1]. We omit details of these more extensive arguments, since their
form would be almost entirely a restatement of Theorem 4 of [1], replacing their use of Chernoff bounds with
an equivalent martingale argument. A general framework that would allow us to apply the differential equations

in this instance in a more straightforward manner would clearly be appealing, since the differential equations
do make clear the behavior of the si .

In the case of m balls and n bins, a similar argument to Lemma 5 and Theorem 6 holds when m = cn for
some constant c. As in Section 2.1, when m = cn, the infinite process runs until time c; if m is not a linear

function of n, the time until the process terminates is dependent on n, and Kurtz’s theorem cannot be applied.
For Lemma 5, the appropriate result becomes

si(c) ≤ c[si−1(c)]
d .

By noting that sc2+c(c) ≤ 1/(c +1) (the fraction of bins with load at least x cannot be more than c/x ), one may
again inductively show as before that the tails of the loads are doubly exponentially decreasing. Improvements
can be made in the constants by using the differential equations to find better starting points than s c2+c(c) ≤
1/(c + 1) for the induction.

3 Conclusion

There are significant advantages to using differential equations to study randomized load balancing problems.
The insight one gains about the problem and the numerical accuracy one obtains are quite convincing. More-

over, when the corresponding state spaces are finite dimensional, applying Kurtz’s Theorem can yield simple
proofs of the limiting behavior. A general framework for dealing with spaces that are not necessarily finite
dimensional would greatly simplify using this approach in developing bounds such as the O(log log n) bounds
of [1]. We expect this approach will find a great deal of further use in the analysis of load balancing schemes,

as well as other algorithmic areas.
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