Worst Case Analysis :
Our Strength is Our Weakness

Michael Mitzenmacher
Harvard University

Prelude

* Worst-case analysis is dominant in TCS for several reasons.
— Very suitable for mathematical analysis.
— Often gives the right, or at least a suitable, answer in practice.
— Distinguishes us from other fields.

e But it’s also limiting, to us and the field.

— Not all problems best described this way.
* Worst-case is not the “real-world” case.

— Pushes us to focus on variations of worst-case analysis.
* Competitive ratio.
* Instance optimality.
* Resource augmentation.
* Fixed parameter tractability.
e Others....

Rexford Article

My Ten Favorite “Practical Theory” Papers

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

Abstract

ABSTRACT

As the saying goes, “In theory there is no difference between theory
and practice. But, in practice, there is.” Networking research has a
wealth of good papers on both sides of the theory-practice divide.
However, many practical papers stop short of having a sharp prob-
lem formulation or a rigorously considered solution, and many the-
ory papers overlook or assume away some key aspect of the system
they intend to model. Still, every so often, a paper comes along that
nails a practical question with just the right bit of theory. When that
happens, it’s a thing of beauty. These are my ten favorite examples.
In some cases, I mention survey papers that cover an entire body
of work, or a journal paper that presents a more mature overview
of one or more conference papers, rather than single out an indi-
vidual research result. (As an aside, I think good survey papers are
a wonderful contribution to the community, and wish more people
invested the considerable time and energy required to write them.)

Rexford’s Top Ten Papers

Griffin, Shepherd, Wilgong; The stable paths problem and
interdomain routing, IEEE/ACM Trans. on Networking, 2002.

Chiang, Low, Calderbank, Doyle; Layering as optimization
decomposition: a mathematical theory of network
architectures, Proc. of the IEEE, 2007.

Duffield, Grossglauser; Trajectory sampling for direct traffic
observation, IEEE/ACM Trans. on Networking, 2001.

Zhang, Roughan, Duffield, Greenberg; Fast accurate
computation of large-scale IP traffic matrices from link loads,
ACM Sigmetrics, 2003.

Estan, Savage, Varghese; Automatically inferring patterns of
resource consumption in network traffic, Proc. ACM

SIGCOMM, 2003.

Rexford’s Top Ten Papers

Broder, Mitzenmacher; Network applications of Bloom filters: A
survey, Internet Mathematics, 2004.

Parekh, Gallager; A generalized processor-sharing approach to flow
control in integrated services networks: The single node case, IEEE/
ACM Trans. on Networking, 1993.

Salehi, Zhang, Kurose, Towsley; Supporting stored video: Reducing
rate variability and end-to-end requirements through optimal
smoothing, IEEE/ACM Trans. on Networking, 1998.

Harchol-Balter, Downey; Exploiting process lifetime distributions
for dynamic load balancing, ACM Transactions on Computer
Systems, 1997.

Mitzenmacher, Richa, Sitaraman; The power of two random
choices: A survey of techniques and results. Handbook of
Randomized Computing.

Lessons

e | am shameless.

Lessons

* | am shameless.
* Rexford has impeccable taste.

Lessons

* | am shameless.
* Rexford has impeccable taste.
* Theory is missing something.

Lessons

* | am shameless.
* Rexford has impeccable taste.
* Theory is missing something.

— I’'m not saying | agree with these choices, but it’s a
rather disappointing outside-of-theory viewpoint.

Lessons

* | am shameless.
* Rexford has impeccable taste.
* Theory is missing something.

— I’'m not saying | agree with these choices, but it’s a
rather disappointing outside-of-theory viewpoint.

— A common theme in many of these papers is that
they aren’t focused on worst-case analysis, but
coming up with a good solution to a real problem.

Recent Theory Misses

* Areas where theory has come a little too late to
the party.
— Belief propagation.
— Cavity method/survey propagation.
— Network coding.
— Compressed sensing.
— Mean field analysis/fluid models.
— Polar codes.

— Most any heuristic method (ant colony optimization,
tabu search, etc.)

My Two Points

* Theory should better promote an environment
where work on real-world problems and
issues is appreciated, even at the expense of
complete formal analysis.

* Theory should continue to push to expand the
analytic tools and methods we have available
for non-worst-case analysis.

My Two Points

* Theory should better promote an environment
where work on real-world problems and issues is
appreciated, even at the expense of complete
analysis.

— Example : work on heuristics.

* Theory should continue to push to expand the
analytic tools and methods we have available for
non-worst-case analysis.

— Example : more understanding of “random input”
analysis.

Putting My Money
Where My Mouth Is

* Heuristics
* Hashing + Entropy

Heuristics

* | did some work in heuristics.
— Human-Guided Tabu Search (AAAI 2002)

— A Complete and Effective Move Set for Simplified Protein
Folding (RECOMB 2003)

— New Heuristic and Interactive Approaches to 2D Rectangular
Strip Packing (JEA 2005)

— BubbleSearch (IPL 2006)
* Entered a skeptic.

e Left with more respect.

— The area has more to it than we might think, even if it’s less
rigorous than we would want.

— The area could benefit from theory approaches and insight.
— Lots of real problems that need to be solved.

Human-Guided Tabu Search

LU LS R el]

24 mv e eneiom 11915

e o - e
" . ven—-

R R R e LT ST R T

Gumrs merw MEL et s meriern e O san AL rage s 3L

EIIORIC 37

haadl

. e L T T T T

v e A Cumpars ivars 1RIG wewens o @rangye- bl s s bl ragrs

Osar ¢ wws o Voom muio o New avkmied il -

Clampmees Mermwdseed Ay Owes ek Rt Omar e -

B9 B__o o o o
Iy ‘)’ - o - L] - .
T T e
3 !i._-&- :.ej- S -

9 r}) T 9 . 4\.'
P T v & e
e
E v & v °® -

<=
= & =
S5SN8 e

:--‘ -
- -— .-)
e ——— -
=

———— =
e e L
-t o
- ——

Figure 3: The Protein Application.

R LR PR L LS N L S
Duvwwrs rovs NI girs Lmemss b

Nk Simy by
24 mwmGieheicds 45,15 st 7
e . e O | Ot B, A= A R s e L 2R B =00 B
" 'J e | conee Duwntr seve T4 vomwmmn svid o 4400 @ 0o W b re £ 4L v
L e I e et e e e T
T - Yo
- - .:. ’-- T .O. ’ .‘
- . . . = - =
t ok s I 32, 3
. o - . - e - ‘ = .
e - * = - e = e -
Ll B T ¢ -
i .o - T T . ™ ~
by .. e . | 3 - - -
-_wsd " ! £ “eup & o -
« * et To 2L > - -’ -
- - - * = 15 - = - -3
s . ST o - i ® LTS
.' - - .o : - — = * ® . —
- - I.... .: .- * -:*..
. - 4 - 1 = ® .
. . . - " - e
e - f. - -3 .

Figure 4. The Jobshop Application.

-z
. -
O
=
Q
&
(O
S

L
)

i -

20

o
O
)

V)

Greedy Algorithms

 Many standard Greedy algorithms have two steps:
— Order elements

— Place elements sequentially

e Given a partial solution of k elements and a next element, place
the next element.

e Often ordering is dynamically adjusted after a placement : fixed
priority vs. dynamic priority.

 Examples
— Bin-packing : Best Fit Decreasing, First Fit Decreasing
— Set cover/vertex cover

— JobShop scheduling : schedule subjobs by work
remaining, place each subjob as early as possible.

— Many others...

Theorist Viewpoint

Most Greedy algorithms are not optimal.
— But they appear to work well as heuristics.

Let’s apply worst-case analysis.
— Competitive ratio: how far from the optimal can you be?

Competitive ratio becomes the new metric.

Theory Problem: Let’s find algorithms with better
competitive ratios.

Original Problem: Let’s get better solutions.

Not clear the theory abstraction is helping us with the
original problem.

Randomized Greedy

* The problem with Greedy algorithms is that
they present 1 solution.

— If time is available, should look for better
solutions.

 Randomized Greedy algorithms: keep trying
“near-greedy” solutions until time runs out.

* TOP-k: choose next element placed uniformly
from top k elements.

BubbleSearch

* BubbleSearch: go through the elements in
order sequentially, flipping a coin with
probability p for heads for each element. At
first heads, place that element (and go back to
start).

* Probability of choosing an ordering with
BubbleSort distance (= Kendall-tau distance) D
from the original Greedy ordering is
proportional to

(1-p)°

Other BubbleSearch properties

Anytime algorithm: runs until you stop (returns
best solution so far).

All element orderings are possible.

Follows the intuition behind the Greedy ordering:

better to place top things in the orders first, but
more flexibly.

More robust, flexible than TOP-k approach.

Useful variant : with fixed priorities, change the
“base ordering” when a new best solution is
found.

Effectiveness

e BubbleSearch seems effective whenever it is used.

— Usually finds a better-than-greedy solution quickly — a few
hundred iterations.

— Margin over Greedy depends on how good Greedy is
alone.

* |t's brain-dead simple.

— You should be teaching this in your undergraduate
algorithms class. (I do.)

— If you’ve implemented a Greedy algorithm, this additional
layer is easy to implement.

e Our implementation required only hooks into ordering, placement
functions.

— vs. other possible heuristics : e.g., tabu search, etc.

Aside

* Theorists think in terms of computational
resources.

— Time, space are the obvious ones.

— | teach (in undergraduate algorithms) that
“correctness” is a resource, can be traded off with
time and space.

* Programmer time is the resource theorists seem
to think least about, arguably often the most
Important.

— Simple, general solutions are good.

Available online at www.sciencedirect.com

: SCIENCE@DIRECT“ Informa.tlon
b Processing
el Letters
ELSEVIER Information Processing Letters 97 (2006) 161-169

www.elsevier.com/locate/ipl

BubbleSearch: A simple heuristic for improving priority-based
greedy algorithms

N. Lesh?, M. Mitzenmacher >!*

Abstract

We introduce BubbleSearch, a general approach for extending priority-based greedy heuristics. Following the framework re-
cently developed by Borodin et al., we consider priority algorithms, which sequentially assign values to elements in some fixed or
adaptively determined order. BubbleSearch extends priority algorithms by selectively considering additional orders near an initial
good ordering. While many notions of nearness are possible, we explore algorithms based on the Kendall-tau distance (also known
as the BubbleSort distance) between permutations. Our contribution is to elucidate the BubbleSearch paradigm and experimentally
demonstrate its effectiveness.
© 2005 Published by Elsevier B.V.

Theory of BubbleSearch

| don’t have one.

But related to Priority Algorithms framework
of Allan Borodin and others.

Claim : Useful even if not able to theoretically
formalize why.

| think there’s more room for theory CS to
offer useful ideas even if they can’t prove
things about them.

Heuristics

e There’s a whole field of metaheuristics.

* Hard to prove rigorous results.
— Theorists have tried, in some cases.

* Can theory still give guidance to the area?

— Coming up with good, new heuristic methods.
* Based on theory, or not.

— Improving, judging, providing understanding for
existing methods.

— Devising explanations for why methods often work
well (better than our worst-case algorithms).

* Even if full of somewhat unrealistic assumptions.

Randomness

e CStheory starts with the worst-case inputs, opens up
to random cases.

— Algorithms on random graphs (or other random/semi-
random models).

— Smoothed analysis.
 Some other fields seem to go the other way.
— Coding theory : binary symmetric channel.

— Queueing theory : M/M/1 queues (exponential service/
Poisson arrivals)

— Stochastic control theory
— Stochastic programming
— Statistical physics/mechanics

Randomness vs. Worst-Case

 Many settings are not modeled well by worst-
case.

— Though of course some are.
* Most settings are not modeled well by uniformly
at random.

— We can adjust: work on G, ;random graph models has
been replaced by work on power-law graphs of
various types.

* Need better understandings of reasonable
random and “semi-random” models.

— A direction we seem to be moving in naturally.

One Approach:
Entropy and Hashing

* From paper “Why Do Simple Hash Functions
Work?” by Mitzenmacher/Vadhan.
— Simple = chosen from a pairwise (or k-wise)
independent (or universal) family.

* Our results are actually more general.
— Work = perform just like random hash functions in
most real-world experiments.
* Motivation: Close the divide between theory
and practice.

Universal Hash Families

* Defined by Carter/Wegman

* Family of hash functions A of form
H:[N] — [M] is k-wise independent if when H
is chosen randomly, for any x,,x,,...x,, and any
a,,a,,...d,,
H"l Pr(H(x,)=a)=1/M"
* Family is k-wise universal if
Pr(H(x,) = H(x,)...= H(x,)) =< 1/ M

Not Really a New Question

“The Power of Two Choices” = “Balanced
Allocations.” Pairwise independent hash functions

match theory for random hash functions on real
data.

Bloom filters. Noted in 1980’s that pairwise
independent hash functions match theory for
random hash functions on real data.

But analysis depends on perfectly random hash
functions.

— Or sophisticated, highly non-trivial hash functions.

Practical Performance Of
Bloom Filters and Parallel
Free-Text Searching

M. V. Ramakrishna

October 1989 Volume 32 Number 10 Communications of the ACM 1237

The resulis and the details of the experiments pre-
sented in the next section illustrate that transforma-
tions chosen at random from the class H, vield the
theoretical performance of the Bloom filters. (The class
H, is a universal, class of hashing functions. Definitions
and theoretical investigations of universal, classes of
hashing functions may be found in [2].)

Worst Case :
Simple Hash Functions Don’t Work!

Lower bounds show result cannot hold for “worst
case” input.

There exist pairwise independent hash families,
inputs for which Linear Probing performance is worse

than random [PPR 07].

There exist k-wise independent hash families, inputs
for which Bloom filter performance is provably worse
than random.

Open for other problems.
Worst case does not match practice.

Random Data?

e Analysis usually trivial if data is independently,
uniformly chosen over large universe.

— Then all hashes appear “perfectly random”.
* Not a good model for real data.

* Need intermediate model between worst-
case, average case.

A Model for Data

Based on models of semi-random sources.
— [SV 84], [CG 85]

Data is a finite stream, modeled by a sequence of
random variables X, X,,...X.

Range of each variable is [/V].
Each stream element has some entropy, conditioned
on values of previous elements.

— Correlations possible.

— But each element has some unpredictability, even given
the past.

Intuition

* |f each element has entropy, then extract the
entropy to hash each element to near-uniform

location.

e Extractors should provide near-uniform
behavior.

Notions of Entropy

max probability :mp(X) = max Pr[X = x]

— min-entropy : H_(X) =log(l/mp(X))

— block source with max probability p per block
mp(X; | Xy =X, X, =X,)= p

collision probability : cp(X) = Ex(Pr(X = X))’

— Renyi entropy : H,(X) =log(1/cp(X))

— block source with coll probability p per block

cp(X; | Xy =Xy, Xy =X,)= p
These “entropies” within a factor of 2.
We use collision probability/Renyi entropy.

Leftover Hash Lemma

* A “classical” result (from 1989).

* Intuitive statement: If H :[N]—=[M] is chosen
from a pairwise independent hash function,
and X is a random variable with small collision
probability, H(X) will be close to uniform.

Leftover Hash Lemma

e Specific statements for current setting.
— For 2-universal hash families.

e Llet H:[N]—=|M] be arandom hash function from a
2-universal hash family A. If cp(X)< 1/K, then (H,H
(X))is 1/2)VM /K -close to (H,U,,).

— Equivalently, if X has Renyi entropy at least log M + 2log(1/¢), then
(H,H(X)) is e-close to uniform.

e Let H:[N]—=[M] be arandom hash function from a
2-universal hash family. Given a block-source with
coll prob 1/K per block, (H,H(X,),.. H(X;)) is
(T /2N M/ K-close to (H,U 7).

— Equivalently, if X has Renyi entropy at least log M + 2log(T/¢), then
(H,H(X,),.. H(X;)) is e-close to uniform.

That’s About It

 We did more in the paper.
e But the main message is:

A weak hash function, on “sufficiently random” data
with enough entropy, will behave like a random hash
function, with each data item appearing to be hashed

randomly, because even weak hash functions are
randomness extractors.

Applications

* Potentially, wherever hashing is used
— Bloom Filters
— Power of Two Choices
— Linear Probing
— Cuckoo Hashing
— Many Others...

Related Work

Vadhan and Chung improve the bounds.

Dietzfelbinger and Schellbach warn: let the buyer
beware! Weak hash functions fail in some
standard settings.

— Small universe of key-set, so not enough entropy.

Pandurangan and Upfal investigate entropy-based
bounds for online algorithmes.

— Works for some, not others.

Patrascu and Thorup on tabular hashing.

— Their results are worst-case, but just give a “new
view” on tabular hashing.

Open Questions

* Are these ideas more generally useful?

— Is the approach particular to hashing, as it
depends on hash functions being extractors?

— Other possible uses?

 More generally, can we use “weaker” notions
of randomness in the analysis of algorithms?

— What notions are suitably more realistic?

Conclusion 1

* The Field’s Mindset : Theoretical Computer
Science (FOCS/STOC/SODA) is about Proofs.

— It’s what separates us from the unwashed masses.

* Can we loosen that self-conception a bit?
— Algorithms is about solving problems.

— Sometimes, we may not have a proof.

— That doesn’t mean there’s not “theory” there.
* |s good design, based on theory, theory?

Conclusion 2

We need more expansive models/techniques.

A lot of our “different models” are worst-case models with
(suitable) add-ons.

| like methods and models based on randomness.
— TCS has arich history there, and still expanding.
— But we’re nowhere close to done.
| think we need our models to be more closely tied to reality.

— We need to work more in the trenches — “solve” real
problems —to do so.

— Or we may be considered followers, not leaders.

| think we need to be bolder in allowing more assumptions, to
understand why algorithms work “surprisingly well” on most
inputs, while not working well on all inputs.

