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Abstract—Monitoring network traffic and classifying appli- parameters [2]. We discuss the limitations of previous mesh
cations are essential functions for network administratos. In  jn more detail in§IV.
this paper, we consider the use of Traffic Dispersion Graphs ; Wi ;
(TDGs) to classify network traffic. Given a set of flows, a TDG In_ th|§ paper, we use the_ n_etw_ork Wld_e behavior of an
is a graph with an edge between any two IP addresses that apphcgtlon to assist in classifying its traff_|c. To modelsth
communicate; thus TDGs capture network-wide interactions Pehavior, we use graphs where each node is an IP address, and
Using TDGs, we develop an application classification framesrk  each edge represents a type of interaction between two nodes
dubbed Graption (Graph-based classificon). Our framework  \We use the ternfraffic Dispersion Graph or TDG to refer
provides a systematic way to hamness the power of network-@e 5 gch a graph [10]. While we recognize that some previous

behavior, flow-level characteristics, and data mining techiques. .
As a proof of concept, we instantiate our framework to detect efforts [3], [5] have used graphs to detect worm activitgyth

P2P applications, and show that it can identify P2P traffic wih have not explored the full capabilities of TDGs for applioat
recall and precision greater than 90% in backbone traces, witch  classification.
are particularly challenging for other methods. We propose a classification framework, dubt@eption,
as a systematic way to combine network-wide behavior and
flow-level characteristics. Graption firgfroups flows using
An important task when monitoring and managing largiow-level features, in an unsupervised and agnostic way, i.
networks is classifying flows according to the applicatibatt without using application-specific knowledge. It then uses
generates them. Such information can be utilized for né&kwofDGs to classify each group of flows. As a proof of concept,
planning and design, QoS and traffic shaping, and securitye instantiate our framework and develop a P2P detection
In particular, detecting P2P traffic is a potentially im@mt method, which we call Graption-P2P". Compared to other
problem for ISPs that want to manage such traffic, and farethods, Graption-P2P is easy to configure and requires very
specific groups such as the entertainment industry in lagal dittle a priori knowledge (mainly a few intuitive paramesgr
copyright disputes. Detecting P2P traffic also has padicul The experimental part of our paper shows that:
interest since it represents a large portion of the Internet, Graption-P2P identifies over 90% of P2P traffic with
traffic, with more than 40% of the overall volume in some precision greater than 95% in backbone traces.
networks [11]. « Graption-P2P performs better than BLINC in P2P identi-
Most current application classification methods can be nat- fication at the backbone. For example, Graption-P2P iden-
urally categorized according to their level of observation tifies 95% of BitTorrent traffic while BLINC identifies
payload-based signature-matching methods [16], [14],-flow  only 25%.
level statistical approaches [6], [18], or host-level noelh,  « Even a single backbone link contains enough information
such as BLINC [13], [24]. Each existing approach has its own to generate TDGs that can be used to classify traffic.
pros and cons, and no single method clearly emerges as a In addition, TDGs of the same application seem fairly
winner. Relevant problems that need to be considered ieclud consistent across different times and locations.
identifying applications that are new, and thus without awn The rest of the paper is organized as follows.§lh we
profile; operating at backbone links [2], [13]; and detegtingefine TDGs, and identify TDG-based metrics that differen-
applications that intentionally alter their behavior. Wevel tate between applications. I§ill we present the Graption
and payload-based approaches require per applicationngai framework and our instantiation, Graption-P2P. §iv we
and will thus not detect traffic from emerging protocols. HoSgjscuss related work. 1V we conclude the paper.
based approaches can detect traffic from new protocols [13],
but have weak performance when applied at the backbone [2]. Il. TRAFFIC DISPERSIONGRAPHS
In addition, most tools including BLINC [13] (which has Definition. Throughout this paper, we assume that packets
28 parameters) require fine-tuning and careful selection @dn be grouped into flows using the standard 5-tplec| P,

|. INTRODUCTION



Name | Date/Time | Duration | 38":482’?604 TR-PAY1 and TR-PAY2 traces, we use the payload-based

TR-PAY1 | 2004-04-2Y17:59 | 1 hour - . i

TR-PAY2 | 2004-04-2¥19:00 | 1 hour | 37,612,752 classifier (PC) in order to select which flows belong to each

TR-ABIL | 2002-09/(N/A) | 1 month | 2,057,729 TDG. Since the TR-ABIL trace does not have any payload
TABLE | information, we use port numbers [2] to assign flows to

SET OF BACKBONE TRACES FROM THECOOPERATIVEASSOCIATION FOR applications. We can use port numbers for the TR-ABIL trace
INTERNETDATA ANALYSIS (CAIDA). STATISTICS FOR THETR-ABIL . . . . .
TRACE, ARE REPORTED ONLY FOR THE FIRST FIVBMINUTE INTERvAL.  SINC@ it was collected in 2002 where most P2P applications
used their default port numbers [7], [12]. We only use the
TR-ABIL trace to verify our TDG observations over a second
location in the backbone and we do not use it in the final
evaluation of our classifier. By using the month-long TR-ABI

trace, we can study the consistency of TDGs over different

[ﬁpnes of the day and over weekdays and weekends.

We observe TDGs over 5-minute intervals. This interval

srcPort, dstlP, dstPort, protocol }. Given a

group of flowssS, collected over a fixed-length time interval
we define the corresponding TDG to be a directed gra
G(V, E), where the set of nodeE corresponds to the set

of_]!Phaddr_esseﬂs i§', and tglere IS a EnK“’”) € E fromu to length gives good classification results and stability ofGI'D

vift ere1s a owf € 5 _etwe_ent em. _metrics over time. For each TDG we generate a diverse set
In this paper, we con5|dgr bldlrectlongl flows. We define &f metrics. Our metrics capture various aspects of TDGs in-

TCP flow to start on the first packet with tH@¥N flag set cluding the degree distribution, degree correlationspected

(referred to as th&&YN-packet), so that the initiator and the,ohonents, and distance distribution. For additionahittet
recipient of the flow are defined for the purposes of directiogbout these metrics we refer the reader to [9], [17].

For UDP flows, direction is decided upon the first packet of To select the right set of metrics we use various graph visu-

the flow. alizations and trial and error. Finding a less ad hoc approac

Data Set. To study TDGs, we use three backbone races peyond the scope of this work. Two TDG visualization
from a Tier-1 ISP and the Abilene (Internet2) network. The%(amples are shown in Figure 1. We see that FastTrack (P2P)
traces are summarized in Table I. All data are IP anonymizgds 5 genser graph than HTTPS, or a higherage degree

and contain traffic from both directions of the link. The TRy here the average node degieés given byk = 2|E|/|V.

PAY1 and TR-PAY2 traces were collected from an OC48 \ye tilize two other metrics that capture the directioryalit

link of a commercial US Tier-1 ISP at the Palo Alto Internegs i edges in the graph and the distances between nodes.
eXchange (PAIX). The TR-ABIL trace is a publicly availableryq girectionality is useful since we know that pure clients

data set collected from the Abilene (Internet2) academie Ny initiate traffic, pure servers should never initiataffic,

work connecting Indianapolis with Kansas City. The Abileng,§ that some P2P nodes play both roles. To capture this
trace consists of five randomly selected five-minute sampl Santitatively, we definénO to be the percentage of nodes in
taken every day for one month, and covers both day and nignt, graph that have both incoming and outgoing edges.
hours as well as weekdays and weekends. B The distance between two nodes is defined as the length of
Ground Truth. We used a Payload-based Classifier (PC) {@eir shortest path in the graph. The diameter of a graph is
establish the ground truth of flows for the TR-PAY1 and TRyefined as the maximum distance between all pairs of nodes,
PAY2 traces. Both traces contain up to 16 bytes of payload jfhich is sensitive as a metric [17]. For a more robust metric,

each packet, thereby allowing the labeling of flows using thgs yse theeffective diameter (EDiam), which we define as
signature matching techniques described in [2], [13]. RUON {ne 90-th percentile of all pairwise distances in the graph.
the PC over the TR-PAY1 and TR-PAY2 traces we find 14% rrom our measurements. we empirically derive the

of the traffic to be P2P, 28% Web, 6% DNS, and the rest {gjowing two rules for detecting P2P activityRule 1:
belong to other applications, such as Email, FTP, NTP, SNMP, - 9 and 1m0 > 1%: Rule 2 InO > 1% and
etc. For.(.)ur study, we remove the 2% of traffic that remainedp; ..., ~ 11. With these simple rules, we can correctly
unclassified and the 28% that contained no payload. identify all P2P TDGs from both backbone locations (Abilene
A. Identifying P2P TDGs backbone and Tier-1 ISP). Intuitively, P2P hosts need to
' be connected with a large set of peers in order to perform
Identifying the right metrics to compare graph structuses i tasks such as answering content queries and sharing files,
challenging question that arises in many disciplines [Odr which can explain the higher average degree compared to
approach is to consider several graph metrics, each cagtari client-server applications. An additional characteristi P2P
potentially useful characteristic, until a set of metrisdaund gpplications is the duality of roles, with many hosts acting
that distinguishes the target graphs. both as client and server. The duality of roles is in turn
To select an appropriate set of metrics, we generate a lagggtured by the high InO value. We further speculate that
number of TDGs using all our traces (Table 1), thus observinge decentralized architecture of some P2P applicatiarzh(s
TDGs over two different locations at the backbone. For thg BitTorrrent), can explain the high diameters in some P2P
. A _ o TDGs. Additional speculations on why these three metrics
The authors thank CAIDA for providing this set of traffic temc Additional

information for these traces can be found in the DatCatrheteMeasurement effe_Ct'Vely capture PZP peh_awor IS prowded n [9] and are
Data Catalog [26], indexed under the label “PAIX". omitted due to space limitations.
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(b) The HTTPS TDG (client-server application).

Fig. 1.
application. Largest component is with bold edges.

Two TDG visualization contrasting a P2P with a client-server

and then use graph metrics on the remaining traffic. In aafditi
to port inspection, we can also examine the payload of a flow
in order to verify that it follows the expected applicatitayer
interactions. As a future work, our goal is to select metificg

can further help to separate between collaborative apita
(e.g., DNS) and P2P. We discuss similar topics agalisC.

We do not claim that our thresholds are universal, but our
measurements suggest that small adjustments to thesessimpl
parameters allow our methodology to work on different back-
bone links. Furthermore, the three thresholds (InO, EDiam,
and average degree) are observed to remain stable over time.

IIl. THE GRAPTION FRAMEWORK

The Graption framework consists of the following three
steps.

Step 1. Flow Isolation.The input is network traffic in the
form of flows as defined ifll. The goal of this first optional
step is to utilize external information to isolate any flowatt
can already be classified. This knowledge could be based on
payload signatures, port numbers, or IP address (e.guacl
flows from a particular domain such g®ogl e. com).

Step 2. Flow Grouping. We use similarity at the flow
and packet level to group flows. The definition of similarity
is flexible in our proposed methodology. We can use flow
statistics (duration, packet sizes, etc.) or payload if tisi
available. Eventually, the output of this step is a set of
groups with each group ideally containing flows from a single
application (e.g., Gnutella, NTP, etc.). However, at theps
the exact application of each group is not known.

Step 3. Group Classifier. For each group of flows, we
construct a TDG. Next, we quantify each TDG using various
metrics. The classifier uses these metrics to identify the
application for each group of flows. For the classification
decision, we use a set of rules which in general depend on
the focus of the study.

Although this paper focuses on P2P detection, Graption
can be used for general application classification by cimgosi
metrics and parameters appropriately. We next describe how
we specialized Graption to detect P2P traffic (GraptionjP2P

A. Implementation Details of Graption-P2P

Step 1. This is an optional step in our methodology.
Experiments without this step are discussed later in thigosec
Recent work [2] suggests that port-based classificatiorksvor
very well for legacy applications, as legacy applicatioss u

Distinguishing collaborative applications from P2P: Some their default ports and tunneling of P2P at such ports is not
well-known applications other than P2P exhibit collabmeat very common. Thus, in this study, we isolated flows with port
behavior, such as DNS and SMTP. This is not surprising sin88 for Web, port 53 for DNS, and port 25 for SMTP. These
in these applications servers communicate with each ofiter applications turn out to be about 65% of the total number of
with other clients (highk), and servers act both as clients anflows. In our traces, the proportion of P2P actually using one
servers (highnO). This is exactly what our metrics are set oudf these ports is as low as 0.1%.
to detect. It has been reported recently [2] that port nusiber Step 2. To implement flow grouping we use the fact that
are fairly accurate in identifying such legacy applicasipnapplication-level headers are likely to recur across flovwsnf
although they fail to identify P2P and other applicationshwi the same application. Therefore, payload similarity candesl
dynamic use of port numbers. Therefore, one could use legaoygroup flows. In Graption-P2P, we only use the first sixteen
ports to pinpoint and isolate such collaborative applaadi bytes from each flow. As we show, sixteen bytes are sufficient
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Fig. 2. Evaluating K-means. Fig. 3. Graption-P2P achieves > 90% F-Measure over a large range of
similarity thresholds and number of clusters (k).
to give very good classification results. This observatipreas . | I d.in th ¢ Litis rat
with findings in [16], [14]. Even though we use the payload"9!na!y- Inﬁteah, In the case of a szp protoc%, '} IS tl:c H
bytes, our grouping is agnostic to application semantiss, & assume that the TDGs corresponding to each cluster of the
each byte is considered as a single independent categor?@ame protocol would share a large number of common nodes

feature. We consider each byte as a single categoricalréeatﬂP addresses). i )
in the range{0, 1, ..., 255}. Based on these observations, we use an Agglomerative

The flow grouping step comprises two substeps: clust ierarchical) Clustering Algorithm that recursively rges
formation and cluster merging clusters with significant similarity in IP addresses. Weduse

a. Forming Clusters. Given the set of discriminating fea_the following metric to calculate similarity between cleist:

tures, the next step is to cluster “similar” flows togethee V\/gzm.(ClZCQ) - (Numbgr of flows having their source or
use the termeluster to describe the outcome of an initialdestlnatlon IPs present in both clusters) / (The number afsflo

grouping using the selected features. Clusters may be merﬁé the smaller cluster). The cluster merging process stiyts

in the next function of this step to forngroups, which |erarch|cal_ly merging clusters with high S|m|Iar.|ty gn@p;s
. when the similarity between all new cluster pairs is below a
produces the final output.

S i - similarity threshold (ST). As we show later in our evaluation,
Feature-based clustering is a well-defined statisticaa d tur classifier gives very good results over a large range of

mining problem. For this task we used the popw{ameans similarity thresholds.

algonthm_[Zi]. ITh'tS glgorlfthmthasktzcleen cgmnl%nly l.f[f]ed for Step 3.The outcome of the previous step is a set of groups
unsupervised clustering of network flows [6], [16], with yer of flows, with each group consisting of flows that we hope

ggcr)]d rgsullts and low ccr)]mput(l’;\tlona:] cost. E-mefa:cl_‘ls lc()glerag?gm from a single application. In order to classify eactugro

with a single parameter_t atselects t € humber otfina E!s‘twe generate a TDG on the group in the same way as described
(k). As we show later in our evaluation, our classifier gives, §Il. Each group yields a TDG that can be summarized
very good results over a large range/of using graph metrics. To identify P2P TDGs, we used the rules

_The similarity between two flows is measured by H&@m- o2 cted fronfii-A. When a group is labeled as P2P then all
ming [22] distance calculated over the 16 categorical featurgs, fowws of that group are classified as P2P flows

(i.e., the payload bytes). Even though more involved sirityla
measures such as edit-distance (also known as LevenshirEvaluating Graption-P2P

distance) exist, Hamming distance has been used sucdgssfulTo evaluate Graption-P2P, we use traces TR-PAY1 and TR-
before [8] and performs very well in our application. PAY2, where we have the ground truth using the payload clas-

b. Cluster merging. During clustering, it is likely that the sifier (§1l). We compute the True Positives, False Positives, and
same application generates multiple clusters. For exampfise Negatives. The True Positives (TP) measures how many
many P2P protocols exhibit a variety of interaction patierninstances of a given class are correctly classified; theeFals
such as queries (UDP flows) and file transfers (TCP flowositives (FP) measures how many instances of other classes
each with significantly different flow and packet charastiité  are confused with a given class; and the False Negatives (FN)
[12]. measures the number of misclassified instances of a class.

This motivates mergings clusters that we expect to belohg our comparisons, we used the following standard metrics:
to the same application into groups. This grouping providesecision (P), defined as® = TP/(TP + FP); Recall (R),
a more complete view of the application and aides in undefefined ask = TP/(TP + FN); and theF-Measure [22],
standing the structure of the P2P protocol, as we show defined asF = 2P - R/(P + R), combining Precision and
sl1-B. Recall.

Cluster merging cannot be based on the chosen set of flow\We first test the ability of K-means to generate clusters with
level features that were already used to create the clustBosvs from a single application. After forming the clusters



100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ C. Discussion
Comparison with BLINC [13] . We used BLINC to classify
traffic over both TR-PAY1 and TR-PAY2 traces. BLINC was
S es| | optimized after several trial and error efforts to achietge i
2 o rant ngguy Truth —g— best accuracy over these traces, as described in [2]. ThalRec
7] r raption- : rging Q- b .. .
g Graption-p2P: No Moraing - & and Precision for BLINC are 84% and 89% respectively. In
i 751;___‘ 1 particular, BLINC has significantly lower performance for
o1 A 1 some P2P applications. For example, Graption-P2P detects
os | e i 95% of BitTorrent traffic, while BLINC detects only 25%! Our
e A experiments suggest that BLINC and possible other hostbase
60 ‘ ‘ ‘ ‘ ‘ ‘ ‘ p 99 p
80 100 120 140 160 180 200 220 240 approaches work well when applied at the edge, where a
Clusters (k) in K-means large fraction of host flows are observed and hence enough
Fig. 4. Graption-P2P with and without cluster merging. Results are also evidence is collected to profile eac_h n_Ode' I—_Iowever' this is
compared with cluster labeling based on ground truth. not always true for backbone monitoring points which can

explain BLINC's lower performance. These observations are

with K-means, we use the ground truth and label each clus?éfg ;uppcort(:_d by findin?/\s/ irr]1 [2]. d Graption-P2P with
as belonging to the application with the majority of flows. ther Configurations. We have tested Graption- with-

All the flows of a cluster are then classified to belong to thidut using payload under the assumption that payload is en-

dominant application. Th& andR of K-means as we increasec.rypted' For grouping flows we used packet size information

k for both traces are shown in Figure 2. We observe that wi he- mi?, max, and the size of rt]hed firs:c five (;:)ackets) ag‘ld
sufficiently largek (> 120) we achieve very good results Withprotocq (UDP or TCP). Our met od pertormed comparaply
P and R above 90%. well with R and P above 88% in both traces. We also

Using Graption-P2P, we achieve high F-Measure 0\/ereé(perlmented without using Flow Isolation. To achieve good

0, I i -
range of values of (K-means) and similarity thresholds (ST).reS.UItS (P, R> 85%) we haql to increase(> 300.) in K-means, .
We show this in Fiqure 3. where we vary the ST from 0 01 tvélh'Ch made cluster merging more challenging. More details
19 ’ . y . "~ are omitted due to space limitations. Evaluating Graption
1 and use a sufficiently large(see Figure 2). All experiments . . . : L :
AT : . ith other configurations and different data mining cluistgr

are averaged over each disjoint 5 minute interval of bo}’l\!' . T .
traces. Intuitively, by using a very large ST, the clusterar dlgorithms is included in our future work.

T Y, Y 9 y arge s 1, Enhancing Isolation. To improve isolation we can enforce
application are not grouped together, which results to TDG%\ load inspection in addition to port-based filtering. For
that are harder to classify as P2P. On the other hand, with ¥ )

. . o example, we can test all DNS flows at port 53 to see if they

very small ST, clusters belonging to different applicasi@me : .
. e also have a DNS payload signature or if another protocol
merged together leading to poorer classification perfomaanis tunneling its traffic under the DNS port. If pavioad is
The results in Figure 3 show that we achieve good classifica- g port. 11 pay

. hcrypted, then we can choose to use flow-level feature such
tion performance ¥ 90% F-Measure), over a large range o : o

o as packet sizes [2] or white-listed IP addresses [21].
similarity thresholds and number of clustekg.(

In Figure 4, we compare our approach with labeling each IV. RELATED WORK

cluster using the ground truth (i.e. without merging any Traffic Classification. As an alternative to port-based meth-
clusters and labeling each cluster based on the dominads, some works used payload [16], [14]. Other approaches
application). Intuitively, for a given clustering of flow#he use Machine Learning (ML) methods to classify traffic using
ground truth shows the best that any cluster labeling mechigw features (e.g, packet sizes). For an exhaustive list and
nism can achieve. For merging, we use an ST of 0.5. Frafmparison of ML methods we refer the reader to [18] and [2].
Figure 4, we see that Graption-P2P deviates only slightinfr Our work has more in common with unsupervised data mining
labeling clusters using the ground truth. In the same pletethods which group similar flows together. All previous
we also compare Graption-P2P without the cluster mergingethods [15], [6] require manual labeling of clusters. Our
step, highlighting the benefit of merging clusters of the sanork bridges this gap by providing a method to automatically
application together. label clusters of flows based on their network-wide behavior
Using a ST of 0.5 and: = 160, Graption-P2P achieves In BLINC [13], the authors characterize the connection
above 90% Recall and above 95% Precision over all disjoipatterns (e.g., if it behaves like using P2P) of a single hbst
5 minute intervals for both traces. To apply Graption-P2Re Transport Layer and use these patterns to label the flbws o
to other backbone link, the same selection processed canelaeh host. BLINC uses graph models called graphlets to model
repeated to adjust the values of ST andOur experiments a host’s connection patterns using port and IP cardinglitie
show that the classification performance can degrade witlnlike TDGs, graphlets do not represemtwork-wide host
a very bad choice of parameters. However, as shown iitteraction. In some sense, TDGs represent a further Idvel o
Figures 2, 3, and 4, for reasonable choicesk@nd ST, our aggregation, by aggregating across hosts as well. Thus it is
method provides very good results. perhaps fair to say that while BLINC hints at the benefit



of analyzing the node’s interaction at the “social” level, iSystems, Inc. Support for CAIDA's Internet traces is predd
ultimately follows a different path that focuses on the heétva by the National Science Foundation, the US Department of
of individual nodes. As we show, our approach performs bettdomeland Security, CAIDA Members, and the DatCat system.

than BLINC in our backbone traces.

Similar to BLINC, other host-based method [1], [23] target
the identification of P2P users inside a university campes, (i [
network edge). Unlike Graption, in [1], [23], [13] they dotno
use network-wide host interaction. In [4], the authors use a[2]
port-based method to identify P2P users, using their teatpor
appearance and connection patterns in a trace. 3]

The most recent host profiling method is by Trestian et
al. [21]. They used readily available information from thelwV
to classify traffic using the Google search engine. They sholi!
very good results for classifying flows for legacy applioati  [5]
but their results are not promising for P2P detection bexaus
of the dynamic nature of P2P IP hosts. Our method can
used to complement the work in [21].

Worm Detection. Graphs have been used for detectin
worm activities within enterprise networks [5]. Their main
goal was to detect the tree-like communication structure of
worm propagation. This characteristic of worms was alsa usd®!
for post-mortem trace analysis (for the identification oé th
source of a worm outbreak, the so-called patient zero) using]
backbone traces [25]. More recent studies use graph tasdsiq
to detect hit-list worms within an enterprise network, tohsefll]
on the observation that an attacker will alter the connected
components in the network [3]. (12]

Measurements. Statistical methods are used in [24] for
automating the profiling of network hosts and ports numbeis3]
The connectivity behavior and habits of users within errteep
networks is the focus of many papers, including [20]. In [19114]

(7]
8]
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