
An Improved Analysis of the Lossy Difference Aggregator

Hilary Finucane∗ Michael Mitzenmacher†

ABSTRACT
We provide a detailed analysis of the Lossy Difference Ag-
gregator, a recently developed data structure for measuring
latency in a router environment where packet losses can oc-
cur. Our analysis provides stronger performance bounds
than those given originally, and leads us to a model for how
to optimize the parameters for the data structure when the
loss rate is not known in advance by using competitive anal-
ysis.

1. INTRODUCTION
The Lossy Difference Aggregator (LDA), recently intro-

duced in [2], is a novel hash-based data structure designed
to allow measurements of the expectation and standard de-
viation of latency in a router environment where packet
losses occur. While this could be done by recording the
time each packet was sent from the sender and the time
each packet was received at the receiver and comparing these
times packet by packet, such an approach requires too much
overhead for this setting. The LDA solution requires signif-
icantly less overhead and obtains robust results.

Here we improve on the original analysis given in [2], pro-
viding better bounds on the number of samples obtained
using the LDA structure when losses occur at a known rate,
and giving a framework for optimizing the structure when
the loss rate is not known in advance.

We recall the basic setup of the data structure as given
in [2].1 The system is measured at disjoint time intervals;
the description below applies to a single time interval. The
data is kept in a table of banks, where each bank consists
of a collection of timestamp accumulator-counter pairs; for
simplicity, we refer to these timestamp accumulator-counter
pairs as buckets when the meaning is clear. The buckets cor-
respond to disjoint samples of packets from the stream; that
is, each packet is sampled by at most a single bucket, with
some probability that depends on the bucket. The original
analysis of [2] assumes that for each packet, first a bank is
chosen according to a probability distribution, and then a
bucket is chosen uniformly at random from that bank. We

∗School of Engineering and Applied Sciences, Harvard Uni-
versity.
†School of Engineering and Applied Sciences, Harvard
University. Supported in part by NSF grant CNS-
0721491 and a grant from Cisco Systems. Email:
michaelm@eecs.harvard.edu
1As mentioned in [2], the approach described there is actu-
ally small modification of their original approach suggested
by Finucane, and it is this version that we study.

can generalize this method by ignoring the banks, instead
thinking of each bucket as being chosen with some probabil-
ity that depends on the bucket (where again the sampling
is done so at most one bucket is chosen per packet). Here,
we focus on the more general approach. Requiring various
collections of buckets to be chosen with the same probability
– a requirement which might be useful in hardware – is an
optional restriction on our basic layout. In fact, our analysis
will show that generally one incurs little loss in performance
by utilizing banks, which is indeed fortunate for hardware
design.

The sampling is done at the sender and the receiver in
a consistent fashion, so that when a packet is not lost the
sender and receiver agree on which bucket (if any) is asso-
ciated with that packet. Each packet has two timestamps
recording when it is sent and when it is received, but neither
timestamp is sent with the packet, to save space overhead.
Instead, for each bucket, the sender keeps track of the sum
of the sending times for the packets in that bucket and the
total number of packets in the bucket, and the receiver keeps
track of the sum of the receiving times for the packets in the
bucket and the total number of packets in the bucket. At
the end of the time interval, a control packet is sent from the
sender that contains the information for each bucket. The
receiver can check for each bucket that no packets were lost
in the bucket by comparing the number of packets in the
bucket. For a bucket where no packets were lost, the differ-
ence in the sums divided by the number of packets in the
bucket gives the average latency over packets in that bucket.
Thus, the sum of all timestamp differences over all buckets
that did not lose a packet, divided by the sum of the packet
counts over all buckets that did not lose a packet, is an un-
biased estimator of the packet latency. (Similar techniques
can be used to estimate the variance.)

This approach offers a number of advantages in terms of
computation required and space usage. For example, only
one bucket is updated for each packet, a single hash func-
tion can be used to determine the appropriate bucket, and
averages can be taken over all buckets that suffer no loss.
The key question is how to choose the sampling probabili-
ties to maximize the number of packets obtained; this is the
question we now turn to.

Our results include an improved analysis of the optimal
sampling probabilities when the loss rate of packets is known.
Based on this analysis, we suggest an optimization frame-
work for the more realistic setting where loss rate of packets
is unknown, based on competitive analysis. That is, we aim
for an algorithm that, on average, obtains a large fraction of



the optimal, where the optimal is average number of packets
we would obtain if we knew the loss rate in advance. In this
framework, we show that for several quite realistic settings,
the best competitive ratio is achieved by using a single sam-
pling rate for all of the buckets. This provides theoretical
backing for the suggestion of [2] that only a small number
of banks, or equivalently only a small number of sampling
probabilities, are needed to achieve excellent performance
across a range of loss rates.

2. ANALYSIS

2.1 Notation
We will use the following notation, differing slightly from

[2]. We let m be the number of buckets, n be the number of
packets sent over a given time interval, and L be the number
of losses. In cases where we talk of packets undergoing loss
at a given rate, we use ℓ to denote the loss rate, and L is
a taken to be a binomial random variable with E[L] = ℓn.
This is not meant to imply that losses are necessarily inde-
pendent; they may be correlated in time or in other respects.
We do, however, assume that the hashes are uniform and in-
dependent in the natural way. That is, if a packet chooses a
bucket with probability p (that can depend on the bucket,
and may be irrational in our analysis) then we can think of
the hash as being uniform on the real interval [0, 1), and the
packet is placed in that bucket if it lands in some interval
[a, a + p). Again, in this case, the hashes are uniform and
independent, and the intervals are disjoint.

In practice, one generally chooses rational probabilities
that are computed easily; in [2] the recommendation is to
use sampling probabilities with that are integer powers of
1/2, which can be easily implemented by using the low or-
der bits of a hash of packet. (In fact, more generally one
can choose sampling probabilities of the form i/2j for inte-
gers i and j in this fashion.) Here we focus on the ideal of
arbitrary sampling probabilities, which give insight and can
be rounded or otherwise modified in practice, as we discuss
further in the analysis.

In our analysis what is important is the hash value of
packet, which determines the bucket the packet will be placed
in. It follows that, from the point of view of each bucket,
when there is a loss rate of ℓ, it is as though each packet
hashed to that bucket is lost with probability ℓ, since each
bucket obtains a random sample of the n packets. Our anal-
ysis makes use of this fact, allowing us to assume that each
packet is lost with probability ℓ.

2.2 The case of small loss
To begin our analysis, we consider the case of a small

number of losses. It follows from more general arguments in
Sections 2.3 and 2.4 that in this setting we should sample
all packets and divide them equiprobably among the buck-
ets; we take that as given for now. When there are exactly
L losses, the main concern is the number of buckets which
obtain one or more loss. The probability that the L lost
packets map to k buckets is given by the Stirling numbers
of the second kind; specifically, the Stirling number S(L, k)
(also sometimes denoted

˘

L
k

¯

[1]) represents the number of
ways to partition L items into k non-empty sets. Hence, let-
ting K be a random variable denoting the number of buckets

where packets are lost, we have:

Pr(K = k) =

 

m

k

!

k!S(L, k)/mL.

The remaining n−L packets are equally likely to fall into
any bucket, and hence the expected number of packets in
useful buckets is (n − L)(1 − K

m
).

When L = o(
√

m), with high probability (that is, with
probability 1−o(1)) the L losses will occur in distinct buck-
ets, conditioned on which the expected number of packets
not in useful bucket is L + L(n − L)/m. This matches the
statement of [2] that under low loss the expected fraction
of packets that do not fall in useful buckets is approxi-
mately L/m. More specifically, the number of packets in
useful buckets will approximate a binomial random variable
B(n−L, 1−L/m). (It will equal this random variable when
the L losses occur in different buckets.)

2.3 The case of large known loss, equiproba-
ble buckets

Suppose now we have a constant loss rate ℓ which is not
necessarily small, and our goal is to maximize the expected
number of packets in useful buckets. What should the sam-
pling rate for each bucket be?

Let us denote our sampling rate for a given bucket by z/n,
so that we obtain an average of z samples in the bucket. We
will optimize the expectation for a single bucket; standard
linearity of expectations arguments give that to maximize
the expectation over all buckets we use the same sampling
rate for all buckets. (See also our concavity argument in
Section 2.4.)

The expected number of useful packets can be found by
considering the number of packets that hash to a bucket
multiplied by the probability that none are lost. The number
of packets in a bucket is given by a binomial distribution
B(n, z/n); for convenience we use the Poisson distribution
with mean z to approximate this distribution, a standard
technique [3], and revisit this approximation later. Let X
be the number of useful packets from a given bucket. Then,
using the Poisson approximation, for i > 0,

Pr(X = i) =
e−zzi

i!
(1 − ℓ)i.

That is, for there to be i useful packets, i packets must have
been hashed to the bucket, and then with probability (1−ℓ)i

none are lost between the source and destination. We then
find

E[X] =

∞
X

i=1

i
e−zzi

i!
(1 − ℓ)i

= z(1 − ℓ)e−zℓ
∞
X

i=0

e−z(1−ℓ)(z(1 − ℓ))i

i!

= z(1 − ℓ)e−zℓ.

We can maximize E[X] by taking derivatives:

dE[X]

dz
= (1 − ℓ)e−zℓ − z(1 − ℓ)ℓe−zℓ,

setting this to 0, and canceling. We find the expectation
is maximized when z = 1/ℓ. (We note that there is a re-
quirement that z ≤ n/m, since we have disjoint buckets; if
ℓ > m/n, we set z to n/m.)



More intuitively, given ℓ, we should choose z so that on
average there is exactly one loss per bucket; this gives an
average number of useful packets per bucket of 1−ℓ

eℓ
.

We remark that essentially the same argument holds even
without the Poisson approximation, and we provide this ar-
gument now below. However, we focus on the Poisson ap-
proximation argument because, in general, it is simpler, and
we believe it should be the starting point for researchers
that build on this analysis or use similar analysis for related
problems.

Using the binomial distribution instead of the Poisson ap-
proximation, we have

Pr(X = i) =

 

n

i

!

“ z

n

”i “

1 − z

n

”n−i

(1 − ℓ)i,

and then

E[X] =
∞
X

i=1

i

 

n

i

!

“ z

n

”i “

1 − z

n

”n−i

(1 − ℓ)i

= n
n
X

i=1

 

n − 1

i − 1

!

„

z(1 − ℓ)

n

«i
“

1 − z

n

”n−i

= z(1 − ℓ) (1 − ℓz/n)n−1 .

Taking derivatives with respect to z and some algebraic ma-
nipulation again gives that z = 1/ℓ provides the maximum
expectation. We note that (1 − ℓz/n)n−1 approaches e−ℓz,
and although the Poisson approximation slightly overesti-
mates E[X] for some values of n, ℓ, and z, in practice n is
large enough to make the difference negligible. For example,
[2] uses n = 5, 000, 000, making the difference between the
expected values given by the binomial distribution and the
Poisson approximation less than 10−7 for all values of ℓ and
z. Again, we use the Poisson approximation henceforth for
convenience.

Our bound differs slightly from that in [2]. There the
authors state a weaker lower bound, which in our notation
corresponds to

E[X] ≥ α(1 − α)(n − L)

L + 1

for any constant α, 0 < α < 1. Here the sampling rate
per bucket is α/(L + 1), and the bound is optimized when
α = 1/2. We note that the authors don’t provide a proof of
this bound (in particular, the reason why the authors choose
α/(L + 1) and not α/L is not clear; it seems the right-hand

side of the bound should be the stronger α(1−α)(n−L)
L

, as we
prove below, and we use this bound henceforth), and the
bound assumes that the actual number of losses, and not
just the loss rate, is known in advance.

Their bound therefore underestimates the number of po-
tential samples in two respects. First, even when using a
sampling rate at α = 1/2 (or z = 1/(2ℓ)), we find their
bound underestimates the expected number of sampled pack-
ets. Assuming that L equals its expectation ℓn, their lower
bound on the average is (1−ℓ)/(4ℓ) per bucket; our analysis

yields an expectation of (1 − ℓ)e−1/2/2, which is a factor of

2e−1/2 ≈ 1.21 higher. (This in fact appears to be the gap
between the experimental results and the lower bound of
[2] in Figure 4 of [2].) Second, the correct setting in their
notation is α = 1 (or z = 1/ℓ), which gives an expected
number of packets per bucket of (1 − ℓ)/(eℓ), or a factor of
4e−1 ≈ 1.47 higher than the analysis of [2].

It is important to emphasize, however, that their analysis
would hold under weaker assumptions than ours. Specifi-
cally, their lower bound holds assuming only pairwise inde-
pendent hash functions and a packet loss process indepen-
dent of the hashing process, whereas our analysis assumes
perfectly random hash functions. While this is not explicitly
stated in [2], it follows naturally from their analysis, and we
prove it below. While the assumption of perfectly random
hash functions appears quite strong, it is often an accu-
rate description of what occurs in practice, even when using
weak hash functions such as pairwise independent hash func-
tions. The work of Mitzenmacher and Vadhan [4] provides
some theoretical backing for why this is the case, showing
that weak random hash functions and semi-random data can
combine to yield hash results that are near-uniform.

We now show how pairwise independence suffices for the
bound of [2] above. Recall that a hash function H chosen
from a uniform pairwise independent family of hash func-
tions with range R satisfies the property that for any pair
of items x1 and x2 in the domain and any y1 and y2 in the
range, Pr(H(x1) = y1 and H(x2) = y2) = 1/R2 (see, e.g.,
[3]). We assume the choice of whether a packet is sampled
and which bucket it is placed in is determined by the re-
sult of a pairwise independent hash function applied to the
packet. Let L be the (known) number of lost packets, and
consider any packet that is not lost. Let packets be sampled
at each bucket with probability α/L. Consider the event
that an arbitrary one of the (n−L) packets that is not lost
is sampled in a useful bucket where no lost packets were
sampled at the sender. The probability the packet is sam-
pled by the bucket is α/L; the probability that none of the L
lost packets is sampled by this bucket is, by a union bound,
at least 1−L α

L
= 1−α. Note that this union bound requires

only pairwise independence of the hash function H . (See,
e.g., [3].) Hence by linearity of expectations the expected
number of useful packets X at the bucket satisfies

E[X] ≥ α(1 − α)(n − L)

L
.

Finally, we return to the question of performance when
the sampling probabilities available are restricted. We con-
sider the specific case where the probabilities are integer
powers of 1/2, although the reasoning can be applied more
generally. Our analysis has shown that, with the Poisson
approximation, the expected number of useful packets per
bucket with sampling probability z/n is z(1 − ℓ)e−zℓ. Sup-
pose instead of using the optimal z = 1/ℓ we use z = 1/γ,
where γ is chosen so that z/n is a power of 1/2. Then the
ratio between this expectation and the optimal expectation
is

1 − ℓ

γeℓ/γ
· eℓ

1 − ℓ
= e

ℓ

γ
e−(ℓ/γ).

If we choose γ so that z/n is one of the closest powers of 1/2
to 1/(nℓ), then our two choices for ℓ/γ correspond to two
possible values x and 2x, where 1/2 < x ≤ 1. It can be
checked that min1/2<x≤1 max(exe−x, 2exe−2x) is achieved
when x = ln 2, so that the best choice is not simply to choose
z/n to be the nearest power of 1/2, but to choose z/n to be
the next (numerically) smaller power of 1/2 if that makes
ln 2 ≤ ℓ/γ ≤ 1, and the next larger power otherwise. The
ratio above is then at least (e ln 2)/2 ≈ 0.942, and so we re-
duce our expected number of useful packets per bucket by at



most six percent by restricting to this set of sampling prob-
abilities. This provides some rigorous backing for adopting
this computationally simple approach in practice. Indeed, it
is similar in spirit to the competitive analysis approach we
adopt for the case of unknown loss.

2.4 The case of unknown loss
When the loss rates are unknown ahead of time, as one

would expect in practice, there is some choice regarding
what one might try to optimize. The original paper [2]
suggests some ad hoc heuristics for this setting, but does
not provide an optimization framework. Here we suggest
various considerations, and argue for an approach based on
competitive analysis.

The underlying problem is that it is not possible to simul-
taneously guarantee optimal behavior for all possible loss
rates, so one must decide what to aim for. One natural goal
is to maximize the minimum expected number of packets
over loss rates in a given range [ℓ1, ℓ2]. This goal, however,
is straightforward; since the expected number of packets ob-
tained decreases as the loss rate increases regardless of sam-
pling probabilities, it follows that with that goal we simply
choose the settings that maximize the expected number of
packets for the loss rate ℓ2, as found in Section 2.3. If in-
stead one had a distribution over possible loss rates in a
range [ℓ1, ℓ2], a possible goal might be to maximize the ex-
pected number of packets obtained over this distribution.
For a collection of m buckets with a sampling rate of zi/n
for the ith bucket this expectation would be given by (using
the Poisson approximation)

Z ℓ2

ℓ=ℓ1

m
X

i=1

zi(1 − ℓ)e−ziℓg(ℓ) dℓ,

where g(ℓ) would be the density function of the correspond-
ing distribution on ℓ. We may also consider the case as m
goes to infinity, in which case the sum can be represented as
an integral and we seek to optimize

Z ℓ2

ℓ=ℓ1

Z 1

z=0

z(1 − ℓ)e−zℓf(z)g(ℓ) dz dℓ,

where f(z) represents the density function of the distribu-
tion of the sampling rate over buckets. (Conceivably, this
latter expression might be easier to optimize, and then for
finite m one could choose sampling rates according to the
density function f , directly or in some other fashion.) How-
ever, in many settings, we may not have a distribution over
loss rates, only a target range for the loss rate, in which case
this approach would not apply.

Arguably a more natural and more flexible goal is to min-
imize the gap between the expected number of packets ob-
tained by the chosen configuration and the optimal configu-
ration, where for the optimal configuration we mean optimal
assuming that we knew the loss rate in advance. This corre-
sponds to the well-studied concept of the competitive ratio
for online algorithms. Suppose that we set a configuration
with sampling rate zi/n for bucket i. Then the ratio be-
tween the expected number of packets from useful buckets
and the optimal expectation given the loss rate in advance –
again using the Poisson approximation – when ℓ is the loss
rate is given by:

Pm
i=1 zi(1 − ℓ)e−ziℓ

m(1/ℓ)(1 − ℓ)e−1
=

e

m

m
X

i=1

ziℓe
−ziℓ.

We wish this ratio to be as close to 1 as possible. Hence, if
we wish to optimize the competitive ratio over a given range
[ℓ1, ℓ2], we seek to optimize the competitive ratio Cm,n,ℓ1,ℓ2

over vectors ~z = (z1, z2, . . . , zm), given by the expression

Cm,n,ℓ1,ℓ2 = max
~z

min
ℓ∈[ℓ1,ℓ2]

e

m

m
X

i=1

ziℓe
−ziℓ.

(Technically, our expression Cm,n,ℓ1,ℓ2 is independent of n,
since we have used the limiting Poisson approximation; we
keep the n in the expression to highlight this.) Let f(x) =
xe−x, then this can be restated as finding

C = max
~z

min
ℓ∈[ℓ1,ℓ2]

e

m

m
X

i=1

f(ziℓ),

where we use C for Cm,n,ℓ1,ℓ2 where the meaning is clear.
In general, optimizing the competitive ratio C will have

to be done numerically. Also, there may be additional con-
straints. For example, as we have considered previously and
as suggested in [2], a natural approach is to use the last
few bits of a hash of the packet to determine whether it
was sampled by a bucket, in which case we might restrict
the sampling probabilities to be an integer power of 1/2.
Here we ignore such restrictions and analyze some special
cases, which provide useful rules of thumb and some insight.
Specifically, we show that as long as the range of values
[ℓ1, ℓ2] is sufficiently narrow, the optimal configuration is
in fact to use a single sampling probability for all buckets.
That is, in the language of [2], there needs to only be a sin-
gle bank of timestamp accumulator-counter pairs using the
same sampling probability.

The mathematics that follows is not meant to obscure the
main point, which was suggested as a heuristic in [2]: a
small number of sampling probabilities for all the buckets is
sufficient to get very good performance. Here, we quantify
this heuristic by looking at the competitive ratio with the
optimal performance if one knew the loss rate of packets in
advance.

2.4.1 The case where ℓ2/ℓ1 ≤ 2

We first show that when the range of loss rates of concern
is fairly small, so that ℓ2 ≤ 2ℓ1, then the optimal assignment
is for every bucket to have the same sampling probability.
This argument therefore extends the setting where every
bucket should have the same sampling probability beyond
the case of known loss rates covered previously.

Proposition 2.1. When ℓ2/ℓ1 ≤ 2, then the vector ~z∗ =
(Z1, Z2, . . . , Zm) that maximizes the competitive ratio has
Zi = ln ℓ2−ln ℓ1

ℓ2−ℓ1
for all i.

Proof. We first note that f is increasing for 0 < x < 1,
decreasing for x > 1, and concave for 0 ≤ x ≤ 2. Any
assignment of z that is optimal must have ziℓ1 ≤ 1 for all i,
because otherwise the value of

Pm
i=1 f(ziℓ) can be increased

for all ℓ ∈ [ℓ1, ℓ2] by decreasing the value of this zi. Since we
have assumed that ℓ2/ℓ1 ≤ 2, this implies that ziℓ ≤ 2 for
all i and all ℓ ∈ [ℓ1, ℓ2], which it turn implies concavity of
Pm

i=1 f(ziℓ) with respect to ℓ at the optimal assignment of
the zi. Hence the minimum over ℓ ∈ [ℓ1, ℓ2] at the optimal
~z, or for any ~z where ziℓ ≤ 2 for all i, must be obtained at
ℓ2 or ℓ1.

Let w = ln ℓ2−ln ℓ1
ℓ2−ℓ1

; note that wℓ1 < 1, wℓ2 > 1, and

f(wℓ1) = f(wℓ2). Suppose ~z∗ = (Z1, Z2, . . . , Zm) is the



optimal vector ~z for the competitive ratio.
Suppose that the minimum over ℓ at ~z∗ is achieved at ℓ1,

and
P

i f(Ziℓ1) > mf(wℓ1). Then

mf(wℓ1) <
X

i

f(Ziℓ1)

≤ mf

 

1

m

X

i

Ziℓ1

!

where the second inequality follows from concavity.
Since wℓ1 < 1 and f is strictly increasing on [0, 1], this

implies that 1/m
P

i Zi > w, which in turn implies that
f(1/m

P

i Ziℓ2) < f(wℓ2) since wℓ2 > 1 and f is strictly
decreasing on [1,∞). Again applying concavity, we obtain

X

i

f(Ziℓ2) ≤ mf

 

1

m

X

i

Ziℓ2

!

< mf(wℓ2)

= mf(wℓ1)

<
X

i

f(Ziℓ1)

But this contradicts our assumption that the minimum
was achieved at ℓ1. An identical proof shows that a mini-
mum greater than mf(wℓ1) cannot be achieved at ℓ2, so the
optimal minimum is achieved when Zi = w for all i.

To gain some insight, suppose ℓ2 = rℓ1 for r > 1. Then
wℓ1 = (ln r)/(r − 1) and the competitive ratio in this case
is therefore given by

C =
e

m

m
X

i=1

f(wℓ1)

= ef(wℓ1)

=
e ln r

(r − 1)r1/(r−1)
.

(See Figure 1.) For r = 2, this gives a competitive ratio of
(e ln 2)/2 ≈ 0.942. (This is the same value as in Section 2.2;
indeed, this can be viewed as a generalization of the result
there.) Even for r = 10, where the use of a single bank is
not guaranteed to be optimal by Proposition 2.1 and the
range of interest of loss rates spans an order of magnitude,
the competitive ratio is greater than 0.538 > 1/2. Notice
also that as r goes to 1, the competitive ratio converges
to 1; that is, with a fixed loss rate, we obtain the optimal
solution where all buckets have the same loss rate.

We emphasize that as the size of the range of loss rates
increases, it will no longer be the case that having all buck-
ets have the same sampling rate will prove optimal. For
example, even in the case of two buckets, if ℓ1 = 0.01 and
ℓ2 = 0.4, then z1 = z2 = w ≈ 9.459 gives a competitive ra-
tio of only 0.234, while choosing z1 = 4.019 and z2 = 44.032
gives a competitive ratio of over 0.437. (The values for z1

and z2 were found with an optimization routine.) How-
ever, for smaller ranges of loss probabilities, using a bucket
sampling probability near w/n for all buckets appears quite
effective.

2.4.2 The case where m = 2, ℓ2/ℓ1 < 5.5

A further interesting case is when we allow only two differ-
ent types of banks, each corresponding to a sampling rate,
with the same number of buckets in each bank. This setting

.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

C

Figure 1: The competitive ratio plotted as a function

of the ratio r = ℓ2/ℓ1.

was suggested as an ad hoc heuristic in [2]. Interestingly,
we find here that even for larger ranges of loss rates, the
optimal configuration in terms of the competitive ratio re-
quires using only a single sampling probability. It suffices
to consider the case of exactly two buckets. We show this
result when ℓ2/ℓ1 < 5.5; we have not attempted to optimize
the constant 5.5, but as our previous example shows, for
large enough ranges the result will not hold. Throughout
this section, we assume z1 ≥ z2.

Proposition 2.2. When ℓ2/ℓ1 < 5.5 and m = 2, then
the vector (Z1, Z2) that maximizes the competitive ratio has
Z1 = Z2 = ln ℓ2−ln ℓ1

ℓ2−ℓ1
.

Proof. Let r = ℓ2/ℓ1. By letting z1 = z2 = ln(ℓ2)−ln(ℓ1)
ℓ2−ℓ1

,

we can guarantee a competitive ratio of ef(ℓz1)+f(ℓz2))
2

>
e ln(r)

(r−1)r1/(r−1) = h(r) for all ℓ ∈ [ℓ1, ℓ2] (as shown in Sec-

tion 2.4.1). We can check that h is monotonically decreas-
ing and h(5.5) > 0.7 (see Figure 1), so since r < 5.5, we can
always guarantee a minimum competitive ratio of at least
0.7.

We can also check that when z1 = 7 and z2 = 1, the max-

imum of e(f(ℓz1)+f(ℓz2))
2

over all ℓ ≥ 0 is less than 0.7, and
that this maximum value decreases as z1 increases. By scal-
ing accordingly with ℓ, this shows us that for any z1 and z2

such that z1/z2 > 7, we cannot achieve a competitive ratio
better than 0.7. Since we know we can choose z1 and z2 to
guarantee better than 0.7 by setting z1 = z2 = ln(ℓ2)−ln(ℓ1)

ℓ2−ℓ1
,

we can discard all pairs of zi such that z1/z2 > 7.
Note also that for fixed z1, z2 such that z1/z2 ≤ 7, f(ℓz1)+

f(ℓz2) has no local minima over ℓ. Since we have discarded
all but these pairs, we can now ignore any such potential lo-
cal minima and assume that the minimum over ℓ at (Z1, Z2)
is achieved at ℓ2 or ℓ1.

Suppose that the minimum over ℓ at (Z1, Z2) is achieved
at ℓ2, and that f(Z1ℓ1) + f(Z2ℓ1) is strictly greater than
f(Z1ℓ2)+f(Z2ℓ2). We must have Z1ℓ2 > 1, or otherwise we



could increase Z1 to increase the value of both f(Z1ℓ1) and
f(Z1ℓ2), so f(Z1ℓ2)+f(Z2ℓ2) can be increased by decreasing
Z1 slightly. By the continuity of f , we can make the size
of the change small enough that f(Z1ℓ1) + f(Z2ℓ1) is still
greater than f(Z1ℓ2) + f(Z2ℓ2), so the minimum over ℓ ∈
[ℓ1, ℓ2] is still achieved at ℓ2. But then by decreasing Z1,
we have improved the minimum over ℓ, so (Z1, Z2) must
not have been the optimal assignment. A similar argument
shows that f(Z1ℓ1)+f(Z2ℓ1) 6< f(Z1ℓ2)+f(Z2ℓ2), and thus
our optimal pair (Z1, Z2) must satisfy f(Z1ℓ1) + f(Z2ℓ1) =
f(Z1ℓ2) + f(Z2ℓ2).

Let us consider z2 as a function of z1, so that z2(z1)
satisfies this equality. We want to find z1 that maximizes
f(z1ℓ2) + f(z2(z1)ℓ2). This gives us two equations:

f(z1ℓ1) + f(z2(z1)ℓ1) = f(z1ℓ2) + f(z2(z1)ℓ2);

d

dz1
(f(z1ℓ1) + f(z2(z1)ℓ1)) = 0.

With implicit differentiation of the first equation, we get

ℓ1f
′(z1ℓ1)+ℓ1z

′
2(z1)f

′(z2(z1)ℓ1) = ℓ2f
′(z1ℓ2)+ℓ2z

′
2(z1)f

′(z2(z1)ℓ2)

where f ′(x) = (1 − x)e−x. So

z′
2(z1) =

ℓ2f
′(z1ℓ2) − ℓ1f

′(z1ℓ1)

ℓ1f ′(z2(z1)ℓ1) − ℓ2f ′(z2(z1)ℓ2)

=
ℓ2(1 − z1ℓ2)e

−z1ℓ2 − ℓ1(1 − z1ℓ1)e
−z1ℓ1

ℓ1(1 − z2(z1)ℓ1)e−z2(z1)ℓ1 − ℓ2(1 − z2(z1)ℓ2)e−z2(z1)ℓ2
.

Now substituting this in the second equation, we get the
following chain:

ℓ1f
′(z1ℓ1) + ℓ1z

′
2(z1)f

′(z2(z1)ℓ1) = 0;

f ′(z1ℓ1) + z′
2(z1)f(z2(z1)ℓ1) = 0;

f ′(z1ℓ1) +
ℓ2f

′(z1ℓ2) − ℓ1f
′(z1ℓ1)

ℓ1f ′(z2ℓ1) − ℓ2f ′(z2ℓ2)
f ′(z2ℓ1) = 0;

f ′(z1ℓ1)(ℓ1f
′(z2ℓ1) − ℓ2f

′(z2ℓ2))

+ f ′(z2ℓ1)(ℓ2f
′(z1ℓ2) − ℓ1f

′(z1ℓ1)) = 0.

Further algebraic manipulation yields

f ′(z1ℓ1)(ℓ2f
′(z2ℓ2) − ℓ1f

′(z2ℓ1)) = f ′(z2ℓ1)(ℓ2f
′(z1ℓ2) − ℓ1f

′(z1ℓ1));

ℓ2f
′(z2ℓ2)/f ′(z2ℓ1) − ℓ1 = ℓ2f

′(z1ℓ2)/f ′(z1ℓ1) − ℓ1;

f ′(z2ℓ2)/f ′(z2ℓ1) = f ′(z1ℓ2)/f ′(z1ℓ1);

e−z2(ℓ2−ℓ1) 1 − z2ℓ2
1 − z2ℓ1

= e−z1(ℓ2−ℓ1) 1 − z1ℓ2
1 − z1ℓ1

.

Let

g(x) = e−x(ℓ2−ℓ1) 1 − xℓ2
1 − xℓ1

,

and note that from the above we have g(z2) = g(z1). We
will show that g′ is never 0 for given our assumption that
ℓ2/ℓ1 < 5.5, which by the Mean Value Theorem implies that
z2 = z1. Suppose g′(x) = 0. Then

−(ℓ2 − ℓ1)e
−x(ℓ2−ℓ1) 1 − xℓ2

1 − xℓ1

+ e−x(ℓ2−ℓ1)−ℓ2(1 − xℓ1) + ℓ1(1 − xℓ2)

(1 − xℓ1)2
= 0.

Standard algebraic manipulation simplifies the above to

x2ℓ2ℓ1 − x(ℓ2 + ℓ1) + 2 = 0.

This equation has real roots only if

ℓ22 − 6ℓ2ℓ1 + ℓ21 ≥ 0.

Now let s = ℓ2/ℓ1. The above equation is equivalent to

s2ℓ21 − 6sℓ21 + ℓ21 ≥ 0,

or

s2 − 6s + 1 ≥ 0.

Solving for s, we see this requires that either s < 1, or s >
6+

√
32

2
> 5.8. As we have limited s to be between 1 and 5.5,

we have g′(x) 6= 0, so at our optimal pair (Z1, Z2) we must
have Z1 = Z2 = y for some y. Since f(Z1ℓ1) + f(Z2ℓ1) =
f(Z1ℓ2) + f(Z2ℓ2), we know y must satisfy

2yℓ1e
−yℓ1 = 2yℓ2e

−yℓ2

Solving this for y, we get y = log ℓ1−log ℓ2
ℓ1−ℓ2

.

3. CONCLUSION
We have considered a recently proposed data structure,

the Lossy Difference Aggregator, and provided a more com-
plete analysis of it. In particular, we have shown how an
improved optimization analysis in the case of a known loss
rate can improve the expected number of packets obtained
substantially, and we have introduced a competitive analy-
sis framework that can allow for robust performance across
a range of possible loss rates. We have also shown that, in
some natural cases, our framework suggests that one type
of bank, with one sampling probability, is sufficient for the
optimal competitive ratio. We believe the Lossy Difference
Aggregator may find many other applications beyond the
network router setting, and if so, we hope this improved
analysis will allow better use of the data structure in these
applications.

4. ACKNOWLEDGMENTS
Thanks to Sharon Goldberg, Kirill Levchenko, and George

Varghese for comments on earlier drafts of this work.

5. REFERENCES
[1] D. E. Knuth. The Art of Computer Programming,

Volume 1: Fundamental Algorithms (3rd Edition).
Addison-Wesley, 1997.

[2] R. Kompella, K. Levchenko, A. Snoeren, and G.
Varghese. Every Microsecond Counts: Tracking
Fine-Grain Latencies with a Lossy Difference
Aggregator. In Proceedings of SIGCOMM 2009.

[3] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[4] M. Mitzenmacher and S. Vadhan. Why simple hash
functions work: exploiting the entropy in a data
stream. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.
746–755, 2008.


