Using a Queue to De-amortize Cuckoo Hashing in
Hardware

Adam Kirsch and Michael Mitzenmacher
Harvard School of Engineering and Applied Sciences
Cambridge, MA 02138
Email: {kirsch,michaelm@eecs.harvard.edu

_Abstract—Cuckoo hashing combines multiple-choice hashing ments can be inserted and deleted over time in the hash table,
with the power to move elements, providing hash tables with more moves are needed to maintain high space utilization. This
very high space utilization and low probability of overflow. leads us to ask whether cuckoo hashing can be implemented

However, inserting a new object into such a hash table can take . - . .
substantial time, requiring many elements to be moved. While effectively in hardware. Our exploration leads to the following

these events are rare and the amortized performance of these contributions:
data structures is excellent, this shortcoming is unacceptable in o \We describe how to significantlge-amortize cuckoo
many applications, particularly those involving hardware router hashing naturally in hardware, limiting the number of

implementations. We address this difficulty, focusing on the po- . . . s
tential of content-addressable memories and queueing techniques moves per insertion by using a small content-addressable

to provide a de-amortization of cuckoo hashing suitable for memory _(CAM) as a queue _for elements l_Jeing mC_)Ved-
hardware, and in particular for high-performance routers. « We consider the impact of different queueing policies on
performance.

|. INTRODUCTION « We explore the tradeoff between the utilization of space

Cuckoo hashing is a novel hashing approach that achieves in the hash table and the number of moves allowed per
very high space utilization [2]-[4], [8]. It extends previous insertion.

work on multiple-choice hashing [1], [7], which allows ele- oyr work suggests that cuckoo hashing may prove im-

ments to be stored in one of a small numef locations, by plementable in router hardware in the near future, with the

also allowing elements to move between their hash locatioggtential to significantly enhance hash table performance.
to prevent bucket overflow. The appropriate choice dois

determined by the application, although typically= 4 is a Il. CUCKOO HASHING:
suitable choice. In most constructions theshash locations BACKGROUND AND OUR APPROACH
can be easily accessed in parallel, so that lookups require onlyin the original description of cuckoo hashing by Pagh and
one parallel memory access. Rodler [8], there are two sub-table€s; and T, each of size
Standard cuckoo hashing variants require only a constantand two hash functions; andh, mapping the universe of
number of move operations per element insertion on averagdgements td0, » — 1]. Every element: stored in the hash table
where the constant depends on the load of the hash tabein locationT [hi(x)] or Ta[ha(z)] (but not both). Lookups
However, there is also a non-negligible probability that, duringre therefore trivial; we just check the two possible locations.
a sequence of: insertion operations into an appropriatelyTo insert an element, we check ifT4 [k ()] is empty. Ifitis,
sized table, some insertion requires moving at léadbgn) we are done. If not, we replace the elemeim 7', [k (z)] with
elements. This amortized performance is generally suitable foer We then check iff2[h2(y)] is empty. If it is, we are done.
software applications. Here, however, we consider the contdknot, we replace the elementin T5[h2(y)] with y. We then
of router hardware, where hash tables are used for a vari¢ty to placez in T1[h1(2)], and so on, until we find an empty
of operations, including IP lookups and network measuremelaication. (If an empty location is not found within a certain
and monitoring tasks. In this setting, the router must keepumber of tries, the suggested solution is to rehash all of the
up with line speeds and memory accesses are at a premi@ements in the table.) For any constant 0, when(1 —¢)r
Amortized performance guarantees alone are generally redéements are inserted (corresponding to any load factor less
sufficient. The time per operation must have a fixed maximurthan1/2, since there arr buckets in the two hash tables), the
or the probability that a particular operation requires a largetal number of required moves 3(r) with high probability,
number of memory accesses must be negligible. Indeed, diving O(1) amortized time per insertion with high probability.
our initial consideration of using moves to improve the spaddowever, there is a significant probability that at least one
utilization of hash tables in hardware implementations [6], wef these insertion operations requir@¢logr) moves. Thus,
explored the gains obtainable by allowiat most one move in practice, the insertions require constant time on average,
per insertion. but the worst-case insertion time can®8og). This worst-
While our previous work shows that the value of even aase insertion time is problematic for some applications, but
single move can be substantial, it also shows that when efgarticularly for high speed routers, where insertion operations

come in quickly and cannot be easily buffered. In these casesWe emphasize that regardless of this reordering of the
standard cuckoo hashing is likely unsuitable. sub-operations, lookups, insertions, and deletions can still be
Before proceeding with our modification, we note that thefficiently performed. Indeed, a lookup for an element can
ideas behind cuckoo hashing have been successfully applissl performed by checking it¢ hash locations and the CAM
to settings where there are more than two sub-tables aimdparallel. An insertion can be performed by inserting its
more than one element can be stored in a hash bucket [Bist sub-operation into the queue. Finally, a deletion can be
[4]. For these settings, there are still many open questiopsrformed by first finding whether the element to be deleted
in the analysis. In practice it appears that one can achieigen one of its hash locations or the queue. If the element is in
very high memory utilizations — well over 90% when usingone its hash locations, the bucket can simply be marked as un-
multiple choices and/or multiple elements per location —eccupied, to be overwritten by a future insertion sub-operation.
while still using only a constant number of moves per insetf the element is in the queue, then the corresponding sub-
on average. However, the number of moves can still be largperation is removed from the queue. (It is easy to see that an
with significant probability. element can appear in at most one sub-operation in the queue
In this paper, we always assume that each hash bucket edrany point in time.) This ability to reorder sub-operations
store at most one element. However, we consider a natuvéthout compromising the integrity of the hash table is the
and practical generalization of cuckoo hashingite 2 sub- key feature of cuckoo hashing that we exploit in improving
tables, proposed by Fotakis et. al [4] and analyzed througs performance.
simulations. We considerl = 4 later in the paper, as Of course, for our queueing approach to be useful, the queue
this choice appears practical and gives a substantial spagest actually fit into a CAM (at least under normal operating
savings overd = 2. In this scheme, when attempting toconditions). Because large CAMs are expensive, the size of
insert an element, we check if any of its hash locationsthe queue appears to be the primary issue in choosing the
Ti[hi(z)],. .., Talha(x)] are unoccupied, and place it in thequeueing policy to use. With this in mind, we now begin to
leftmost unoccupied bucket if that is the case. Otherwise, vexplore the relationship between the choice of queueing policy,
choose a randoni € {1,...,d} and evict the elemeng in the pattern of insertions and deletions, and the resulting size
Tr[h1(x)], replacingy with . We then check if any of's hash of the queue over time. We emphasize that all of our results
locations are unoccupied, placing it in the leftmost unoccupiete preliminary, but they suggest that our technique of using
bucket if this is the case. Otherwise, we choose a randan insertion queue can be a practical and very effective way

J e {1,...,d} —{I} and evict the element in T;[h;(y)], to de-amortize the performance of cuckoo hashing.
replacing it withy. We repeat this procedure until an eviction is
no longer necessary. As we shall soon see, simulations suggest I1l. THE QUEUEING POLICIES

that, like standard cuckoo hashing, this scheme is not well-
suited to applications where low amortized insertion times do In the standard cuckoo hashing schemes discussed in Sec-
not compensate for large worst-case insertion times. tion Il, we insert elements one-by-one, processing every one
To mitigate this problem, we think of each cuckoo hashingf an insertion operation's sub-operations before proceeding
insertion operation as consisting of a (random) numbetlof to the next insertion operation. Thus, this corresponds to the
operations. The first sub-operation corresponds to thigial queueing discipline where, when inserting a new element, we
attempt to place an element in one of its hash locationglace the corresponding initial sub-operation onto the back of
evicting the element in a randomly chosen hash location if dle queue, and when a processed sub-operation yields a new
of those positions are occupied. Each subsequent sub-operagivh-operation, we place the new sub-operation on the front
corresponds to an attempt to place an element previousifthe queue. Since this policy does not exploit our ability
evicted from some sub-tablén any of its other hash locations, to reorder sub-operations in the queue, we call it dhéve
evicting an element from a randomly chosen hash locatigolicy.
other than the one in the sub-talléf all of those positions Thenaive policy can gives rise to very large queue sizes
are occupied. if it becomes “stuck” attempting to process an unusually
We now introduce arinsertion queue, implemented by a large number of sub-operations resulting from a troublesome
CAM, which stores sub-operations to be processed. A suimsertion operation, allowing newly inserted elements to queue
operation can be represented simply as the eleméhét the up in the meantime. To avoid this, we consider more complex
sub-operation is attempting to insert, a number{0,...,d} policies. Let us define thage of a sub-operatior in the
representing, ifi > 0, that the element: was previously following way. If o is an initial attempt to place an element,
evicted from sub-table, or if ¢ = 0, that the sub-operation it has age 0. Otherwise, the sub-operation arose from another
is an initial attempt to insert. To process a sub-operation,sub-operation with some age, and so we define the age of
we simply remove it from the queue and execute it. If the to bem + 1. A first obvious point is that elements of age 0
sub-operation gives rise to a new sub-operation, we inseatiould have priority in the queue, as they havehoices for
that into the queue. The queue is equipped with some polipjacement, while older elements have essentially ahly 1
for determining the order in which sub-operations should behoices for placement, assuming the element that evicted it
processed. has not been deleted. Hence, insertions of new elements are

100 T 100 T -
— naive —naive
_ _rotatin _ _rotating
90- el %y o
_ rotatlngl _ n'.wtatlng1
i rotatin
& gob rotat?ngzi 8 gl | 9, |
%] _ _rotating, 0 - _rotating,
[[}
S 3 ——PQage
S 700 PQage | S 70 i
(o4 (o4
3 E
S 60F 1 S 60 B
g g
& w \
3 50F 1 3 s0¢ \ 1
© IS \
£ E
& aor 1 & 40r 4
301 4 30+ i
\
N
20 i 20 : : St
0.998 1 1.002 1.004 1.006 1.008 1.01 1.012 1.014 1.016 1.185 1.19 1.195 1.2 1.205 121
Time x10° Time (10"
d=2,u=04 d=2,u=045
100 T T T T T T T 100 T T T
AN \ — naive ' —— naive
\) o rotating0 \ o rotating0
90 O e 90+ \ . OH
L _ _ _rotating, \ _ _ _rotating,
\ - \ .
& o ¢\ rotatﬁngzi 2 gl \ rotatﬁngzi
n N _ _ _rotating n \ _ _rotating.
) Y 3 o \\ 3
\ —_—
g o0 N Ry : \\ PQage || g o0 \ PQage ||
(o4 N \ o \
° . °
e : \ o \
S 60f Mo : \ B g 60F \ B
g L \ g \
w \\ w \
\
B 50f < 1 B 50f \ 1
© N ©
£ N \ £ \
g P . g .
\ Y \ \ \
N . \ \ 1
30 N S g 30 il
N N
\ N «
N . N
20 I I I I \ A I 20 I 1 1 N
1.39 1.395 1.4 1.405 1.41 1.415 1.42 1.425 1.43 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69
Time x 10* Time (10°

Fig. 1. Results of the simple experiment fér= 2 and various values of.

much more likely to succeed than attempts to place an evictednd, we define the policyotating, for a fixedi € Z> as
element. follows. During an insertion operation, the corresponding ini-
It is also intuitively reasonable to believe that, more gerfial insertion sub-operation is placed on the front of the queue.
erally, the probability that processingwill not result in the When a new sub-operatieris generated during the processing
generation of a new insertion operation is roughly decreasi®f Some other sub-operation, we plagen the front of the
in the age ofo. That is, the longer an element has beefueue if its age is at most and otherwise we place on
in the queue, the less likely it is to succeed in placemerihe back of the queue. Thus, we effectively give precedence
This is certainly true in the rare case where the inability tt sub-operations with age at mastwhile rotating through
place an element arises because there is a cycle, causingtfige other sub-operations to avoid getting stuck processing
same sequence of elements to be evicted repeatedly (untth@ occasional particularly troublesome insertion operation.
deletion occurs). With this intuition in mind, we define the-urthermore, unlike th@Qage policy, therotating, policy
policy PQage, which treats the queue as a priority queués easy to implement. If for a sub-operatiowith agea, we
where the priority of a sub-operation is its age, and lowetore the valuenax(a,i + 1) along witho in the CAM, then
ages correspond to higher priorities. the rotating; requires very little computational and storage
Of course, while thePQage policy is nice in theory, it is Overhead, particularly for smail
likely to be impractical to implement; creating a priority queue Finally, we consider an even simpler policy. Recall that,
within the CAM may be too expensive in terms of operatioaccording to our intuition, the main shortcoming of theive
time or hardware resources. The most natural way to deal wiplicy is that newly inserted elements, which are very likely
this is to attempt to mimic theQage policy for queues where to be placed successfully in one sub-operation, can get stuck
some sub-operation has a small age. Since it is intuitively velehind much older sub-operations. A very simple way to deal
unusual forall of the sub-operations in the queue to have largeith this problem is to simply modify theaive policy so that
age, we expect such a policy to perform well. With this imewly inserted elements always go on the front of the queue,

100 - ; 100 ~— v . . —
S \ —— naive LR \ naive
b \ rotating N \ _ _ _rotating
901 B \ o ol 90} N \ ol
~ \\ — _ _rotating, AN \ - - _rotating,
N . Y \ .
8 8ol \\ \ rotating, | 8 sol oL S \ rotatﬁngzi
n N \ _ _ _rotating, 0 AR \ - _rotating,
2 8 \ — 3 NS \ ——PQage
S 700 B , PQage | S 70 o \ ge ||
o] N \ o R \
° AN \ ° SN \
2 N 2 Ny \
5 60F N e . S 60F W \ 1
o N \] Vo \
o N \ o R \
& N \ ol SO \
g sor N 1 3 S0 N —
= N = W \
£ N £ < \
= N\ ~ D L N \ -
& 4o i 1 & 40 NOSRE
30p N 1 30F \\\‘\\ \\ i
N R o .
20 | | | | T 20 | | | D> N
2.885 2.89 2.895 2.9 2.905 291 2.915 3.27 3.28 3.29 3.3 331 3.32 3.33
Time x10° Time <10°
d=4,u=0.9 d=4,u=0.95
100 — ; 100 : : : :
U \ — naive N — natlvte
ool W \ ~ _ _rotating, | g0l \\\\ - - rotating, |
NN N _ _ _rotating, Y _ _ _rotating,
N N \ . N .
S ool N \ rotating, | 8 gl \\ rotating, |
) NS \ _ _ _rotating, o N _ _ _rotating,
<] N \ N
g ol N ——PQage || g 7o N ——PQage ||
& N \ &
g oof RO N\ 1 g oo 1
Qo S \ o
3 Wi AN i \
0 \
© 50+ RN \ il - 50} NN il
£ AN . E N
= L N \ i S L N]
4 40 N S . \\ a 40 \\\~¢‘
N 5. \ \\ ‘\\
30t NN .] 30l N i
20 L L L X N > L \ 20 i Il Il Il i N It i
3.92 3.94 3.96 3.98 4 4.02 5.7 5.75 5.8 5.85 5.9 5.95 6 6.05 6.1
Time x10* Time « 10°

Fig. 2. Results of the simple experiment fér= 4 and various values of.

instead of the back. We name this polieyive*. Of course, insertion operations require few sub-operations, so it should be
if we are in a situation where the queue is highly backloggezufficient to simply ensure that sub-operations with very small
and there are no new insertion operations, themthere and ages take precedence over those with larger ages, and therefore
naive* policies are exactly the same, and we expect the othee expect that, for some smallthe policyrotating, should
policies to perform better. perform about as well as the much more complicatQdge
policy.

In this section, we test these two claims with the following

We now discuss a simple experiment with the queueingry simple experiment. We consider a table with 32768
policies introduced in Section Ill. We emphasize that thibuckets, divided intel equal sub-tables, faf = 2 andd = 4.
experiment is not designed to explicity model any particuldive fix a utilization value v € (0,1) and do the following
phenomenon that is likely to occur in practice. Rather, thi@r each of the queueing policies discussed in Section Ill.
point of the experiment is to help verify and clarify theFirst, we load the queue with32768«| insertion operations
intuition from Section 1l in what seems to be the simplesand then let the system run, processing one sub-operation per
possible way. time step, for 65000 time steps, recording the queue size after

With this in mind, we recall that the key intuition used inevery step. We average the results over 1000 trials to get a
Section Il is that (heuristically) the probability that executingurve corresponding to the queueing policy. We then draw the
a particular sub-operatiomin the queue does not result in acurves corresponding to all of the different queueing policies
new sub-operation is roughly decreasing in the age dhus, (for a fixed u) on the same plot, and then zoom in to the
we expect that queueing policies that favor sub-operatiopsrtion where all of the curves lie between 20 and 100 on the
with lower ages tend to reduce the size of the queue fastegxis.
than the standaradiaive policy. Furthermore, the standard The results forl = 2 are given in Figure 1, and the results
theoretical results behind cuckoo hashing suggest that mémst d = 4 are given in Figure 2. (Note that since there are no

IV. A SIMPLE EXPERIMENT

d=2,u=0.45 d=4,u=0.95

©

i
o

—naive
—rotating N

—naive
—rotating N

|
8
T

=
o

10 & : E

[
[S)
S
T
i

]
@

i
o
T
L

L
IS

[N
o
&
T
L

|
>
T

=
o
L

i
o
T

!
<
T

Fraction of All Successful Sub—Operations with a Given Age
= =
o A o
T
i i
Fraction of All Successful Sub—Operations with a Given Age

'
®
!
&

10 20 30 40 50

10 20 30 40 50
Age Age

i
S
=
S

o
o

Fig. 3. The age distribution, or the number of moves required to place an element, forithe androtating, queueing policies.

2 d=2,u=045 2 d=4,u=0.95

g 1 : : & 0.9 : ‘

S A — naive S — naive

ﬁ 0.9 7rotatin90, ﬁ 0.8k 7rotatingoi
< <

g 0.8y 1 g 0.7 1
L 0.7t 1 2

< 2 o6f .
c c

2068 1 2

o ® 0.5 B
[L ©

ES 05 ES

2 2 04f e
@ 0.4r 2

o o

= 2 0.3f , 1
© L ©

g 0.3 g

o o L -
Q o2l Qo2

@ @

5 0.1F 5 0.1r 1
5 5

4(—1_) 0 L L L L 4(—1_) 0 L L L L

© 0 10 20 30 40 50 © 0 10 20 30 40 50
[Age w Age

Fig. 4. The fraction of successful placements for each age. Overall, the larger the age of a sub-operation, the less likely it is to succeed.

new insertion operations during the course of this experimemigcasional particularly troublesome insertion operation on the
thenaive andnaive* policies are the same, and so we onlaverage queue size.
display results for thewaive policy.) The specific values for

u are chosen because prior work [4] observes that cuckQp, o \we focus on the@aive and rotating, schemes near
hashing breaks down at = 0.5 for d = 2, andu = 0.97 4 threshold utilization values where cuckoo hashing breaks
for d = 4. The pattern of the curves indicates that for certai, y, and increase the number of trials from 1000 to 10000 to
large queue sizes, thfQage policy gives the most effective yoqrease sampling error. Figure 3 shows the distribution of the
placement of elements in the table, theive policy gives ;40 \when a successful placement occurs. As we discussed in
the least effective placement, and the difference is signific i introduction, some elements require a significant number
for all utilizations. Also, the performance of thetating, ot move operations before placement occurs. In fact, most
policy is essentially the same as for thgage policy. elements are placed during the initial attempt to insert them,
These results match very nicely with our intuition frombacking our intuition that it is important to place new inser-

Section lll, as they suggest that theive policy can be sig- tions at the front of the queue. Note that there is some skew
nificantly improved by prioritizing sub-operations according tavhend = 2 because of our initial preference to place elements
their ages. Furthermore, it appears that the maximum bendfitthe first hash table; more elements are placed in the first
of such a scheme can be effectively realized by simply givingub-table, causing bounces between odd and even ages in the
priority to the initial attempts to insert elements, while rotatingge distribution. We have not attempted to exploit this behavior
through the other sub-operations to lessen the impact of timeour queueing policies, although one could conceivably do

Other results from these experiments are also enlightening.

d=2,0ps=2 d=2,0ps=4

25 T T T 40 T T
—+—naive —+—naive
o —*— naive* o —*— naive*
5 _ & _rotating S 350 _ rotating, 8
2 20H rotating1 4 e rotating1
3 tati 3 30H tati 1
& _ o rotating, & _ ¢ - rotating,
] R i] i
g _ o rotating, g sl rotating,, |
9 151 —~—PQage . N —&—PQage
=) =)
@ @
2 L 20+ 3
0 0
ks ks
g 10- 1 *g 15- 1
o o
> >
| |
E g 10- 1
T 5l . <
E° E
& g st 1
O A -3 T T L L L 0 & & & &
0.3 032 034 036 0.38 0.4 042 044 046 048 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Utilization Utilization
d=2,0ps=6 d=2,0ps=8
45 T T T 45 T T T
—+—naive y —+—naive
© [| —+— naive* % il © [| —+— naive* il
8 40 ; 5 g 40 :
& _ ¢ _rotating 5 & _ ¢ _rotating
[} i o [} i
g 35 rotating, . | g 35 rotating, |
! M .
a3 e rotat?ng2 ! & e rotat?ng2
g 30{{ - & - rotating, " 4 g 30{{ - & - rotating, 4
7] [(7]
2 os|! —&—PQage h | .| —&—PQage |
g : g
2 " 2
7] 0 7]
- 201 [B - 201 b
] [2
[5] [5]
[Q
<15+ 1 <15+ 1
))
B B
% 101 N £ 10+ B
£ £
4 sk 1 4 sk 1
Y Py & & & v & & & P & 1
0.25 0.3 0.35 0.4 0.45 0.6 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Utilization Utilization
Fig. 5. Results from the more realistic experiment with= 2.
So. sub-tables [5], [6], but the results in this case were always

Figure 4 shows the distribution of the fraction of successfuignificantly worse.) We also fix a valugps € {2,4,6,8}, a
placements for each age. As we suggested, the main featgueueing policy from Section Ill, and a utilization parameter
is that as the age of sub-operation increases, its succes§&ord = 2, we takeu € {0.3,0.325,0.35,...,0.55}, and for
probability decreases. (Again, there are odd-even artifacts= 4, we takeu € {0.7,0.725,0.75,...,0.95}. Once again,
whend = 2, but still the trend is clear.) In particular, it makesthese values of. are chosen because prior work [4] observes
sense that a good choice forin the rotating, policy is that standard cuckoo hashing breaks dowruat 0.5 for
1 =0, leading to a simple but effective queueing policy. d =2 andu = 0.97 for d = 4.

V. A MOREREALISTIC EXPERIMENT We then repeat the following procedure 100 times. We
While the results in Section IV are certainly significantinsert |32768w] elements into the data structure, processing
it is clearly necessary to perform a more realistic set afps sub-operations between insertions. Then we perform
experiments. In particular, it is important to consider scenari@)000 alternations of deleting a random element in the data
that intermix insertion and deletion operations, so that we catructure, then inserting a new element, then processiisg
begin to see the relationship between the pattern of hash tabld-operations. We record the queue size after every operation,
operations and the choice of queueing policy. As we shall seamd we treat the last 10000 alternations of deletions, insertions,
the core of our intuition from Sections Il and IV continuesand queueing operations as reflecting the steady state of
to apply in these settings. the queue size. Here, the time scale is queueing operations;
In this section, we consider the following experiment. Weach queueing operation is presumed to take one unit of
fix a value ford € {2,4} and consider a table of size 32768&ime, whereas deletions and insertions are presumed to be
divided into d equal-size sub-tables. (We also experimentddstantaneous. We average the results over all trials to obtain
with several non-uniform allocations of space between then estimate of the expected value of the steady state size of

d=4,0ps=2

6 d=4,0ps=4
- 14 T T T
—naive —+— naive
—*— naive* i
-g _ o _rotating 9 —*—naive*
ngl-e o i 5 12H - o rotating, 1
% rotating, [rotating i
3 ||- e -rotating, :3; 10ll - o - rotating,]
% 4f] - o _rotating, B 2 _ o _rotating,
9 || ——PQage] ——
g 7 ofl o |
o 3+ 1 8
@ n
i E 6 :
3 B
g ol] g
X
) w4l 1
e} e}
2 2
© ©
£ 1t 4 £
O L L F:S £ L L
0.65 0.7 0.75 0.8 0.65 0.7 0.75 0.8 0.85 0.9
Utilization Utilization
d=4,0ps=6 d=4,0ps=8
5 T T T 1.4 T T T
—+—naive —+—naive
o 4.5H —*— naive* © —*— naive*
-(% _ o _rotating, (% 1.2{{ - o - rotating, i
S 4 rotating, g rotating,
[. R g i
] asll-°- rotating, 3 1||- e -rotating, 5
:;; _ o _rotating, ' :;; _ o _rotating,
a3y 4 [
- 31 —=—PQage ~08 —&—PQage i
e} e}
[[
2 25 1 2
n n
3,] g o6 1
(53 (53
[[
3 3
a 15F 1 a4l J
o o
2 2
© - - ©
el E
@ % 0.2r b
w o5k 4 w
0 | | | | | |
0.65 0.7 0.75 0.8 0.85 0.9 0.65 0.7 0.75 0.8 0.85 0.9
Utilization Utilization
Fig. 6. Results from the more realistic experiment with- 4.
the queue. the assumption that arrivals occur according to a Poisson

As an aside, we note that in practice it may difficult td’rOcess is fairly standard. However, the restriction that the
delete an element from the queue instantaneously. In this cdfgfime of an element in the table is exponential is likely to
it might be preferable to keep a list of elements in the queL!R? e'xtremely_unreahstlc_. Nevertheless, the experiments in thls
marked as deleted, and not actually remove a deleted elemgfgtion certainly seem like a good start towards understanding
until its sub-operation is served by the queue. This wouldow the systems we consider might behave in the real world.

certainly enlarge the steady state queue sizes, but would noWe plot our results fordl = 2 andd = 4 in Figures 5 and
qualitatively affect our results. 6, respectively. To make the plots readable, we omit all data
This experiment focuses on the average size of the que'&%i”ts where the estimated expect_ed steady state s_ize of the
when the data structure is designed for a specific utilizQueue exceeds 50, which we consider to be a practical value
tion of the hash table and average relative frequency 8t the applications of interest in this paper. Fbr= 2, the
insertion/deletion and queueing operations, and then run '§8Ults are striking. Theaive™ policy performs significantly
its capacity for a long period of time. In a more heuristi®®tter than theaive policy, therotating policies give an
sense, this experiment corresponds to the steady state ofédfitional improvement, and are comparable Witfage. For
asymptotic regime where the size of the hash table tenfls= 4 the differences between the queueing policies are
towards infinity, the utilization value: is a fixed constant, €SS significant, but there is still a gain in choosing even the
insertions occur according to a Poisson process with rdtgive” policy overnaive. Again, there is an advantage to
1/ops, and the lifetime of an element in the table has afVing pnon?y to the |n_|t|aI sub-operation of an msertlon, but
exponential distribution with meaops/u. The latter setting Otherwise differences in the steady state are minor.
is significant in that it seems to be the beginning of a realistic Of course, for implementation one is interested not only in
model for how the system might behave in practice. Indeethe steady state queue size, but in the maximum queue size

seen. In particular, a good design must ensure the probabilityThe full ramifications of these and related issues would have
of queue overflow is extremely low. Because we have ro be considered more carefully in a complete hardware design.
analytic bounds on the queue behavior, it is difficult to boun@verall, however, our exploration has shown that cuckoo
this type of event. Even under the idealized assumptions loéshing has great potential for hardware implementations. In
our experiments, large-scale simulations would be neededparticular, we have demonstrated a simple and practical queue-
accurately determine the rarity of overflow events. In practicéng technique that can allow de-amortizing standard cuckoo
the probability would depend on many factors, including theashing. Our technique appears to maintain high utilizations,
amount of time the process runs, the distribution of how longrhile keeping the cost per inserted element low.

elements live in the hash table, and the burstiness of insertion
and deletion operations. In our experiments, we have found
that when the average steady state queue size is in the rang@oth authors were supported by NSF grants CCF-0634923
[1,5], the largest gap between the average steady state quaé CNS-0721491 and research grants from Cisco Systems,
size and the maximum queue size seen over all simulations (f8€- and Yahoo! Research. Adam Kirsch was also partially sup-
each setting ofl, ops, queueing policy, and utilization) was aported by an NSF Graduate Research Fellowship. The authors
factor between 10 and 30. The one exception wasnthizre lso thank George Varghese for several helpful discussions in
policy, which naturally is significantly worse; thestating, the course of this research.

policy performed very well, with a maximum gap factor
between 15 and 16. While this issue remains a subject for _ .
future analysis and/or experimentation, we maintain that theld jﬁﬁi}' oAn' Eg?r%ii}r’,; *Z";r("{;;1%%".2%095’?&9?&6‘“9(’ AllocatiorBAM

initial results strongly suggest that cuckoo hashing should Ipg L. Devroye and P. Morin. Cuckoo Hashing: Further Analysigormation

suitable for practical implementations using a reasonably sized Processing Letters, 86(4):215-219, 2003. _ o
CAM [3] M. Dietzfelbinger and C. Weidling. Balanced Allocation and Dictionaries

with Tightly Packed Constant Size Bin$heoretical Computer Science,

ACKNOWLEDGMENTS

REFERENCES

380:(1-2):47-68, 2007.
VI. CONCLUSION AND FURTHER WORK [4] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space Efficient Hash
We believe our results demonstrate that cuckoo hashing for g"j‘stb';?sVggr(‘z;’_vcz’rzsé_gjgezgggﬁa"t Access Tirieeory of Computing
router hardware, and our CAM-based queueing approach @ a. kirsch and M. Mitzenmacher. Simple Summaries for Hashing with
particular, have merit and warrant further investigation. How- Choices.IEEE/ACM Transactions on Networking, to appear. Temporary

ever, we leave many open questions. On the theoretical side version available at: http://www.eecs.harvard.edirsch/pubs/sshmc/
! ’ ' ton-cr.pdf.

there remain several open questions regarding the analysigepfa. kirsch and M. Mitzenmacher. The Power of One Move: Hashing
cuckoo hashing performance, particularly in the setting with Schemes for Hardware. Submitted. Temporary version available at:

d > 2 choices. A more complete understanding could certainly ng&(}’v";‘r"g’!ﬁg&sﬁ";"’C‘j?’ard'ed“‘"“h’ pubs/hashingardware/hashing

impact practical designs. [7] M. Mitzenmacher. The Power of Two Choices in Randomized Load
On the experimental side, while we have only looked at Balancing. Ph.D. thesis, University of California, Berkeley, 1996.

expected steady state queue sizes in this paper, it is certaiﬁ]yg'l(;?g‘z_fﬁ 2':6020‘“9“ Cuckoo Hashingournal - of -Algorithms,
necessary to understand the frequency of very large queue ' ' '
sizes, as these rare events correspond to overflow in the queue.
In this same vein, we should learn more about how different
gueueing policies behave when the occasional disturbance,
such as a large influx of insertions, occurs. It seems likely
that policies with similar steady state queue size may perform
quite differently under these circumstances, as suggested by
our simple experiment in Section IV. Another natural possible
approach if bursty insertion behavior is expected would allow
a varying number of queue operations per insertion depending
on the length of the queue, in order to prevent queue overflow.
Additionally, it is very important to understand how the
behavior of the system is affected by the distribution of the
lifetime that an element spends in the data structure. In our
experiments, we always assume that when a deletion occurs,
all elements in the structure are deleted with equal probability.
Of course, this is unlikely to be the case in practice, and it is
important to understand the effect of this assumption on our
results. Indeed, if the amount of time that an element spends
in the table is not exponential, then it may be worthwhile to
take the age of an element (as opposed to just the age of a sub-
operation) into account when designing the queueing policy.

