
Using a Queue to De-amortize Cuckoo Hashing in
Hardware

Adam Kirsch and Michael Mitzenmacher
Harvard School of Engineering and Applied Sciences

Cambridge, MA 02138
Email: {kirsch,michaelm}@eecs.harvard.edu

Abstract—Cuckoo hashing combines multiple-choice hashing
with the power to move elements, providing hash tables with
very high space utilization and low probability of overflow.
However, inserting a new object into such a hash table can take
substantial time, requiring many elements to be moved. While
these events are rare and the amortized performance of these
data structures is excellent, this shortcoming is unacceptable in
many applications, particularly those involving hardware router
implementations. We address this difficulty, focusing on the po-
tential of content-addressable memories and queueing techniques
to provide a de-amortization of cuckoo hashing suitable for
hardware, and in particular for high-performance routers.

I. I NTRODUCTION

Cuckoo hashing is a novel hashing approach that achieves
very high space utilization [2]–[4], [8]. It extends previous
work on multiple-choice hashing [1], [7], which allows ele-
ments to be stored in one of a small numberd of locations, by
also allowing elements to move between their hash locations
to prevent bucket overflow. The appropriate choice ford is
determined by the application, although typicallyd = 4 is a
suitable choice. In most constructions thesed hash locations
can be easily accessed in parallel, so that lookups require only
one parallel memory access.

Standard cuckoo hashing variants require only a constant
number of move operations per element insertion on average,
where the constant depends on the load of the hash table.
However, there is also a non-negligible probability that, during
a sequence ofn insertion operations into an appropriately
sized table, some insertion requires moving at leastΩ(log n)
elements. This amortized performance is generally suitable for
software applications. Here, however, we consider the context
of router hardware, where hash tables are used for a variety
of operations, including IP lookups and network measurement
and monitoring tasks. In this setting, the router must keep
up with line speeds and memory accesses are at a premium.
Amortized performance guarantees alone are generally not
sufficient. The time per operation must have a fixed maximum,
or the probability that a particular operation requires a large
number of memory accesses must be negligible. Indeed, in
our initial consideration of using moves to improve the space
utilization of hash tables in hardware implementations [6], we
explored the gains obtainable by allowingat most one move
per insertion.

While our previous work shows that the value of even a
single move can be substantial, it also shows that when ele-

ments can be inserted and deleted over time in the hash table,
more moves are needed to maintain high space utilization. This
leads us to ask whether cuckoo hashing can be implemented
effectively in hardware. Our exploration leads to the following
contributions:

• We describe how to significantlyde-amortize cuckoo
hashing naturally in hardware, limiting the number of
moves per insertion by using a small content-addressable
memory (CAM) as a queue for elements being moved.

• We consider the impact of different queueing policies on
performance.

• We explore the tradeoff between the utilization of space
in the hash table and the number of moves allowed per
insertion.

Our work suggests that cuckoo hashing may prove im-
plementable in router hardware in the near future, with the
potential to significantly enhance hash table performance.

II. CUCKOO HASHING:
BACKGROUND AND OUR APPROACH

In the original description of cuckoo hashing by Pagh and
Rodler [8], there are two sub-tables,T1 andT2, each of size
r, and two hash functionsh1 andh2 mapping the universe of
elements to[0, r−1]. Every elementx stored in the hash table
is in locationT1[h1(x)] or T2[h2(x)] (but not both). Lookups
are therefore trivial; we just check the two possible locations.
To insert an elementx, we check ifT1[h1(x)] is empty. If it is,
we are done. If not, we replace the elementy in T1[h1(x)] with
x. We then check ifT2[h2(y)] is empty. If it is, we are done.
If not, we replace the elementz in T2[h2(y)] with y. We then
try to placez in T1[h1(z)], and so on, until we find an empty
location. (If an empty location is not found within a certain
number of tries, the suggested solution is to rehash all of the
elements in the table.) For any constantε > 0, when(1− ε)r
elements are inserted (corresponding to any load factor less
than1/2, since there are2r buckets in the two hash tables), the
total number of required moves isO(r) with high probability,
giving O(1) amortized time per insertion with high probability.
However, there is a significant probability that at least one
of these insertion operations requiresΩ(log r) moves. Thus,
in practice, the insertions require constant time on average,
but the worst-case insertion time can beΩ(log r). This worst-
case insertion time is problematic for some applications, but
particularly for high speed routers, where insertion operations



come in quickly and cannot be easily buffered. In these cases,
standard cuckoo hashing is likely unsuitable.

Before proceeding with our modification, we note that the
ideas behind cuckoo hashing have been successfully applied
to settings where there are more than two sub-tables and
more than one element can be stored in a hash bucket [3],
[4]. For these settings, there are still many open questions
in the analysis. In practice it appears that one can achieve
very high memory utilizations — well over 90% when using
multiple choices and/or multiple elements per location —
while still using only a constant number of moves per insert
on average. However, the number of moves can still be large
with significant probability.

In this paper, we always assume that each hash bucket can
store at most one element. However, we consider a natural
and practical generalization of cuckoo hashing tod > 2 sub-
tables, proposed by Fotakis et. al [4] and analyzed through
simulations. We considerd = 4 later in the paper, as
this choice appears practical and gives a substantial space
savings overd = 2. In this scheme, when attempting to
insert an elementx, we check if any of its hash locations
T1[h1(x)], . . . , Td[hd(x)] are unoccupied, and place it in the
leftmost unoccupied bucket if that is the case. Otherwise, we
choose a randomI ∈ {1, . . . , d} and evict the elementy in
TI [hI(x)], replacingy with x. We then check if any ofy’s hash
locations are unoccupied, placing it in the leftmost unoccupied
bucket if this is the case. Otherwise, we choose a random
J ∈ {1, . . . , d} − {I} and evict the elementz in TJ [hJ(y)],
replacing it withy. We repeat this procedure until an eviction is
no longer necessary. As we shall soon see, simulations suggest
that, like standard cuckoo hashing, this scheme is not well-
suited to applications where low amortized insertion times do
not compensate for large worst-case insertion times.

To mitigate this problem, we think of each cuckoo hashing
insertion operation as consisting of a (random) number ofsub-
operations. The first sub-operation corresponds to theinitial
attempt to place an element in one of its hash locations,
evicting the element in a randomly chosen hash location if all
of those positions are occupied. Each subsequent sub-operation
corresponds to an attempt to place an element previously
evicted from some sub-tablei in any of its other hash locations,
evicting an element from a randomly chosen hash location
other than the one in the sub-tablei if all of those positions
are occupied.

We now introduce aninsertion queue, implemented by a
CAM, which stores sub-operations to be processed. A sub-
operation can be represented simply as the elementx that the
sub-operation is attempting to insert, a numberi ∈ {0, . . . , d}
representing, ifi > 0, that the elementx was previously
evicted from sub-tablei, or if i = 0, that the sub-operation
is an initial attempt to insertx. To process a sub-operation,
we simply remove it from the queue and execute it. If the
sub-operation gives rise to a new sub-operation, we insert
that into the queue. The queue is equipped with some policy
for determining the order in which sub-operations should be
processed.

We emphasize that regardless of this reordering of the
sub-operations, lookups, insertions, and deletions can still be
efficiently performed. Indeed, a lookup for an element can
be performed by checking itsd hash locations and the CAM
in parallel. An insertion can be performed by inserting its
first sub-operation into the queue. Finally, a deletion can be
performed by first finding whether the element to be deleted
is in one of its hash locations or the queue. If the element is in
one its hash locations, the bucket can simply be marked as un-
occupied, to be overwritten by a future insertion sub-operation.
If the element is in the queue, then the corresponding sub-
operation is removed from the queue. (It is easy to see that an
element can appear in at most one sub-operation in the queue
at any point in time.) This ability to reorder sub-operations
without compromising the integrity of the hash table is the
key feature of cuckoo hashing that we exploit in improving
its performance.

Of course, for our queueing approach to be useful, the queue
must actually fit into a CAM (at least under normal operating
conditions). Because large CAMs are expensive, the size of
the queue appears to be the primary issue in choosing the
queueing policy to use. With this in mind, we now begin to
explore the relationship between the choice of queueing policy,
the pattern of insertions and deletions, and the resulting size
of the queue over time. We emphasize that all of our results
are preliminary, but they suggest that our technique of using
an insertion queue can be a practical and very effective way
to de-amortize the performance of cuckoo hashing.

III. T HE QUEUEING POLICIES

In the standard cuckoo hashing schemes discussed in Sec-
tion II, we insert elements one-by-one, processing every one
of an insertion operation’s sub-operations before proceeding
to the next insertion operation. Thus, this corresponds to the
queueing discipline where, when inserting a new element, we
place the corresponding initial sub-operation onto the back of
the queue, and when a processed sub-operation yields a new
sub-operation, we place the new sub-operation on the front
of the queue. Since this policy does not exploit our ability
to reorder sub-operations in the queue, we call it thenaive
policy.

The naive policy can gives rise to very large queue sizes
if it becomes “stuck” attempting to process an unusually
large number of sub-operations resulting from a troublesome
insertion operation, allowing newly inserted elements to queue
up in the meantime. To avoid this, we consider more complex
policies. Let us define theage of a sub-operationo in the
following way. If o is an initial attempt to place an element,
it has age 0. Otherwise, the sub-operation arose from another
sub-operation with some agem, and so we define the age of
o to bem + 1. A first obvious point is that elements of age 0
should have priority in the queue, as they haved choices for
placement, while older elements have essentially onlyd − 1
choices for placement, assuming the element that evicted it
has not been deleted. Hence, insertions of new elements are



0.998 1 1.002 1.004 1.006 1.008 1.01 1.012 1.014 1.016

x 10
4

20

30

40

50

60

70

80

90

100
d = 2, u = 0.3

Time

E
st

im
at

ed
 E

xp
ec

te
d 

Q
ue

ue
 S

iz
e

 

 
naive
rotating

0
rotating

1
rotating

2
rotating

3

PQage

1.185 1.19 1.195 1.2 1.205 1.21

x 10
4

20

30

40

50

60

70

80

90

100
d = 2, u = 0.35

Time

E
st

im
at

ed
 E

xp
ec

te
d 

Q
ue

ue
 S

iz
e

 

 
naive
rotating

0
rotating

1
rotating

2
rotating

3

PQage

1.39 1.395 1.4 1.405 1.41 1.415 1.42 1.425 1.43

x 10
4

20

30

40

50

60

70

80

90

100
d = 2, u = 0.4

Time

E
st

im
at

ed
 E

xp
ec

te
d 

Q
ue

ue
 S

iz
e

 

 
naive
rotating

0
rotating

1
rotating

2
rotating

3

PQage

1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69

x 10
4

20

30

40

50

60

70

80

90

100
d = 2, u = 0.45

Time

E
st

im
at

ed
 E

xp
ec

te
d 

Q
ue

ue
 S

iz
e

 

 
naive
rotating

0
rotating

1
rotating

2
rotating

3

PQage

Fig. 1. Results of the simple experiment ford = 2 and various values ofu.

much more likely to succeed than attempts to place an evicted
element.

It is also intuitively reasonable to believe that, more gen-
erally, the probability that processingo will not result in the
generation of a new insertion operation is roughly decreasing
in the age ofo. That is, the longer an element has been
in the queue, the less likely it is to succeed in placement.
This is certainly true in the rare case where the inability to
place an element arises because there is a cycle, causing the
same sequence of elements to be evicted repeatedly (until a
deletion occurs). With this intuition in mind, we define the
policy PQage, which treats the queue as a priority queue
where the priority of a sub-operation is its age, and lower
ages correspond to higher priorities.

Of course, while thePQage policy is nice in theory, it is
likely to be impractical to implement; creating a priority queue
within the CAM may be too expensive in terms of operation
time or hardware resources. The most natural way to deal with
this is to attempt to mimic thePQage policy for queues where
some sub-operation has a small age. Since it is intuitively very
unusual forall of the sub-operations in the queue to have large
age, we expect such a policy to perform well. With this in

mind, we define the policyrotatingi for a fixedi ∈ Z≥0 as
follows. During an insertion operation, the corresponding ini-
tial insertion sub-operation is placed on the front of the queue.
When a new sub-operationo is generated during the processing
of some other sub-operation, we placeo on the front of the
queue if its age is at mosti, and otherwise we placeo on
the back of the queue. Thus, we effectively give precedence
to sub-operations with age at mosti, while rotating through
the other sub-operations to avoid getting stuck processing
the occasional particularly troublesome insertion operation.
Furthermore, unlike thePQage policy, therotatingi policy
is easy to implement. If for a sub-operationo with agea, we
store the valuemax(a, i + 1) along witho in the CAM, then
the rotatingi requires very little computational and storage
overhead, particularly for smalli.

Finally, we consider an even simpler policy. Recall that,
according to our intuition, the main shortcoming of thenaive
policy is that newly inserted elements, which are very likely
to be placed successfully in one sub-operation, can get stuck
behind much older sub-operations. A very simple way to deal
with this problem is to simply modify thenaive policy so that
newly inserted elements always go on the front of the queue,



2.885 2.89 2.895 2.9 2.905 2.91 2.915

x 10
4

20

30

40

50

60

70

80

90

100
d = 4, u = 0.8

Time

E
st

im
at

ed
 E

xp
ec

te
d 

Q
ue

ue
 S

iz
e

 

 
naive
rotating

0
rotating

1
rotating

2
rotating

3

PQage

3.27 3.28 3.29 3.3 3.31 3.32 3.33

x 10
4

20

30

40

50

60

70

80

90

100
d = 4, u = 0.85

Time

E
st

im
at

ed
 E

xp
ec

te
d 

Q
ue

ue
 S

iz
e

 

 
naive
rotating

0
rotating

1
rotating

2
rotating

3

PQage

3.92 3.94 3.96 3.98 4 4.02

x 10
4

20

30

40

50

60

70

80

90

100
d = 4, u = 0.9

Time

E
st

im
at

ed
 E

xp
ec

te
d 

Q
ue

ue
 S

iz
e

 

 
naive
rotating

0
rotating

1
rotating

2
rotating

3

PQage

5.7 5.75 5.8 5.85 5.9 5.95 6 6.05 6.1

x 10
4

20

30

40

50

60

70

80

90

100
d = 4, u = 0.95

Time

E
st

im
at

ed
 E

xp
ec

te
d 

Q
ue

ue
 S

iz
e

 

 
naive
rotating

0
rotating

1
rotating

2
rotating

3

PQage

Fig. 2. Results of the simple experiment ford = 4 and various values ofu.

instead of the back. We name this policynaive∗. Of course,
if we are in a situation where the queue is highly backlogged
and there are no new insertion operations, then thenaive and
naive∗ policies are exactly the same, and we expect the other
policies to perform better.

IV. A SIMPLE EXPERIMENT

We now discuss a simple experiment with the queueing
policies introduced in Section III. We emphasize that this
experiment is not designed to explicitly model any particular
phenomenon that is likely to occur in practice. Rather, the
point of the experiment is to help verify and clarify the
intuition from Section III in what seems to be the simplest
possible way.

With this in mind, we recall that the key intuition used in
Section III is that (heuristically) the probability that executing
a particular sub-operationo in the queue does not result in a
new sub-operation is roughly decreasing in the age ofo. Thus,
we expect that queueing policies that favor sub-operations
with lower ages tend to reduce the size of the queue faster
than the standardnaive policy. Furthermore, the standard
theoretical results behind cuckoo hashing suggest that most

insertion operations require few sub-operations, so it should be
sufficient to simply ensure that sub-operations with very small
ages take precedence over those with larger ages, and therefore
we expect that, for some smalli, the policyrotatingi should
perform about as well as the much more complicatedPQage
policy.

In this section, we test these two claims with the following
very simple experiment. We consider a table with 32768
buckets, divided intod equal sub-tables, ford = 2 andd = 4.
We fix a utilization value u ∈ (0, 1) and do the following
for each of the queueing policies discussed in Section III.
First, we load the queue with�32768u� insertion operations
and then let the system run, processing one sub-operation per
time step, for 65000 time steps, recording the queue size after
every step. We average the results over 1000 trials to get a
curve corresponding to the queueing policy. We then draw the
curves corresponding to all of the different queueing policies
(for a fixed u) on the same plot, and then zoom in to the
portion where all of the curves lie between 20 and 100 on the
y-axis.

The results ford = 2 are given in Figure 1, and the results
for d = 4 are given in Figure 2. (Note that since there are no



0 10 20 30 40 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d = 2, u = 0.45

Age

F
ra

ct
io

n 
of

 A
ll 

S
uc

ce
ss

fu
l S

ub
−

O
pe

ra
tio

ns
 w

ith
 a

 G
iv

en
 A

ge

 

 
naive
rotating

0

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

d = 4, u = 0.95

Age

F
ra

ct
io

n 
of

 A
ll 

S
uc

ce
ss

fu
l S

ub
−

O
pe

ra
tio

ns
 w

ith
 a

 G
iv

en
 A

ge

 

 
naive
rotating

0

Fig. 3. The age distribution, or the number of moves required to place an element, for thenaive androtating0 queueing policies.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d = 2, u = 0.45

AgeF
ra

ct
io

n 
of

 S
ub

−
O

pe
ra

tio
ns

 w
ith

 a
 G

iv
en

 A
ge

 T
ha

t A
re

 S
uc

ce
ss

fu
l

 

 
naive
rotating

0

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
d = 4, u = 0.95

AgeF
ra

ct
io

n 
of

 S
ub

−
O

pe
ra

tio
ns

 w
ith

 a
 G

iv
en

 A
ge

 T
ha

t A
re

 S
uc

ce
ss

fu
l

 

 
naive
rotating

0

Fig. 4. The fraction of successful placements for each age. Overall, the larger the age of a sub-operation, the less likely it is to succeed.

new insertion operations during the course of this experiment,
thenaive andnaive∗ policies are the same, and so we only
display results for thenaive policy.) The specific values for
u are chosen because prior work [4] observes that cuckoo
hashing breaks down atu = 0.5 for d = 2, and u = 0.97
for d = 4. The pattern of the curves indicates that for certain
large queue sizes, thePQage policy gives the most effective
placement of elements in the table, thenaive policy gives
the least effective placement, and the difference is significant
for all utilizations. Also, the performance of therotating0

policy is essentially the same as for thePQage policy.

These results match very nicely with our intuition from
Section III, as they suggest that thenaive policy can be sig-
nificantly improved by prioritizing sub-operations according to
their ages. Furthermore, it appears that the maximum benefit
of such a scheme can be effectively realized by simply giving
priority to the initial attempts to insert elements, while rotating
through the other sub-operations to lessen the impact of the

occasional particularly troublesome insertion operation on the
average queue size.

Other results from these experiments are also enlightening.
Here we focus on thenaive and rotating0 schemes near
the threshold utilization values where cuckoo hashing breaks
down, and increase the number of trials from 1000 to 10000 to
decrease sampling error. Figure 3 shows the distribution of the
age when a successful placement occurs. As we discussed in
the introduction, some elements require a significant number
of move operations before placement occurs. In fact, most
elements are placed during the initial attempt to insert them,
backing our intuition that it is important to place new inser-
tions at the front of the queue. Note that there is some skew
whend = 2 because of our initial preference to place elements
in the first hash table; more elements are placed in the first
sub-table, causing bounces between odd and even ages in the
age distribution. We have not attempted to exploit this behavior
in our queueing policies, although one could conceivably do



0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
0

5

10

15

20

25

Utilization

E
st

im
at

ed
 E

xp
ec

te
d 

S
te

ad
y 

S
ta

te
 Q

ue
ue

 S
iz

e

d = 2, ops = 2

 

 
naive
naive*
rotating

0
rotating

1
rotating

2
rotating

3

PQage

0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

5

10

15

20

25

30

35

40

Utilization

E
st

im
at

ed
 E

xp
ec

te
d 

S
te

ad
y 

S
ta

te
 Q

ue
ue

 S
iz

e

d = 2, ops = 4

 

 
naive
naive*
rotating

0
rotating

1
rotating

2
rotating

3

PQage

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

5

10

15

20

25

30

35

40

45

Utilization

E
st

im
at

ed
 E

xp
ec

te
d 

S
te

ad
y 

S
ta

te
 Q

ue
ue

 S
iz

e

d = 2, ops = 6

 

 
naive
naive*
rotating

0
rotating

1
rotating

2
rotating

3

PQage

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

5

10

15

20

25

30

35

40

45

Utilization

E
st

im
at

ed
 E

xp
ec

te
d 

S
te

ad
y 

S
ta

te
 Q

ue
ue

 S
iz

e

d = 2, ops = 8

 

 
naive
naive*
rotating

0
rotating

1
rotating

2
rotating

3

PQage

Fig. 5. Results from the more realistic experiment withd = 2.

so.
Figure 4 shows the distribution of the fraction of successful

placements for each age. As we suggested, the main feature
is that as the age of sub-operation increases, its success
probability decreases. (Again, there are odd-even artifacts
whend = 2, but still the trend is clear.) In particular, it makes
sense that a good choice fori in the rotatingi policy is
i = 0, leading to a simple but effective queueing policy.

V. A M ORE REALISTIC EXPERIMENT

While the results in Section IV are certainly significant,
it is clearly necessary to perform a more realistic set of
experiments. In particular, it is important to consider scenarios
that intermix insertion and deletion operations, so that we can
begin to see the relationship between the pattern of hash table
operations and the choice of queueing policy. As we shall see,
the core of our intuition from Sections III and IV continues
to apply in these settings.

In this section, we consider the following experiment. We
fix a value ford ∈ {2, 4} and consider a table of size 32768
divided into d equal-size sub-tables. (We also experimented
with several non-uniform allocations of space between the

sub-tables [5], [6], but the results in this case were always
significantly worse.) We also fix a valueops ∈ {2, 4, 6, 8}, a
queueing policy from Section III, and a utilization parameter
u. Ford = 2, we takeu ∈ {0.3, 0.325, 0.35, . . . , 0.55}, and for
d = 4, we takeu ∈ {0.7, 0.725, 0.75, . . . , 0.95}. Once again,
these values ofu are chosen because prior work [4] observes
that standard cuckoo hashing breaks down atu = 0.5 for
d = 2 andu = 0.97 for d = 4.

We then repeat the following procedure 100 times. We
insert �32768u� elements into the data structure, processing
ops sub-operations between insertions. Then we perform
30000 alternations of deleting a random element in the data
structure, then inserting a new element, then processingops
sub-operations. We record the queue size after every operation,
and we treat the last 10000 alternations of deletions, insertions,
and queueing operations as reflecting the steady state of
the queue size. Here, the time scale is queueing operations;
each queueing operation is presumed to take one unit of
time, whereas deletions and insertions are presumed to be
instantaneous. We average the results over all trials to obtain
an estimate of the expected value of the steady state size of



0.65 0.7 0.75 0.8
0

1

2

3

4

5

6

Utilization

E
st

im
at

ed
 E

xp
ec

te
d 

S
te

ad
y 

S
ta

te
 Q

ue
ue

 S
iz

e

d = 4, ops = 2

 

 
naive
naive*
rotating

0
rotating

1
rotating

2
rotating

3

PQage

0.65 0.7 0.75 0.8 0.85 0.9
0

2

4

6

8

10

12

14

Utilization

E
st

im
at

ed
 E

xp
ec

te
d 

S
te

ad
y 

S
ta

te
 Q

ue
ue

 S
iz

e

d = 4, ops = 4

 

 
naive
naive*
rotating

0
rotating

1
rotating

2
rotating

3

PQage

0.65 0.7 0.75 0.8 0.85 0.9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Utilization

E
st

im
at

ed
 E

xp
ec

te
d 

S
te

ad
y 

S
ta

te
 Q

ue
ue

 S
iz

e

d = 4, ops = 6

 

 
naive
naive*
rotating

0
rotating

1
rotating

2
rotating

3

PQage

0.65 0.7 0.75 0.8 0.85 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Utilization

E
st

im
at

ed
 E

xp
ec

te
d 

S
te

ad
y 

S
ta

te
 Q

ue
ue

 S
iz

e

d = 4, ops = 8

 

 
naive
naive*
rotating

0
rotating

1
rotating

2
rotating

3

PQage

Fig. 6. Results from the more realistic experiment withd = 4.

the queue.

As an aside, we note that in practice it may difficult to
delete an element from the queue instantaneously. In this case
it might be preferable to keep a list of elements in the queue
marked as deleted, and not actually remove a deleted element
until its sub-operation is served by the queue. This would
certainly enlarge the steady state queue sizes, but would not
qualitatively affect our results.

This experiment focuses on the average size of the queue
when the data structure is designed for a specific utiliza-
tion of the hash table and average relative frequency of
insertion/deletion and queueing operations, and then run at
its capacity for a long period of time. In a more heuristic
sense, this experiment corresponds to the steady state of an
asymptotic regime where the size of the hash table tends
towards infinity, the utilization valueu is a fixed constant,
insertions occur according to a Poisson process with rate
1/ops, and the lifetime of an element in the table has an
exponential distribution with meanops/u. The latter setting
is significant in that it seems to be the beginning of a realistic
model for how the system might behave in practice. Indeed,

the assumption that arrivals occur according to a Poisson
process is fairly standard. However, the restriction that the
lifetime of an element in the table is exponential is likely to
be extremely unrealistic. Nevertheless, the experiments in this
section certainly seem like a good start towards understanding
how the systems we consider might behave in the real world.

We plot our results ford = 2 andd = 4 in Figures 5 and
6, respectively. To make the plots readable, we omit all data
points where the estimated expected steady state size of the
queue exceeds 50, which we consider to be a practical value
for the applications of interest in this paper. Ford = 2, the
results are striking. Thenaive∗ policy performs significantly
better than thenaive policy, therotating policies give an
additional improvement, and are comparable withPQage. For
d = 4, the differences between the queueing policies are
less significant, but there is still a gain in choosing even the
naive∗ policy over naive. Again, there is an advantage to
giving priority to the initial sub-operation of an insertion, but
otherwise differences in the steady state are minor.

Of course, for implementation one is interested not only in
the steady state queue size, but in the maximum queue size



seen. In particular, a good design must ensure the probability
of queue overflow is extremely low. Because we have no
analytic bounds on the queue behavior, it is difficult to bound
this type of event. Even under the idealized assumptions of
our experiments, large-scale simulations would be needed to
accurately determine the rarity of overflow events. In practice,
the probability would depend on many factors, including the
amount of time the process runs, the distribution of how long
elements live in the hash table, and the burstiness of insertion
and deletion operations. In our experiments, we have found
that when the average steady state queue size is in the range
[1, 5], the largest gap between the average steady state queue
size and the maximum queue size seen over all simulations (for
each setting ofd, ops, queueing policy, and utilization) was a
factor between 10 and 30. The one exception was thenaive
policy, which naturally is significantly worse; therotating0

policy performed very well, with a maximum gap factor
between 15 and 16. While this issue remains a subject for
future analysis and/or experimentation, we maintain that these
initial results strongly suggest that cuckoo hashing should be
suitable for practical implementations using a reasonably sized
CAM.

VI. CONCLUSION AND FURTHER WORK

We believe our results demonstrate that cuckoo hashing for
router hardware, and our CAM-based queueing approach in
particular, have merit and warrant further investigation. How-
ever, we leave many open questions. On the theoretical side,
there remain several open questions regarding the analysis of
cuckoo hashing performance, particularly in the setting with
d > 2 choices. A more complete understanding could certainly
impact practical designs.

On the experimental side, while we have only looked at
expected steady state queue sizes in this paper, it is certainly
necessary to understand the frequency of very large queue
sizes, as these rare events correspond to overflow in the queue.
In this same vein, we should learn more about how different
queueing policies behave when the occasional disturbance,
such as a large influx of insertions, occurs. It seems likely
that policies with similar steady state queue size may perform
quite differently under these circumstances, as suggested by
our simple experiment in Section IV. Another natural possible
approach if bursty insertion behavior is expected would allow
a varying number of queue operations per insertion depending
on the length of the queue, in order to prevent queue overflow.

Additionally, it is very important to understand how the
behavior of the system is affected by the distribution of the
lifetime that an element spends in the data structure. In our
experiments, we always assume that when a deletion occurs,
all elements in the structure are deleted with equal probability.
Of course, this is unlikely to be the case in practice, and it is
important to understand the effect of this assumption on our
results. Indeed, if the amount of time that an element spends
in the table is not exponential, then it may be worthwhile to
take the age of an element (as opposed to just the age of a sub-
operation) into account when designing the queueing policy.

The full ramifications of these and related issues would have
to be considered more carefully in a complete hardware design.
Overall, however, our exploration has shown that cuckoo
hashing has great potential for hardware implementations. In
particular, we have demonstrated a simple and practical queue-
ing technique that can allow de-amortizing standard cuckoo
hashing. Our technique appears to maintain high utilizations,
while keeping the cost per inserted element low.

ACKNOWLEDGMENTS

Both authors were supported by NSF grants CCF-0634923
and CNS-0721491 and research grants from Cisco Systems,
Inc. and Yahoo! Research. Adam Kirsch was also partially sup-
ported by an NSF Graduate Research Fellowship. The authors
also thank George Varghese for several helpful discussions in
the course of this research.

REFERENCES

[1] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced Allocations.SIAM
Journal on Computing, 29(1):180-200, 1999.

[2] L. Devroye and P. Morin. Cuckoo Hashing: Further Analysis.Information
Processing Letters, 86(4):215–219, 2003.

[3] M. Dietzfelbinger and C. Weidling. Balanced Allocation and Dictionaries
with Tightly Packed Constant Size Bins.Theoretical Computer Science,
380:(1-2):47-68, 2007.

[4] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space Efficient Hash
Tables With Worst Case Constant Access Time.Theory of Computing
Systems, 38(2): 229-248, 2005.

[5] A. Kirsch and M. Mitzenmacher. Simple Summaries for Hashing with
Choices.IEEE/ACM Transactions on Networking, to appear. Temporary
version available at: http://www.eecs.harvard.edu/∼kirsch/pubs/sshmc/
ton-cr.pdf.

[6] A. Kirsch and M. Mitzenmacher. The Power of One Move: Hashing
Schemes for Hardware. Submitted. Temporary version available at:
http://www.eecs.harvard.edu/∼kirsch/pubs/hashinghardware/hashing
hardwaresubmit.pdf.

[7] M. Mitzenmacher. The Power of Two Choices in Randomized Load
Balancing. Ph.D. thesis, University of California, Berkeley, 1996.

[8] R. Pagh and F. Rodler. Cuckoo Hashing.Journal of Algorithms,
51(2):122-144, 2004.


