
On the Performance of Multiple Choice Hash Tables with Moves
on Deletes and Inserts

Adam Kirsch∗ and Michael Mitzenmacher∗

School of Engineering and Applied Sciences
Harvard University

{kirsch,michaelm}@eecs.harvard.edu

Abstract— In a multiple choice hash table scheme, each
item is stored in one of d ≥ 2 hash table buckets. The
ability to choose from multiple locations when storing an
item improves space utilization, while the simplicity of
such schemes makes them highly amenable to hardware
implementation, as in a router. Some variants, such as
cuckoo hashing, allow items to be moved among theird
choices in order to improve load balance and avoid hash
table overflows. We consider schemes that move items
on insertion and deletion operations, as arguably one
would be willing to incur more time on such operations
as opposed to more frequent lookup operations. To
keep the schemes as simple as possible for hardware
implementation, we focus on schemes that allow a single
move on an insertion or deletion. Our results show
significant space savings when moving items is allowed,
even under the limitation of one move per insertion and
deletion operation.

I. INTRODUCTION

High-performance hashing has become a fundamen-
tal subroutine for a wide variety of high performance
network processing tasks, including header lookup for
routing, measurement, and monitoring. In consider-
ing hashing alternatives, many possible considerations
arise, perhaps the most important being how much
time is spent performing lookup, insert, and delete
operations, and how much space the table requires.
Here time primarily corresponds to the number of hash
tables entries that are read and, when items can be
moved within the hash table, the number of items that
are moved, as computation is often free compared to
the time to perform a memory access or a write. Here
space corresponds to the amount of space required to
hold n items, with high probability.

For example, cuckoo hashing [10] is a scheme where
each item hasd possible locations where it can be

∗This work was supported by NSF grant CNS-0721491 and a
research grant from Cisco Systems, Inc.

stored in a hash table, for a small constantd. Lookups
are therefore constant time. The space required is linear
in n, with small constant factors in practice. Dele-
tions are performed by simply removing the item, and
therefore also require only constant time. Insertions,
however, while constant time on average, generally take
time logarithmic inn with non-negligible probability,
which may not be suitable for many applications. In
order to avoid this high cost for an insertion, previous
work has considered multilevel hash tables (MHTs) [1],
[4], which also used possible locations per item and
linear space. To lower the insertion time to constant,
additional hardware, namely small content address-
able memories (CAMs), were used to handle potential
overflow caused by collisions in the hash table. In
[3], MHTs allowing only one additional move of an
item on an insertion are studied. In [5], an alternative
construction where a CAM is used as a queue for move
operations is discussed.

In this paper, we consider further variations of multi-
level hash tables that also allow moves when items are
deleted. As we shall see, handling moves on a deletion
is generally harder than handling moves on an insertion.
This is because schemes for moving items when a new
item is inserted can be based on moving an existing
item that collides with the new item out of its way.
That is, it is clear what items to try to move. On a
deletion, we generally want to try to move an existing
item in the table into the now-vacant space, but it is
not immediately clear where an appropriate item can
be found. We consider two approaches. First, we use
additional memory to store small hints of where items
to move can be found when a deletion occurs. Second,
we consider an idea from [7]: we make the locations
of an item dependent in such a way so that when an
item is deleted, another item in the table can be easily
found to be moved into its location.

While we aim for analyses of our schemes, gener-

ally this does not seem to be possible using standard
techniques. Analyses of several of our basic schemes
remain open, and we rely on simulations to obtain
insight into performance. Our experiments are designed
to highlight tradeoffs with these schemes and examine
the comparative value of schemes that move items on
a deletion against those that move items on an insert.
Naturally, we consider whether allowing a move on
both an insertion and a deletion can yield substantially
better results than moving on just an insertion or
deletion alone.

II. BACKGROUND: MULTILEVEL HASH
TABLES

The basis for our hash table schemes is the multilevel
hash table (MHT) of Broder and Karlin [1]. This is a
hash table consisting ofd sub-tablesT1, . . . ,Td, with
each Ti having one hash functionhi . (In this work,
we make the heuristic assumption that hash functions
are fully random; for more on this, see for example
[9].) We view these tables as being laid out from top
(T1) to bottom (Td). To insert an itemx, we find the
minimal i such thatTi [hi(x)] is unoccupied, and place
x there. We assume that each bucket can store at most
one item, although generalizations to larger bucket sizes
are certainly possible. IfT1[h1(x)], . . . ,Td[hd(x)] are all
occupied, then we declare acrisis. There are multiple
things that we can do to handle a crisis. The approach
in [1] is to resample the hash functions and rebuild the
entire table. That work shows that it is possible to insert
n items into a properly designed MHT withO(n) total
space andd = log logn+O(1) in O(n) expected time,
assuming only 4-wise independent hash functions.

Assuming fully random hash functions, Kirsch and
Mitzenmacher [4] modify the analysis of [1] to show
that, if the sub-tables are sized properly, then no re-
hashings are necessary in practice. Essentially, the idea
is that if theTi ’s are (roughly) geometrically decreasing
in size, then the total space of the table isO(n). If the
ratio by which the size ofTi+1 is smaller thanTi is,
say, twice as large as the expected fraction of items
that are not stored inT1, . . . ,Ti , then the distribution of
items over theTi ’s decreases doubly exponentially with
high probability. This double exponential decay allows
the choice ofd = log logn+O(1). For a more detailed
description of this intuition, see [1] or [4].

A very useful property of MHTs is that they naturally
support deletions, as one can just perform a lookup
on an item to find its location in the table, and then
mark the corresponding item as deleted. Also, MHTs

appear well-suited to a hardware implementation. In
particular, their open-addressed nature seems to make
them preferable to approaches that involve chaining,
and their use of separate sub-tables allows for the
possibility that all of the hash locations for a particular
item can be accessed in parallel.

Two important methods for improving the perfor-
mance of MHTs are proposed by Kirsch and Mitzen-
macher in [4] and [3]. The key contribution of [4] is a
very compact and simple Bloom filter-basedsummary
data structure that, for any item in the MHT, can
efficiently answer a query as to what sub-table contains
that item. For items not in the MHT, the summary has
some false positive probability, like a standard Bloom
filter. In practice, the summary data structure is small
enough that it can be stored in fast memory when the
hash table is so large that it can only be stored in much
slower memory. Thus, the summary allows for a hash
table lookup to be performed with only one access
to slow memory, whereas the naive approach would
require d accesses (possibly in parallel). One could
also use a Bloomier filter [2], although a summary
specifically designed for this setting can perform better.

The paper [3] shows that the space utilization of
a MHT can be substantially improved by allowing a
single item in the table to be moved during an insertion
operation. This observation is a major motivational
force behind this work, and so we elaborate in some
detail. In particular, [3] proposes theSecond Chance
insertion scheme, described as follows. Essentially, the
idea is that as we insert items into a standard MHT
with sub-tablesT1, . . . ,Td, the sub-tables fill up from
top to bottom, with items cascading fromTi to Ti+1

with increasing frequency asTi fills up. Thus, a natural
way to increase the space utilization of the table is to
slow down this cascade at every step.

This idea is implemented in the Second Chance
scheme in the following way. We mimic the insertion of
an itemx using the standard MHT insertion procedure,
except that if we are attempting to insertx into Ti ,
if the bucketsTi [hi(x)] andTi+1[hi+1(x)] are occupied,
rather than simply moving on toTi+2 as in the standard
scheme, we check whether the itemy in Ti [hi(x)] can be
moved toTi+1[hi+1(y)]. If this move is possible (i.e., the
bucket Ti+1[hi+1(y)] is unoccupied), then we perform
the move and placex at Ti [hi(x)]. Thus, we effectively
get asecond chanceat preventing a cascade fromTi+1

to Ti+2.
Just as in the standard MHT insertion scheme, there

may be items that cannot be placed in the MHT during

the insertion procedure. Previously, we considered this
to be an extremely bad event and strived to bound its
probability. An alternative approach if an item is not
successfully placed in the MHT during its insertion is
to place it in astash, which, in practice, would be
implemented with a CAM. To perform a lookup, we
simply check the stash in parallel with the MHT.

It turns out that since the Second Chance scheme
only allows moves from top to bottom, it is analyzable
by a fluid limit or mean-fieldtechnique, which is es-
sentially a way of approximating stochastic phenomena
by a deterministic system of differential equations. The
technique also applies to the standard MHT insertion
procedure, as well as a wide variety of extensions to
the basic Second Chance scheme. This approach makes
it possible to perform very accurate numerical analyses
of these systems, and in particular it allows for some
interesting optimizations. We refer to [3] for details.

The Second Chance scheme is also much more
amenable to a hardware implementation than it may
at first seem. To insert an itemx, we simply read all of
the itemsy1 = T1[h1(x)], . . . ,yd = Td[hd(x)] in parallel.
Then we compute the hashesh2(y1), . . . ,hd(yd−1) in
parallel. (Here, for notational simplicity, we are assum-
ing that all of T1[h1(x)], . . . ,Td[hd(x)] are occupied, so
that theyi ’s are well-defined; it should be clear how to
handle the general case.) At this point, we now have
all of the information needed to execute the insertion
procedure without accessing the hash table (assuming
that we maintain a bit vector indicating which buckets
of the table are occupied).

The Second Chance scheme also supports deletions
in the natural way: an item can simply be removed
from the table. However, as with many hash table
constructions, the intermixing of insertions and dele-
tions fundamentally changes the behavior of the system,
making analysis via fluid limits inaccurate (albeit still
potentially useful). For details, see [3].

III. USING HINTS

With a standard multilevel hash table, each item
obtains an independent hash for each level of the hash
table. With no correlation between levels, collisions
at one level do not affect another, allowing items to
easily find free locations. As a downside, however,
it is not entirely clear what to do when item are
deleted from the hash table. Potentially when an item is
deleted from leveli −1, some item at leveli or some
deeper level could be moved back to that spot, and
possibly then additional items from further levels could

recursively be moved up in the table. Intuitively and
in practice, pulling items up to lower numbered levels
decreases the subsequent probability of a failure, where
a newly inserted item cannot be placed. But there is no
immediate method to find an appropriate item to move
to the now empty location, and exhaustive search is far
too expensive. (This in part explains the previous focus
on moving items only on insertion operations of [3].)

One approach to circumvent this problem would be
to storehints in cells, where the hints would consist
of a short pointer encoding where to find an item that
has previously collided at that cell. A pointer could be
expressed as an ordered pair of a level and a cell in that
level, which can be written in a small number of bits.
(As will become clear, such hints take roughly log2n
bits.) We emphasize that the hint is simply a hint; the
item at the given location may no longer be an item that
collided at the cell with the hint, because of intervening
insertions and deletions, and hence its hash value for
the level it could be moved to must be checked before
moving the item.

A variety of hints and move strategies are possible.
One approach would be to store a hint whenever a
collision occurs at a cell, always replacing any existing
hint. Another approach would be to store the collision
corresponding to the item that has been placed at
the deepest level. Yet another alternative would be
to only store hints for items at the next level; this
slightly shortens the length required for a hint, and
would still allow items at deep levels to be moved up
recursively. We clarify that our goal is not to provide
a complete picture of all the various permutations of
hint strategies that can be imagined, but to obtain
some insight into the potential of schemes that move
items on a deletion as compared to other approaches.
As our tests of performance will be based primarily
on simulations, we remark that performance of any
given scheme may depend on a number of variables,
particularly the distribution of the lifetime of an item
in the table before deletion.

While multiple moves per deletion are possible,
following [3] we focus attention on schemes that are
limited to one move per deletion operation.

A. Experimental Results

We provide some basic simulation results. We em-
phasize that these results are not meant to cover the
wide range of possibilities, but to give insight into
these processes. When choosing a hash table structure,
one must consider the tradeoffs among the number of

hash functions, the load factor (ratio of items to cells
in the hash table), and the probability of an overflow.
There are also potential issues in sizing the subtables,
deciding the number of items per bucket, determining
the number of moves allowed, and so on. In designing
simulations, one must consider the distributions of
lifetimes among items, how the load varies over time,
and the overall length of the simulation.

Here we begin with the goal of aiming for a load
of at least 50%. We test settings where each bucket
holds only one item, and the size of each sublevel
of the hash table falls by a factor of 1/2 from the
previous level. The load is maintained atn items, where
in our tests we usen = 213,214,215; we initially load
the table withn inserts, and then alternate deletion
and insertion operations for 218 steps, which appears
more than sufficient time for the process to reach
steady-state. This alternation of insert and deletes is
roughly equivalent to assuming item lifetimes follow
the memoryless exponential distribution. We track both
the load at each level of the hash table at the end of the
process to obtain an approximate steady-state average
and the maximum load at each level throughout the
process. Finally, we allow a small stash (generally, up
to size 10, although slightly larger in some cases) to
hold items that cannot be placed in the hash table. Each
configuration was run 10,000 times. We consider the
number of hash functions required and the maximum
size of resulting stash in order to achieve no crisis for
those 10,000 trials.

We first note that with no moves at all, a load factor
of 1/2 is just barely possible with a MHT. As shown
in Table I, we required increasing the stash size to
32, and a much larger than desirable number of hash
functions. For comparison purposes, we also consider
the Second Chance scheme of [3], which uses at most
one move on each insert and no moves on a deletion.
In our initial experiments we found that the approach
of replacing any existing hint whenever a collision
occurred performed best of our proposed schemes, so
we report the results for this algorithm. We consider
two variants of this scheme. In the first, only one move
is allowed per deletion, so an item can only be moved to
the vacated cell. In the second, when an item is moved
because of a deletion, another item can recursively be
moved into its empty location, and so on as much
as possible. As can be seen from our experiments,
the recursive variation adds some benefit in terms of
performance, but both schemes perform less well than
the Second Chance scheme.

TABLE I

NUMERICAL RESULTS FOR HINT-BASED SCHEMES.

Items Hashes Max. Avg.
= Size (Levels) Stash Stash

Scheme Level 0 (items) (items)
No Move 8192 11 31 4.225
No Move 16384 12 29 4.375
No Move 32768 13 31 3.896

Second Chance 8192 6 2 0.001
Second Chance 16384 6 2 0.001
Second Chance 32768 6 1 0.003

Hint+1 Move 8192 7 2 0.004
Hint+1 Move 16384 7 2 0.006
Hint+1 Move 32768 7 3 0.013
Hint+Moves 8192 6 5 0.063
Hint+Moves 16384 6 5 0.131
Hint+Moves 32768 6 7 0.246

Hint+1 Move+SC 8192 4 10 1.198
Hint+1 Move+SC 16384 4 15 2.345
Hint+1 Move+SC 32768 4 18 4.678
Hint+Moves+SC 8192 4 6 0.236
Hint+Moves+SC 16384 4 8 0.455
Hint+Moves+SC 32768 4 9 0.911

Naturally, we consider combining the Second
Chance scheme with these deletion-based schemes, and
find that performance improves substantially. The gap
between one move on a deletion and multiple moves
nearly disappears. With a small CAM, a load factor of
1/2 with just four hash functions can be achieved, using
at most one move per insert and deletion operation.
While this still does not meet the performance of a full
cuckoo hashing implementation with four choices, the
improvement over moving at most one item only on
insertion or deletion is strong.

Previous experience with schemes that move only
on insertions has shown that for small stashes, the
distribution of the stash size is approximately Poisson.
Here we find a similar rough correspondence. The
distribution for the stash size at the end of 218 moves
over the 10,000 trials is given below in Figure 1.

IV. RESTRICTED HASHING

An alternative approach, suggested in [7], avoids the
need for additional storage for hints by making hash
locations at levels beyond the first depend only partially
on the item, and primarily on the bucket at the previous
level. For example, one way this could be done would
be to have the location of an itemx at the first level
be given by the hash valueh1(x), at the second level
by h2(h1(x)), and so on. A simple variation is to have
the bucket at theith level be given byh(x) mod 2k−i+1.
This approach simplifies moves when deletions occur;
given an item to be deleted, one can easily find items

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 2 4 6 8 10 12 14

Empirical PDF of Stash Size
PDF of Poisson(4.678)

Fig. 1. A comparison of the distribution of the stash size and the
Poisson distribution.

that can move to the empty space, based on searching a
set of buckets dependent only on the valueh(x). A clear
problem with this approach is that overloaded buckets
simply pass items down level by level; if the load of
some bucket at the first level is larger than the number
of levels, then there will be a failure. In short, by not
randomizing the hash per item at each level, one greatly
reduces the spread of items among buckets after the first
level.

While it is possible to use more sophisticated
schemes, we here present anegativeresult. We consider
a very powerful scheme that uses this general approach
to avoid the need for hints, and show that it can be
numerically analyzed. With this analysis approach, we
show that even this scheme has comparatively poor
behavior compared to alternative schemes using hints,
or even the Second Chance scheme of [3] that only
moves items on insertions. We therefore suggest that
these schemes will likely prove less effective in almost
all contexts.

A. A General Setup

We first discuss how to increase the spread by using
a more sophisticated approach, describing the setup in
full generality. Our suggested structure depends on a
parameterℓ. (Generally,ℓ will be small; it may help to
think of ℓ = 2 in what follows.) A first hash function
H maps items in the universe to the range[0,2k), and
a second hash functionG maps items to the range
[0, ℓv−1), where v is the number of levels. Thinking
of G(x) as anℓ-ary vector of lengthv− 1, let gi(x)
be the ith item of the vectorG(x). Also, there are
hash functionshi, j mapping items from[0,2k−i+1) to

[0,2k−i), for i ∈ [1,v−1] and j ∈ [0, ℓ).
We describe how these hash functions are used for

insertion and deletion. For an inputx, its bucket in the
first table is given byH(x). If that bucket is free,x
is placed there. If there is a collision, however, then
x must be placed at a subsequent level. The item will
have one bucket at each level, given by

h1,g1(x)(H(x)),h2,g2(x)(h1,g1(x)(H(x))), . . .

Alternatively, if f (x) is the possible bucket ofx at level
i, then hi,gi(x)(f (x)) is its possible bucket at the next
level.

More descriptively, the bucket forx at the first level
is given by H(x). In subsequent levels, if there are
collisions at a bucket, any items that hash to these
buckets haveℓ possible buckets at the next level that
they can be hashed to, given by the functionshi, j , which
map buckets at leveli to ℓ buckets at levelj. Which
specific bucket is used for an itemx at each level is
determined by the hashG(x) (This is referred to as a
deciderfunction in [7].) Intuitively, the hash functions
hi, j are used to spread collisions at one level to multiple
buckets at subsequent levels.

This approach increases the spread of items across
the table while maintaining the ability to move items up
in the table in response to deletions. Specifically, when
an item is deleted, there are onlyℓ possible buckets at
the next level to examine to see if an item can be moved
to the open bucket, and at mostℓv−1 possible buckets
in total to consider through all levels. (It is possible
that an item exists in the table that can be moved to
the open bucket, but that it is not at the next level;
it might have been placed at a later level because of
further collisions.)

In fact, intuitively, we don’t necessarily want thehi, j

to be “random” hash functions; in such a case, certain
buckets at each level could essentially go unused, as no
bucket from the previous level would hash to them, and
other buckets could receive items from far more than
the average number of buckets at the previous level.
Instead, we suggest using shifts; although we do not
show it here, our analysis shows that shifts perform
more effectively. More descriptively, when level sizes
are a power of two and each bucket has two choices,
we can think of each level as being split into a left half
and right half. For each half, each bucket is given two
possible buckets on the next level, one on the left and
one on the right, on the next level. Specifically, we use
hi, j(y) = y+ si j0 mod 2k−i−1 if y < 2k−i , andhi, j(y) =
(y+ si j1 mod 2k−i−1)+ 2k−i−1 if y ≥ 2k−i , for distinct

Bin(n,2-k)

Fig. 2. An example with three levels. At the top level, the number
of items in each bucket is distributed according to a binomial
random variable, assumed independent. We can then compute the
distribution of items in each bucket at the next level, and so on to
the last level.

shifts si j0 and si j1. For appropriately chosen constants
si j0 andsi j1, and assuming the table is sufficiently large,
we can ensure that the items that hash to a bucket
H(x) have ℓi distinct possible buckets to hash to in
level i. Another way of thinking about it is given in
Figure 2; under appropriate conditions regarding the
size of the hash table and the choice of shift offsets,
branching backwards from a bucket at the last level,
the buckets that potentially pass items to this bucket
form a tree. This fact avoids dependencies that would
otherwise complicate analysis.

B. An Optimistic Analysis

We now suggest how to analyze this approach,
utilizing techniques from [3], [4]. For convenience, we
first consider the case of insertions only. If we consider
the first level, the distribution of items in a bucket
is Bin(n,2−k). If buckets can holdc items, then the
number of items passed on to the next level is dis-
tributed as(Bin(n,2−k)−c)+, where(x)+ = max(x,0)
is the standard notation. We takec = 1 henceforth
although this analysis approach is more general. If
the remaining elements were split randomly amongℓ
buckets at the next level, each would obtain a number
of items distributed as Bin((Bin(n,2−k) − 1)+,1/ℓ),
and the distribution of the number of items in a bin
at the second level would be the sum of 2ℓ random
variables with this distribution. From this, we we can
calculate the distribution of the number of items in
a bucket at the second level, and so on proceeding
recursively, until we obtain the probability a bucket
at the last level overflows. Using this approach, we
can obtain quite accurate predictions for the number
of overflowing bins.

We note that there are some simplifications being
made in this analysis, and hence it is only approximate.

First, while the distribution of items in any single
bucket at the first level is indeed given by Bin(n,2−k),
the joint distribution among several buckets does not
exactly correspond to independent binomial random
variables. This difference is negligible asymptotically,
and we ignore it henceforth. Similarly, when we reach
the last level, we obtain a distribution for the number
of items that land in each bucket, but we do not obtain
a joint distribution, which would allow a direct calcula-
tion of the number of items overflowing into the stash.
Again, treating the variables as independent appears to
be a rough but suitable approximation. Alternatively,
we can derive the expected overflow into the stash,
and use the experimental fact that this distribution is
approximately the sum of independent Bernoulli trials,
and is therefore approximately Poisson or normal in the
standard regimes. Finally, as mentioned previously, we
are assuming that we have chosen shifts appropriately,
so that each bucket receives items passed from 2ℓ buck-
ets in the previous level, and there is no dependence.
(See Figure 2.)

Interestingly, the above analysis can be made to hold
even in the case of deletions. It is not clear that it would
be natural under any deletion scheme for the item kept
in a bucket to be chosen randomly from the items
hashed to the bucket. However, one could imagine a
somewhat impractical algorithm which kept this invari-
ant after any insertion or deletion; as a newly inserted or
deleted item only affects the load of a constant number
of buckets, such a scheme might not even be completely
impractical, as updates would take only constant time
and a constant number of move operations (although
these constants can be quite high, exponential in the
number of levels). We call the scheme where, at each
step, each bucket keeps a random item and passed down
all others the Random scheme. Our analysis above
allows us to compute steady-state quantities for the
Random scheme. (The maximum over extended time
periods would have to be considered via simulation, as
there would be dependence between time steps.)

A more sophisticated scheme, which we call Greedy,
is to keep not a random item for each bucket, but
instead keep an item that balances as much as possible
the items distributed to the next level. That is, if a
bucket gets six items, with four mapped to bucketA
at the next level and two to bucketB, it makes sense
to store one destined to bucketA. (It might not be best
in any particular instance, but statistically it is the right
approach.) We can analyze this scheme numerically as
well, using the same approach. Indeed, we can similarly

TABLE II

NUMERICAL RESULTS FOR SCHEMES WITH LIMITED HASH

FUNCTIONS.

Items Hash Average
(Level 0 Functions Stash

Scheme Table Size) (items)
Random 8192 6 0.618
Random 16384 6 1.236
Random 32768 6 2.470
Greedy 8192 6 0.0455
Greedy 16384 6 0.0908
Greedy 32768 6 0.1815

analyze any scheme where the item to be kept at the
bucket at each level depends only on the items at the
bucket at that level, and not on happenings at future
lower levels. Our assumption is that the Greedy scheme,
and indeed even the Random scheme, have performance
significantly better than one could hope to expect from
schemes used in practice. While this assumption is
admittedly unproven, we do not expect a better online
scheme.

The results from Table II give the expected size of
the stash after using six levels. Even the optimistic
Greedy version of this approach, which in theory allows
multiple moves on any insert or delete operation and
potentially requires examining a considerable number
of buckets for an item to move, has a higher average
stash size than using just the Second Chance scheme
of [3] on insertions, as can be seen by comparing
with Table I. While the optimistic scheme potentially
performs better than schemes that only use moves on
deletions, we believe it is clear that the hint-based
approach combined with the Second Chance scheme or,
when hints might be problematic, just using the Second
Chance scheme, provide better performance.

V. CONCLUSIONS

Extending the direction taken in [3], we have con-
sidered multilevel hash tables that move items on either
an insertion or a deletion. Moving items on a deletion
is harder than on an insertion, since one needs a
mechanism to find an appropriate item to move into
the empty location. Also, such schemes do not appear
generally amenable to standard analysis techniques, and
for many of them, analysis remains open.

With these caveats, we have found experimentally
that using hints to locate possible items to move on
a deletion is a reasonable approach that can save
space or reduce the number of hash functions used
in such schemes. Schemes that allow even just one

additional item to move on an insertion and deletion
gain substantially over schemes with no moves, or
previous schemes that move only on insertion.

An alternative approach based on using highly re-
stricted hash functions, suggested by the work of [7],
appears less effective. Here our analysis of a very op-
timistic scheme shows performance will be worse than
even the easily implemented Second Chance scheme
that moves items only on insertions.

As an open question, we note that cuckoo hashing
schemes generally do not perform moves on deletions,
only on insertions [10]. While moves on deletions
would not appear capable of changing the asymptotic
characteristics of the cost of insertion operations, it
is interesting to consider whether moves on deletions
could improve practical performance significantly.

REFERENCES

[1] A. Broder and A. Karlin. Multilevel Adaptive Hashing. In
Proceedings of the 1st ACM-SIAM Symposium on Discrete
Algorithms(SODA), pp. 43-53, 1990.

[2] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier
Filter: An Efficient Data Structure for Static Support Lookup
Tables. InProceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms(SODA), pp. 30-39, 2004.

[3] A. Kirsch and M. Mitzenmacher. The Power of One Move:
Hashing Schemes for Hardware. InProceedings of the 27th
IEEE International Conference on Computer Communications
(INFOCOM), 2008.

[4] A. Kirsch and M. Mitzenmacher. Simple Summaries for Hash-
ing with Choices.IEEE/ACM Transactions on Networking,
16(1):218-231, 2008.

[5] A. Kirsch and M. Mitzenmacher. Using a Queue to De-
amortize Cuckoo Hashing in Hardware. InProceedings of the
Forty-Fifth Annual Allerton Conference on Communication,
Control, and Computing, 2007.

[6] A. Kirsch, M. Mitzenmacher, and U. Wieder. More Robust
Hashing: Cuckoo Hashing with a Stash. To appear inProceed-
ings of the 16th Annual European Symposium on Algorithms,
2008.

[7] S. Kumar, J. Turner, and P. Crowley. Peacock Hash: Fast
and Updatable Hashing for High Performance Packet Pro-
cessing Algorithms. InProceedings of the 27th IEEE Inter-
national Conference on Computer Communications(INFO-
COM), 2008.

[8] M. Mitzenmacher, A. Richa, and R. Sitaraman. The Power
of Two Choices: A Survey of Techniques and Results. In
Handbook of Randomized Computing, edited by P. Pardalos,
S. Rajasekaran, J. Reif, and J. Rolim. Kluwer Academic
Publishers, Norwell, MA, 2001, pp. 255-312.

[9] M. Mitzenmacher and S. Vadhan. Why Simple Hash Func-
tions Work: Exploiting the Entropy in a Data Stream. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms(SODA), pp. 746-755, 2008.

[10] R. Pagh and F. Rodler. Cuckoo Hashing.Journal of Algo-
rithms, 51(2):122-144, 2004.

[11] B. Vöcking. How Asymmetry Helps Load Balancing.Journal
of the ACM, 50(4):568-589, 2003.

