
Designing Floating Codes for Expected Performance

Hilary Finucane Zhenming Liu∗ Michael Mitzenmacher∗
School of Engineering and Applied Sciences

Harvard University

Abstract— Floating codes are codes designed to store
multiple values in a Write Asymmetric Memory, with
applications to flash memory. In this model, a memory
consists of a block ofn cells, with each cell in one ofq
states{0,1, . . . ,q−1}. The cells are used to representk
variable values from an ℓ-ary alphabet. Cells can move
from lower values to higher values easily, but moving
any cell from a higher value to a lower value requires
first resetting the entire block to an all 0 state. Reset
operations are to be avoided; generally a block can only
experience a large but finite number of resets before
wearing out entirely. A code here corresponds to mapping
from cell states to variable values, and a transition
function that gives how to rewrite cell states when a
variable is changed.

Previous work has focused on the developing codes that
maximize the worst-case number of variable changes, or
equivalently cell rewrites, that can be experienced before
resetting. In this paper, we introduce the problem of max-
imizing the expected number of variable changes before
resetting, given an underlying Markov chain that models
variable changes. We demonstrate that codes designed
for expected performance can differ substantially from
optimal worst-case codes, and suggest constructions for
some simple cases.

I. INTRODUCTION

A long-standing albeit not widely studied subfield of
coding theory involves data storage in a setting where
the stored information can change state in only limited
ways. The seminal and perhaps canonical example
is the write-once memory introduced by Rivest and
Shamir [16]. Motivated primarily by the potential of
digital optical disks, the authors consider the setting
of write-once bit positions, which they dubwits. (The
name, apparently, has not lasted the test of time.) Each
wit initially contains a 0 that may subsequently be
rewritten as a 1, but such a write is irreversible; a 1
cannot later be changed back to a 0. Paper punch cards

∗ Zhenming Liu and Michael Mitzenmacher are sup-
ported in part by NSF grant CCF-0634923. Contact author:
michaelm@eecs.harvard.edu.

provide a useful example of wits; once a position is
punched, it cannot be reset.

If permanent storage is required, a medium of wits is
quite useful, but if rewriting of information is required,
this irreversibility is problematic. Rivest and Shamir
therefore consider the question of how many wits are
required to allowt rewrites of ak-bit value. By care-
fully choosing how wits can be used to represent values,
they are able to design schemes that do significantly
better than the naı̈ve scheme usingkt wits.

A variety of related models have been considered
over the years; see, for example, [1], [3], [4], [5],
[6], [7], [9], [10], [11], [12], [13], [14], [17], [18].
Questions regarding coding schemes of this type have
resurfaced in recent years with the introduction of
flash memories, which work under similar principles
[12]. A flash memory utilizes floating-gate cells, which
can be modeled as havingq states{0,1,2, . . . ,q−1}.
Roughly speaking, the states correspond to the number
of electrons being held by the cell. Adding electrons
to a cell is easy, but removing electrons from a cell is
difficult. In our model, that means it is easy to move a
cell from a lower-numbered state to a higher-numbered
one, but not the other way around. Indeed, cells are
generally organized into blocks, and in order to lower a
state value within a cell, one must reset an entire block
back to the all 0 state. Resetting blocks is considered
very expensive, first because the rewriting time when
resetting a block is large, but perhaps more importantly
because the lifetime of a flash memory generally only
allows a large but essentially fixed number of reset
operations before the memory is no longer usable [2].

Previous work, including recent work on codes for
flash memories, has focused on the problem of maxi-
mizing the number of rewrite operations before a reset
operation is requiredin the worst case. Codes for this
setting were dubbed floating codes [12]. Worst-case
analysis is certainly a natural approach, particularly in
settings where no resets are possible, and there is a
need for fixed guarantees on rewrite performance in
unknown environments. We suggest, however, that in



the setting of flash memories, where the product will be
mass-produced, the product lifetime may allow a large
number of reset operations, and there is the potential to
study and model user behavior,statistical performance
guarantees are more appropriate. The idea of average-
case performance of codes of codes in this setting is not
new; it is explicitly mentioned by Rivest and Shamir as
an open question [16]. (Also, see different notions of
average-case analysis in [1], [14].) As far as we know,
however, our work actually initiates the study of the
expected performance of floating codes.

Our primary contribution is a general model of the
underlying problem of average-case performance of
floating codes. Then, following the approach of [12],
we consider particular possible implementations for
specific parameter settings. At this point our work
appears to raise more questions than it answers, leaving
a variety of challenging open problems to consider.

II. A GENERAL MODEL FOR AVERAGE-CASE
PERFORMANCE OF FLOATING CODES

We begin by reviewing the model for and definitions
of floating codes given in [12]. The memory storesk
variable values from anℓ-ary alphabet, given by the
variable vector(v1,v2, . . . ,vk) with vi ∈ {0,1, . . . , ℓ−1}.
The memory consists of a block ofn cells, repre-
sented by a cell state vector(c1,c2, . . . ,cn) with ci ∈
{0,1, . . . ,q− 1}. A cell state vector(c1,c2, . . . ,cn) is
said to beabove a cell state vector(d1,d2, . . . ,dn) if
ci ≥ di for all i. Abusing notation, we well writex ≥ y
if x andy are cell state vectors such thatx is abovey,
andx � y if x is not abovey. (We avoid vector notation
where the meaning is clear.) For a cell state vectorx
to change another statey with y � x, the memory must
first be reset. Ify ≥ x, no reset is needed.

A floating code is defined by two functions. The de-
coding functionD : {0,1, . . . ,q−1}n →{0,1, . . . , ℓ−
1}k maps cell state vectors to variable vectors, and is
used to decode the memory, transforming its current
contents to the current variable values. The rewrit-
ing function R : {0,1, . . . ,q − 1}n × {1, . . . ,k} ×
{0,1, . . . , ℓ−1} → {0,1, . . . ,q−1}n gives information
on how to transition when a single variable value
changes; given a current cell state vector, a variable
value to be changed, and the value that variable is
changed to, the functionR gives a new corresponding
cell state vector. The restriction onR is that the current
cell state vector must always decode viaD to the
current variable vector. Here when a rewrite causes a
transition fromx to y with y � x, the cost is 1 due to a

reset; otherwise, the cost is 0.
The goal of [12] is to find decoding and rewriting

functions that maximize (starting from the all-zero vec-
tor) the number of rewrites before a resetin the worst
case. We here consider a different goal. We assume that
there is a Markov chain with state space{0,1, . . . , ℓ−
1}k describing the behavior of the variable vector. For
the most part we will follow [12] and assume that in
only one variable changes at each time step, although
more general Markov chains and rewriting functions
can be considered. Given a decoding functionD and
rewriting functionR, the Markov chain on the variable
vector induces a corresponding Markov chain on the
cell state vector. Let the equilibrium distribution of this
chain be given byπx, and letpxy be the probability of
transitioning to state vectory when in a state vectorx.
Then using standard theory, the average long-term cost
per variable change is given by

A = ∑
y�x

πx pxy. (1)

Also, by standard renewal theory 1/A can be considered
the long-term average time between reset operations.
Our goal is to find functionsD and R that minimize
this costA.

We emphasize that the above model can obviously
be generalized in many directions, in manners similar
to other proposed generalizations of simple write-only
memories. We may have arbitrary alphabetsV for
the variables andS for the states, with an arbitrary
stochastic process onV k inducing corresponding pro-
cesses onS n, given the rewriting transition function.
The rewriting function could allow multiple variables
to change at once, taking the formR : {0,1, . . . ,q−
1}n × {0,1, . . . , ℓ− 1}k → {0,1, . . . ,q − 1}n, mapping
the current cell state and a new value vector to a new
cell state. There may be rules that a priori limit the
transitions possible under the functionR. There may
be costs associated with all possible transitions (and/or
all possible state vectors), and more general functions
of these costs could be optimized. There may be history
associated with either the variable state or the cell state,
which could be incorporated into the decoding and
rewriting functions. Many other generalizations can be
imagined.

Indeed, we see the full generality of this coding prob-
lem as having potential applications beyond coding the-
ory. Notice that, given the decoding functionD, we can
view the rewriting functionR as a policy for a Markov
decision process on the cell state vector, where the



possible actions at a state correspond to the collection
of transitions to be made for each possible state change.
Hence, underlying this problem is the question of how
to design an underlying Markov decision process in
the setting where we have an environment (the variable
process) and we wish to minimize some function on the
induced Markov decision process (the average cost per
transition of the cell state process), where we have the
ability to design the Markov decision process according
to certain rules (in this case, the rules are that decoding
is always successful). We are not aware of this specific
problem in previous literature, and although we have no
complexity results, we conjecture that many variations
of this more general problem are at least NP-hard. (For
a related NP-hardness result, see [5].)

III. THE CASE OF k = 2, ℓ = 2

A. The case of k = 2, ℓ = 2, n = 2

We begin with the case wherek = 2, ℓ = 2, andn = 2.
That is, our value vector consists of two bits, and our
states consist of two values in{0, . . . ,q−1}. Optimal
codes under worst case analysis for these codes were
described in [12]; they guarantee(q − 1) + ⌊q−1

2 ⌋ ≈
3
2(q− 1) transitions before a reset. Here we consider
asymptotically optimal codes (asq grows large) for
the average case, under the simple but natural model
where the first of the two value bits is the next to flip
with fixed probability p and the second is the next to
flip with probability 1− p throughout the process. By
asymptotically optimal, we mean that whenk = ℓ = 2
and n is fixed, the expected number of moves before
a reset grows liken(q− 1)− o(q). (Indeed, we show
this is the number of moves with high probability, with
respect to the parameterq.) While it is perhaps not
surprising that one could find an asymptotically optimal
code for a givenp, we show that in fact there exist
codes that are simultaneously asymptotically optimal
for every p, 0< p < 1.

Our code systems are based onGray codes [8].
While we will give codes for all values ofn, we begin
with the important case ofn = 2. We represent our code
pictorially, for the case ofq = 4, as follows (Figure 1).

The upper left hand corner represents the decoded
value for the cell state(0,0); it is written as 00,
representing that both value bits are 0. More generally,
the value in theith row and jth column (counting from
0) represents the value vector underD for the cell state
vector (i, j). Hence, for example, the decoded value
for cell state(2,1) is 10 (first bit 1, second bit 0).
The rewriting function is implicit; from each cell, one

00 01 11 10
10 00 01 11
11 10 00 01
01 11 10 00

Fig. 1. The code, or the 2DGC, fork = 2, ℓ = 2, n = 2, q = 4.
The upper left corner represents the decoded value vector for cell
(0,0); the lower right corner represents the decoded value vector
for cell (3,3). Transitions are greedy, to the closest available cell
decoding to the appropriate value.

moves to the closest available cell (generally one space
down or to the right) that decodes to the proper new
value, and a reset occurs only if no move is possible
in the down and rightward direction. Note that on a
reset, one starts the next cycle in one of four positions:
(0,0),(0,1),(1,0) or (2,0).

For larger values ofq, we simply cycle through the
Gray code values repeatedly. For example, the code
whenq = 8 is given in (Figure 2).

00 01 11 10 00 01 11 10
10 00 01 11 10 00 01 11
11 10 00 01 11 10 00 01
01 11 10 00 01 11 10 00
00 01 11 10 00 01 11 10
10 00 01 11 10 00 01 11
11 10 00 01 11 10 00 01
01 11 10 00 01 11 10 00

Fig. 2. Code fork = 2, ℓ = 2, n = 2, q = 8.

We call these 2-dimensional Gray Codes, or a 2DGC
for short. As we shall see, the 2DGC is not optimal, but
it is asymptotically optimal, simultaneously for every
value of p, in the following sense.

Theorem 1: For any p, the number of transitions
before a reset for the 2DGC is 2(q− 1)− o(q) with
high probability (inq).

Proof: Let us say that a cell(x,y) is even if
x + y is even and odd ifx + y is odd. At any point
away from the right boundary, from an even cell one
move downs (respectively right) when the first bit
(respectively second bit) flips, and vice versa for the
odd cells. Consider the first 2q− 2q2/3 steps, which
are necessarily split as evenly as possible between the
even and odd cells; for convenience we say there are
q−q2/3 moves each at even and odd cells, as rounding
and differences by 1 are absorbed in theo(q) term. For
the moves in even cells, the expected number of down
moves isp(q− q2/3), and similarly, for odd cells, the



expected number of down moves is(1− p)(q− q2/3).
As each move is an independent trial (as long as neither
boundary is hit), it follows from standard Chernoff
bounds [15][Theorem 4.4] that the number of down
moves (and similarly right moves) is at mostq−3 with
high probability (larger than 1−1/poly(q)), and hence
regardless of the starting position after the last reset
with high probability the number of transitions before
a reset is 2q−o(q).

It should be noted that our assumption regarding the
underlying model is particularly important. If the two
bits alternate flipping, then the number of transitions
before a reset will be much less than 2q, as a boundary
will be reached in onlyq steps.

B. The case of k = 2, ℓ = 2, n > 2

To obtain similar results whenn > 2, we first note
that for even values ofn, we can simply successively
glue together then = 2 result multiple times. That is,
one first moves for 2(q−1)−o(q) transitions in the first
two dimensions, then for 2(q−1)−o(q) transitions in
the next two dimensions, and so on, to obtain a total
of n(q− 1)− o(nq) transitions with high probability.
(With care, one could obviously tighten the lower order
term; we do not pursue this here.) It similarly suffices
to demonstrate a code for the casen = 3 that allows
3(q−1)+o(q) moves with high probability to obtain a
similar result for oddn. To compare with worst-case
results, we note that [12] shows optimal codes that
ensure(n−1)(q−1)+⌊q−1

2 ⌋ transitions before a reset
whenk = ℓ = 2.

We again utilize a construction based on Gray codes,
although some care must be taken to handle the third
dimension properly. We again represent the code pic-
torially, with the value in theith row and jth column
from thekth square representing the value vector under
D for the cell state vector(i, j,k). An example for
q = 4 is given in Figure 3, and forq > 4 the code
is again obtained by cycling through the Gray code
values repeatedly in each two-dimensional square. Note
that the cell state vectors for a giveni and j are the
same for all even values ofk, and the same for all
odd values ofk. As an example, the decoded value for
cell state(2,1,1) is 11. This gives us a 3-dimensional
Gray Codes (3DGC). For the 3DGC, there is some
ambiguity, as a single transition of a value can lead
to multiple cells of distance 1 from the current cell in
the 3DGC. We resolve this ambiguity by having our
rewriting function, from each cell, move to the closest
available cell that decodes to the proper new value,

with priority toward movingup in the third dimension.
That is, from cell state(x,y,z), when possible our move
increases thez value by 1. (Noteup anddown are not
opposites here.)

00 01 11 10
10 00 01 11
11 10 00 01
01 11 10 00

10 00 01 11
11 10 00 01
01 11 10 00
00 01 11 10

00 01 11 10
10 00 01 11
11 10 00 01
01 11 10 00

10 00 01 11
11 10 00 01
01 11 10 00
00 01 11 10

Fig. 3. The code, or the 3DGC, fork = 2, ℓ = 2, n = 3, q = 4. The
upper left corner in the first square represents the decoded value
vector for cell (0,0,0); the lower right corner in the last square
represents the decoded value vector for cell(3,3,3). Transitions
are greedy, breaking ties by increasing thez coordinate.

Theorem 2: For any p, the number of transitions
before a reset for the 3DGC is 3(q− 1)− o(q) with
high probability (inq).

Proof: For a cell(x,y,z), we say that it isz-even if
thez coordinate is even and that it isxy-even if the sum
x+y is even, and similarly forz-odd andxy-odd. With
the given code, the moves can be classified according
to four cell types (away from the boundaries):

• xy-even andz-even: move up with probabilityp
and right with probability 1− p;

• xy-even andz-odd: move up with probabilityp and
down with probability 1− p;

• xy-odd andz-even: move up with probability 1− p
and right with probabilityp;

• xy-odd andz-odd: move up with probability 1− p
and down with probabilityp.

We first note that, away from the top boundaryz =
q−1, the probability that we fail to move up in at least
one of the next two moves it at mostp(1− p) ≤ 1/4.
It follows easily that, as long as we don’t hit one of



the boundaries in thex or y dimension, the number
of up moves after any reset over the next 3(q−1)−
3q2/3 transitions will beq−1 with high probability for
sufficiently largeq.

We now want to show that the number of down and
right moves until we reachz = q−1 are essentially split
equally. This ensures we do not hit another boundary
beforez = q−1, and since when we reachz = q−1 we
will be in the same setting as the 2DGC, it also implies
that 2q−o(q) down and right moves are performed with
high probability.

There is a minor complication in that the number
of moves spent on a levelz = a before moving up to
z = a+1 depends on whether we start at that level on
an xy-even orxy-odd cell, which in turn depends on
the value ofa and the starting point after the last reset.
However, the probability of starting at anxy-even cell
after moving up quickly converges to it equilibrium
value (which isp) after a small number of levels, and
so we may ignore this complication, as the difference
is absorbed into theo(q) term. Given that we start at an
xy-even cell, and are away from any of the boundaries,
the probability that we stay at the same levelz for k
moves (always moving right when starting at az-even
cell, and down for az-odd cell) is the same for every
value of z, and is further dominated by a geometric
distribution. The same holds forxy-odd cells. Standard
applications of Chernoff bounds therefore again give
with high probability the deviation between down and
right moves over the first 3(q−1)−3q2/3 moves iso(q)
with high probability, and the result follows.

We emphasize that for any specific value ofq, Theo-
rem 2 does not state that the 3DGC is the optimal code.
Indeed, Gray codes can be layered in different ways to
obtain possible codes, and the parameters in any given
circumstance might determine which performs best.

C. Calculations and comparisons

We now present some results based on calculating
the performance of our codes in Table I. We com-
pare three different codes, in the setting wherek =
ℓ = n = 2. First, we consider the 2-dimensional Gray
Code (2DGC) previously described. We also consider
a modified version, 2DGC+, described below. Finally,
we consider the worst-case optimal code (2DWC),
from [12]. The resulting average long-term costs, cor-
responding to equation (1), are obtained by running
the appropriate Markov chain for 100,000,000 steps.
(While we could have instead determined the values
by explicitly computing the equilibrium distribution for

each chain, we found it useful to develop a simulator
in the process of our work.) We varyp across a
range of values, and present the corresponding costs
(to four decimal places). We also similarly consider the
3-dimensional Gray Code (3DGC) and the worst-case
optimal code for three dimensions (3DWC).

A simple but useful improvement on the 2DGC,
especially whenq is small, is to change the lower-
right corner to 11 from 00, as in Figure 4. This change
improves the average cost because if the process is at 00
on the lower-right corner, the next transition will cause
a reset to the upper leftmost 01 or 10 position. However,
the process would transition to the same position when
starting from the 00 in the upper left corner. Hence,
when the process reaches the cell 00 in the lower
right hand corner, it saves nothing over resetting to the
upper left corner, since the next move will lead to the
same position. The cost is therefore reduced by instead
using the cell to hold value pair 11, which can usefully
prevent a reset for one further move on some occasions.

As can be seen from Table I, the 2DGC almost
always performs better than the worst-case code, the
exceptions being some cases whereq = 4 . This is
perhaps not surprising, in that the worst-case code was
designed with a different consideration in mind. Our
main point, however, it that it is interesting that a single
code outperforms this code over the entire range of
p. The 2DGC+ variation performs even slightly better
than the 2DGC, although the gap quickly vanishes with
q, as one would expect. The additive gap between
the worst-case code and both the 2DGC and 2DGC+
also declines withq, but the multiplicative gap actually
appears to increase. That is, assuming that the lifetime
is dominated by the time between reset operations and
that our model is suitable, the percentage increase in
lifetime by using 2DGC or 2DGC+ as the underlying
code is increasing withq.

00 01 11 10
10 00 01 11
11 10 00 01
01 11 10 11

Fig. 4. The 2DGC+. Changing the lower right corner gives a
slight improvement.

Similar results are obtained with the 3DGC, also
presented in Table I. Again, we see significant im-
provements over the worst case code across the entire
range of p. Hence, while our results for these codes
are asymptotic, and they may in fact not be optimal,



TABLE I

AVERAGE LONG-TERM COST(RESETS/MOVES) OF VARIOUS FLOATING CODES ASp VARIES.

Scheme 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2DWC (q = 4) 0.2088 0.2104 0.2134 0.2175 0.2222 0.2273 0.2324 0.2379 0.2438
2DGC (q = 4) 0.2119 0.2146 0.2165 0.2176 0.2180 0.2175 0.2164 0.2146 0.2120

2DGC+ (q = 4) 0.1763 0.1831 0.1874 0.1897 0.1905 0.1898 0.1874 0.1831 0.1763
2DWC (q = 8) 0.0919 0.0926 0.0935 0.0944 0.0952 0.0962 0.0971 0.0980 0.1000
2DGC (q = 8) 0.0797 0.0811 0.0820 0.0825 0.0827 0.0826 0.0820 0.0811 0.0797

2DGC+ (q = 8) 0.0753 0.0771 0.0780 0.0785 0.0787 0.0786 0.0780 0.0771 0.0753
2DWC (q = 12) 0.0592 0.0595 0.0599 0.0602 0.0606 0.0610 0.0613 0.0617 0.0625
2DGC (q = 12) 0.0491 0.0499 0.0504 0.0506 0.0507 0.0506 0.0504 0.0499 0.0491

2DGC+ (q = 12) 0.0476 0.0484 0.0489 0.0492 0.0492 0.0491 0.0489 0.0484 0.0476
3DWC (q = 4) 0.1460 0.1466 0.1473 0.1480 0.1481 0.1479 0.1474 0.1466 0.1460
3DGC (q = 4) 0.1287 0.1310 0.1326 0.1334 0.1333 0.1322 0.1300 0.1273 0.1243
3DWC (q = 8) 0.0596 0.0601 0.0607 0.0611 0.0615 0.0619 0.0622 0.0625 0.0629
3DGC (q = 8) 0.0514 0.0521 0.0526 0.0528 0.0528 0.0525 0.0521 0.0514 0.0505

3DWC (q = 12) 0.0374 0.0378 0.0382 0.0385 0.0388 0.0391 0.0394 0.0397 0.0400
3DGC (q = 12) 0.0321 0.0324 0.0327 0.0328 0.0328 0.0327 0.0325 0.0322 0.0317

the principle behind their design yields demonstrably
better performance over worst-case codes given our
assumptions.

Finally, while this feature may not matter dramati-
cally in practice, we believe the simplicity of 2DGC+
and 3DGC are clear advantages.

IV. THE CASE OF k = 3, ℓ = 2, n = 2

000 100 101 001 011 111 110 010
010 000 100 101 001 011 111 110
110 010 000 100 101 001 011 111
111 110 010 000 100 101 001 011
011 111 110 010 000 100 101 001
001 011 111 110 010 000 100 101
101 001 011 111 110 010 000 100
100 101 001 011 111 110 010 000

Fig. 5. The basic building block for the 2DGC-3, wherek = 3
and l = 2

While more general results for expected performance
of floating codes rate to be more challenging, the use
of Gray codes may be useful beyond the cases we have
considered thus far. We here show how to utilize Gray
codes to obtain a code that seems to perform well for
the case ofk = 3, ℓ = 2, n = 2. Our model for the
three bits of data is that at each time step the first
is the next to change with probabilityp1, the second
with probability p2, and the third with probabilityp3.
We again consider the asymptotic behavior asq grows
large, where our decoding function forq = 8 is given by
Figure 5 and for largerq is obtained by cycling in each
dimension. Also, the transition function (described in

more detail below) is the standard move to the nearest
suitable cell. Notice that now, by necessity, we can
not arrange to move only to an adjacent cell on a
transition; with our Gray code design, some transitions
require moving three cells down or to the right. For
convenience, we refer to this code as 2DGC-3. By
classifying these transitions, we obtain the following
result:

Theorem 3: The number of transitions before a reset
for the 2DGC-3 is 2(q−1)/(2− p1)−o(q) with high
probability (in q).

Proof: Upon examination, away from the bound-
aries, there are four types of cell states that for conve-
nience we label asW,X ,Y, andZ.

• W : move right 1 when first bit flips, down 1 when
second bit flips, right 3 when third bit flips;

• X : move down 1 when first bit flips, down 3 when
second bit flips, right 1 when third bit flips;

• Y : move right 1 when first bit flips, right 3 when
second bit flips, down 1 when third bit flips;

• Z: move down 1 when first bit flips, right 1 when
second bit flips, down 3 when third bit flips.

The 2DGC-3 code consists of repeated blocks of the
form given in Figure 6.

W X Y Z
Z W X Y
Y Z W X
X Y Z W .

Fig. 6. An alternative view of the the basic building block for the
2DGC-3.

ConsiderW,X ,Y, andZ as states of a Markov chain.



Then the Markov process on how value bits change
induces the following Markov chain on these four
states:

• W : moves toX with probability p1, moves toZ
with probability (1− p1);

• X : moves toW with probability p1, moves toY
with probability (1− p1);

• Y : moves toZ with probability p1, moves toX
with probability (1− p1);

• Z: moves toY with probability p1, moves toW
with probability (1− p1).

A straightforward analysis gives that, for any constant
c, over the first c(q − 1) − q2/3 transitions after a
reset, regardless of the initial starting point, with high
probabilityc(q−1)/2+o(q2/3) of the steps are spent in
each of the statesW,X ,Y andZ as long as no boundary
is reached. Following the same reasoning as in Theo-
rem 1, the expected number of total spaces moved down
or to the right in the firstc(q− 1)− q2/3 transitions
is c(2− p1)(q−1)/2− o(q) with high probability (in
q). Choosingc = 2/(2− p1), we obtain that we avoid
the boundary and a reset for 2(q−1)/(2− p1)− o(q)
transitions with high probability.

Similar analyses can be performed for larger values
of k; however, we do not have a proof that such codes
are asymptotically optimal fork > 2, as we do not at
this point have an upper bound.

As with the standard 2DGC, one can possibly im-
prove the performance slightly in practice by changing
values along the boundary. For example, changing the
lower right corner from 000 to 110 will give slightly
better performance.

An interesting consideration brought on by this result
is the idea that we could want multiple codes; here, we
could have three similar but distinct codes, with the
ith code taking 2(q−1)/(2− pi)−o(q) transitions with
high probability. We could then dynamically choose the
code based on recent behavior, so that if the relative
frequency of each bit flipping changes, our code could,
after a reset, conceivably change with it.

V. CONCLUSIONS

We have argued for the study of average-case per-
formance of floating codes, suggesting a general model
and refining it in order to obtain some specific initial
results. We have found simple, asymptotically optimal
codes for storing two bit values under the model that
the first bit is the next to flip with probabilityp. We
have also found that Gray codes provide a potentially
useful building block in the design of such codes,

combining simplicity with strong performance. Our
initial work suggests that designing floating codes for
expected performance is a potentially feasible approach
that could improve practical performance.

We conclude with a large number of open questions.

• Are there versions of the code optimization prob-
lem we have described that are NP-hard or harder?

• Can one find efficient approaches to find opti-
mal floating codes for expected performance? Or
approaches that are at least efficient for small
parameters?

• Our Gray code constructions are vulnerable to
patterned sequences of bit changes. Can we mod-
ify our codes to avoid this problem with little
additional cost?

• Can we find expressions for lower bounds on the
cost as a function ofk, ℓ, n, and the Markov chain
on the value variables? Can we find specific lower
bounds for the Markov chain where theith bit is
the next to flip with probabilitypi?

• Under what circumstances is there wasted space,
in the sense that there are cell state vectors that are
never reached in the optimal solution? Are there
other possible utilizations for such cell states?

• What gains are possible considering small families
of codes, instead of single codes, where one of the
codes from the family can be chosen each time a
reset occurs?

• Can we find constructions for larger values of the
parametersk, ℓ, andn?

• What results can we obtained for expected per-
formance in similar settings using error-correction
[11] or buffer coding [3].

REFERENCES

[1] R. Ahlswede and Z. Zhang, “Coding for write-efficient mem-
ory,” Information and Computation, pp. 80-97, 1989.

[2] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti,
“Introduction to flash memory,”Proceedings of the IEEE,
91(4):489-502, 2003.

[3] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for
asymmetric multi-level memory,” inProc. IEEE International
Symposium on Information Theory, pp. 1186-1190, 2007.

[4] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes
for multi-level flash memories: correcting asymmetric limited-
magnitude errros,” inProc. IEEE International Symposium on
Information Theory, pp. 1176-1180, 2007.

[5] A. Fiat and A. Shamir, “Generalized ’write-once’ memories,”
IEEE Transactions on Information Theory, vol. IT-30, pp.
470-480, 1984.

[6] F. Fu and A. J. Han Vinck, “On the capacity of general-
ized write-once memory with state transitions described by
an arbitrary directed acyclic graph,”IEEE Transactions on
Information Theory, vol. 45, no. 1, pp. 308-313, 1999.



[7] F. Fu and R. W. Yeung, “On the capacity and error-correcting
codes of write-efficient memories,”IEEE Transactions on
Information Theory, vol. 46, no. 7, pp. 2299-2314, 2000.

[8] F. Gray. “Pulse code communications,” U.S. Patent 2632058,
March 1953.

[9] C. Heegard, “On the capacity of permanent memory,”IEEE
Transactions on Information Theory, vol. IT-31, pp. 34-42,
1985.

[10] C. Heegard and A. El Gamal, “On the capacity of computer
memory with defects,”IEEE Transactions on Information
Theory, vol. IT-29, pp. 731-739, 1983.

[11] A. Jiang, “On the generalization of error-correcting WOM
codes,” inProc. IEEE International Symposium on Informa-
tion Theory, pp. 1391-1395, 2007.

[12] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for
joint information storage in write asymmetric memories,” in
Proc. IEEE International Symposium on Information Theory,
pp. 1166-1170, 2007.

[13] A. Jiang and J. Bruck, “Joint coding for flash memory stor-

age,” Technical Report (CaltechParadise, ETR087), 2008. To
appear inProc. IEEE International Symposium on Information
Theory, 2008.

[14] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank
modulation for flash memories,” Technical Report (Caltech-
Paradise, ETR086), 2008. To appear inProc. IEEE Interna-
tional Symposium on Information Theory, 2008.

[15] M. Mitzenmacher and E. Upfal,Probability and Computing:
Randomized Algorithms and Probabilistic Analysis, Cam-
bridge University Press, Cambridge, UK, 2005.

[16] R. L. Rivest and A. Shamir, “How to reuse a ’write-once”
memory,” Information and Control, vol. 55, pp. 227-231,
1984.

[17] G. Simonyi, “On write-unidirectional memory codes,”IEEE
Transactions on Information Theory, vol. 35, no.3, pp. 663-
669, 1989.

[18] J. K. Wolf, A.D. Wyner, J. Ziv, and J. Korner, “Coding for
a write-once memory,”,AT& T Bell Laboratories Technical
Journal, vol. 63, no. 6, pp. 1089-1112, 1984.


