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Abstract. The purpose of this brief note is to describe recent work in
the area of cuckoo hashing, including a clear description of several open
problems, with the hope of spurring further research.

1 Introduction

Hash-based data structures and algorithms are currently a booming industry in
the Internet, particularly for applications related to measurement, monitoring,
and security. Hash tables and related structures, such as Bloom filters and their
derivatives, are used billions of times a day, and new uses keep proliferating.
Indeed, one of the most remarkable trends of the last five years has been the
growing prevalence of hash-based algorithms and data structures in networking
and other areas. At the same time, the field of hashing, which has enjoyed a long
and rich history in computer science (see e.g., [26]), has also enjoyed something
of a theoretical renaissance. Arguably, this burst of activity began with the
demonstration of the power of multiple choices: by giving each item multiple
possible hash locations, and storing it in the least loaded, remarkably balanced
loads can be obtained, yielding quite efficient lookup schemes [4, 7, 21, 28, 35]. An
extension of this idea, cuckoo hashing, further allows items to be moved among
its multiple choices to better avoid collisions, improving memory utilization even
further.

In this brief note I plan to describe some recent work in the area of cuckoo
hashing, providing some focus on several remaining open problems, with the
hope of spurring further research. The presentation may admittedly be some-
what biased, focusing on my own recent research in the area; this is hopefully
excused by the fact that this note is written in conjunction with an invited talk
for the 2009 ESA conference in Denmark. The topic seems apropos; the paper
introducing cuckoo hashing by Pagh and Rodler appeared in the 2001 ESA con-
ference, also held in Denmark! [31, 32] Also for this reason, the focus here will
be primarily on theoretical results and problems. There is of course also recently
a great deal of interesting work in hashing combining theory and practice, as
detailed for example in the survey [25].
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2 Background : Multiple-choice Hashing and Cuckoo

Hashing

The key result behind multiple choice hashing was presented in a seminal work
by Azar, Broder, Karlin, and Upfal [4], who showed the following: suppose that n
items1 are hashed sequentially into n buckets by hashing each item d times to ob-
tain d choices of a bucket for each item, and placing each item in the choice with
the smallest current number of items (or load). When d = 1, which is standard
hashing, then the maximum load grows like (1+o(1))) log n/ log log n) with high
probability [20]; when d ≥ 2, the maximum load grows like log log n/ log d+O(1)
with high probability, which even for 2 choices gives a maximum load of 6 in
most practical scenarios. The upshot is that by giving items just a small amount
of choice in where they are placed, the maximum load can be greatly reduced;
the cost is that now d locations have to be checked when trying to look up the
item, which is usually a small price to pay in systems where the d locations can
be looked up in parallel. A variant later introduced by Vöcking [35], that we refer
to as d-left hashing, both gives slightly improved performance and is particularly
amenable to parallelization. The hash table is split into d equal-sized subtables;
when inserting an item, one bucket is chosen uniformly and independently from
each subtable as a possible location; the item is placed in the least loaded bucket,
breaking ties to the left. This combination of splitting and tie-breaking reduces
the maximum load to log log n/dφd + O(1), where φd is the asymptotic growth
rate of the dth order Fibonacci numbers [35].

In practice, the log log n terms are so small in the analysis above that one
can generally assume that a suitably sized bucket will never overflow. As noted
for example in [7], this effectively means that d-left hash tables can provide
an “almost perfect” hash table in many settings, which can then be used to
bootstrap further data structures. The hash table is only almost perfect in that
technically there is some probability of failure, and of course it is not minimal
in terms of size.

Cuckoo hashing [32] is a further variation on multiple choice hashing schemes.
In the original description, an item can be placed in one of two possible buckets.
But if on insertion there is no room for an item at any of its two choices, instead
of this causing an overflow, we consider moving the item in one of those buckets
to the other location consistent with its set of two choices. Such a move may
require the move of yet another element in another bucket to prevent overflow,
and so on until an empty spot for the current item is found (or until sufficiently
many attempts have been made to declare a failure). An excellent picture and
description is available on Wikipedia’s entry for cuckoo hashing, and I encourage
everyone who has not already read this entry to do so now. The name cuckoo
hashing comes from the cuckoo bird in nature, which kick other birds out of their
nest, much like the hashing scheme recursively kicks items out of their location
as needed. Successfully placing an element corresponds to finding an augmenting

1 We use the term items for the objects to be hashed, which are generally keys or
key-value pairs; we assume throughout that items are a fixed size.



path in the underlying graph where buckets are nodes and elements correspond
to edges between nodes. When there are n items to be placed in 2(1+ǫ)n buckets,
that is when the load of the table is less than 1/2, all such augmenting paths
are O(log n) in length with high probability. A failure occurs if an item can’t be
placed after c logn steps for an appropriately chosen constant c.

Although cuckoo hashing was originally introduced with just two choices per
items and buckets of unit capacity, it was naturally generalized to situations
with more than two choices per bucket and more than one item per bucket [15,
17]. These variations share the properties that they require checking only O(1)
memory locations even in the worst case. Hence, in general, we refer to the entire
range of variations as cuckoo hashing, and clarify in context when necessary. For
cuckoo hashing the case of d = 2 choices with one item per bucket is now well
understood [32, 27], the cases with more choices and more items per bucket have
left many remaining open questions [15, 17]. The case of d = 2 is so well under-
stood because there is a direct correspondence to random graphs. We can think
of buckets as vertices, and items as edges, where the edge for an item connects the
two vertices corresponding to its two buckets. The choice of a bucket by an item
corresponds naturally to an orientation of a directed edge. For d > 2, there is a
correspondence to random hypergraphs, which are more technically challenging,
and for more than one item in a bucket, the edge orientation problems become
more technically challenging. These questions that remain for these variations
are both theoretically interesting and potentially important practically, as these
cuckoo hashing variants can allow very high memory utilizations, significantly
higher than previous multiple choice hashing schemes.

3 Insertion Times for Random Walk Cuckoo Hashing

Let us consider the online setting for cuckoo hashing, where new items may
arrive to be inserted and old items may be deleted. Note that this is in contrast
to the offline setting, where all items are initially present and one merely wants
to make a lookup table, without updates to the underlying set. When there are
d > 2 choices or more than one item per bucket, the question of what to do
when inserting a new item is more subtle than in the case with two choices.
One approach is to do a breadth first search to find an augmenting path in the
underlying graph structure, looking at all paths that require one move, then
two moves, and so on. For constant d in both settings it is known that an
insertion only takes constant expected time, although high probability bounds
on the insertion time are generally very weak [15, 17]. Moreover, both because
of memory and time requirements, this approach does not suitable for many
practical implementations.

Let us describe an alternative approach generally much more amenable to
practical implementation, is to at each step kick out a random item. Specifically
let us consider the case of one item per bucket and d > 2 choices; in this case, we
randomly kick out of the d choices the first time, and of the d−1 “other choices”
after the first time. This avoids the storage required for the breadth first search



and is usually much faster. This approach gives a random walk on items being
kicked out of their location, until an item that has an empty bucket to be placed
in is found. Intuition suggests that this approach should also find an augmenting
path in O(log n) steps with high probability, since at each step there seems to be
a constant probability of finding an open space. While simulations suggest good,
possibly logarithmic performance, the intuition is quite speculative, as it ignores
dependencies in the placement of items that are troublesome for analysis.

Until recently, there was no proof of even polylogarithmic performance for
the random walk cuckoo hashing approach. A current result of Frieze, Melsted,
and Mitzenmacher shows that in fact with high probability over the choices
of the cuckoo hashing algorithm any insertion will, with high probability, take
polylogarithmic time under suitable loads for large enough numbers of choices
d [19]. The argument breaks into a pair of steps: first, most buckets have an
augmenting path of length at most O(log log n) to an empty bucket; and second,
the graph representing the cuckoo hashing process expands sufficiently so that,
regardless of the starting point, the random walk cuckoo hashing process will
find itself at a bucket with an augmenting path of length at most O(log log n)
to an empty bucket after only O(log n) steps. While this represents a significant
step forward, the picture for random walk cucko hashing remains incomplete.

Open Question 1: Find tight bounds on the performance of random-walk
cuckoo hashing in the online setting, for d > 3 choices and possibly more than
one item per bucket.

4 Threshold Loads for Cuckoo Hashing

Cuckoo hashing schemes appear to have natural load thresholds. As the number
of items approaches some constant c times the number of buckets (where c
depends on the variant of cuckoo hashing), the time to find an augmenting path
increases, and as one reaches the threshold collisions become unavoidable. Given
the connection to random graphs, this behavior in unsurprising. Indeed, when
d = 2 and there is just one item per bucket, it is known that cuckoo hash tables
with load less than 1/2 succeed with high probability, but fail when the load
is larger than 1/2. See [27] for more detailed analysis. There is a large jump in
moving to d = 3 choices, where the threshold appears to be around a 91% load
based on experiments.

When d = 2 and there is more than one choice per bucket, results are well
understood for the offline case. Again thinking of buckets as vertices and items
as edges, the problem in the offline case becomes how to orient each edge so
that no vertex has degree more than k. Hence the problem corresponds to the
threshold for k-orientability on random graphs, which provides a framework for
finding the threshold [8, 16]. Because in the offline case there is no moving of
items needed, as items are simply placed, whether these load can be achieved by
a natural cuckoo hashing variant in the online setting remains open. Specifically,
it would be intereseting to determine if the threshold is the same for random



walk cuckoo hashing, or for a different scheme with constant average time and
logarithmic time with high probability per insertion and deletion.

When d > 2 choices (and one item per bucket), the threshold for the of-
fline case is also nearly settled. Upper bounds on the theshold can found by
again viewing the problem as an orientation problem on random hypergraphs,
and while some additional considerations are needed, an upper bound can be
calculated [5]. Lower bounds have been achieved, based on a new approach for
designing dictionary and retrieval structures, based on matrix techniques [13].
(See also [33].) These techniques are quite interesting and highly recommended
but a full description is beyond the scope of this short note; essentially, one
utilizes a full-rank matrix with at most d ones per column derived from a hash
function on the set of keys, and solves for a vector such that the multiplication
of the matrix times the vector yields the value associated with each key. Storing
the vector is then sufficient to generate the value associated with each key, and
further requires just d lookups into the vector. As a specific example, for the im-
portant case of d = 3, there is an upper bound of 0.9183 for the threshold load
[5], and a lower bound of 0.8894 [13]. Again, however, the question of bounds
for efficient algorithms in the online setting remains more open.

Open Question 2: Tighten the bounds on the thresholds on the load capacity
of cuckoo hashing schemes for d > 2 choices and 1 item per bucket for the offline
setting.

Open Question 3: Prove bounds on thresholds for other settings, such as for
cuckoo hashing with d > 2 choices and more than 1 item per buckets (offline or
online), or for specific or general online schemes.

5 Using Stashes and Queues with Cuckoo Hashing

The failure rate of cuckoo hashing is surprisingly high. With standard cuckoo
hashing using d = 2 choices, if n items are placed into 2(1 + ǫ) buckets, the
probability of a failure – that some item can’t be placed or takes too long to
place – is Θ(1/n), with the constant factor in the asymptotic notation depending
on ǫ [27]. In theoretical papers the standard suggested response is to rehash
everything in case of such a failure; this does not change the important fact that
the expected average insertion time per item is constant. Rehashing, however, is
unsuitable for many applications. The failure rate is smaller with more choices
of items [17] or more items per bucket [15], but the high failure probability still
remains a potential problem.

In [24] we show that one needs only a small, constant-sized stash to greatly
reduce the probability of a failure. A stash should be thought of as a small,
fully-associative memory, that allows an arbitrary lookup in a single time step.
In hardware, this can be implemented as a content-addressable memory (CAM),
as long as the size of the stash is small, since CAMs are expensive. In software,
this can be implemented with a small number of dedicated cache lines. We show a
stash of constant size s reduces the probability of any failure to fall from Θ(1/n)
to Θ(1/ns+1) for the case of d = 2 choices case. Similar results hold for other



variants, in that the failure probability provably falls linearly by a factor of the
stash size s in the exponent. Such a reduction is key for scaling to applications
with millions of users. The original motivation was for potential applications to
routers, and applications of this result to devices using history-independent hash
tables have also been suggested [30].

This idea of allowing a small amount of additional space to handle collisions
seems quite powerful, although it is not commonly studied in theoretical work.
(Interestingly, though, one can think of the seminal work on perfect hashing
of Fredman, Komlós, and Szemerédi [18] in this context.) The issue of the right
scale of the additional space seems to be an interesting question. For example, in
other work, we have alternatively suggested using a CAM as a queue for pending
move operations in a cuckoo hash table [22]. The advantage of this approach is it
gives an effective de-amortization of cuckoo hash inserts: by queueing operations,
we can arrange for inserts to have worst-case constant time (corresponding to the
average time for an insert in standard cuckoo hashing). This technique appears
potentially useful as an approach for deamortizing other algorithms or data
structures in hardware. We conjectured in this setting that the queue size is
required to scale like O(log n), corresponding to a maximum size achieved by a
queue over O(n) steps. For the case of d = 2, this conjecture has recently been
proven in [3] (see also the similar [12]).

Finally, in other work, we have considered variants that allow only one move
of an item in a hash table on each insertion [23]. The motivation for this work
was to consider the benefits of making the minimum possible change to multiple-
choice hashing, which is already being used in some hardware solutions, in order
to convince builders of devices to consider trying systems that allow items to
move within the hash table. Besides showing significant gains, the authors were
able to analyze several schemes using a fluid limit/differential equations analysis.
Here, we require using a CAM that scales linearly in n. That is, we find such
schemes require a CAM of size ǫn for a very small ǫ chosen by the designer
(e.g., 0.2%). So now we have examples where the natural choice of a stash size
is constant, logarithmic, and linear, depending on our overall goal.

Open Question 4: Extend the de-amortization analysis for cuckoo hashing to
other variants, including the case of d > 2 choices. Can this de-amortization
technique be applied to other related problems as well?

Open Question 5: Develop a more general theory of the power of stashes and
appropriate scalings in the setting of hash tables.

6 Limited Randomness and Cuckoo Hashing

Even from the inception of cuckoo hashing, the question of how much random-
ness is required was considered a worthwhile question. While assuming perfectly
random hash functions is useful for analysis, it is both theoretically and practi-
cally unappealing, since perfectly random hash functions are not readily avail-
able. From the connection with random graphs in the case of d = 2 choices, it



is apparent that if each hash function is independently chosen from a c logn-
wise independent family for an appropriate constant c, the analysis showing
expected constant time per operation continues to hold. Pagh and Rodler [32]
in fact showed that a hash function family derived from the work of Siegel [34]
with limited independence suffices for cuckoo hashing in the case where d = 2.
However, these hash functions still appear to be too complex to be utilized in
practice. They also experimented with weaker hash functions.

Recent advances in the area include the work of [3], where a result by Braver-
man [6] is used to show that the analysis of cuckoo hashing with a queue holds
even with only polylogarithmically-wise independent hash functions. Cohen and
Kane [11] demonstrate that 5-independence (which is slightly different than but
close to 5-wise independence) is insufficient for constant amortized cost per op-
eration for cuckoo hashing with d = 2 choices, but also show that only one of
the two hash functions needs to be c log n-wise independent to obtain constant
expected time per operation.

An alternative direction, taken by Mitzenmacher and Vadhan, started with
the question of why simple hash functions work so well in practice [29]. As men-
tioned, when analyzing hash-related data structures such as cuckoo hashing, one
commonly assumes that the underlying hash functions are completely random,
even though this is unrealistic. But in practice, such analysis generally turns out
to be accurate, even when weak hash functions, such as pairwise independent
(or universal) hash functions [9], are used.

The proposed resolution was to model the data as coming from a random
source, where the i’th item Xi has at least some k bits of entropy (specifically,
Renyi entropy) conditioned on the previous items X1, . . . , Xi−1. Then results
from the theory of randomness extraction imply that when a hash function H is
chosen from even a pairwise independent family, the sequence (H(X1), . . . , H(XT ))
has small statistical difference from the distribution obtained if H were a perfect
hash function. That is, a weak hash function is good enough, as long as there
is sufficient randomness in the data. The implications of this model apply to
cuckoo hashing as well as other hashing-based algorithms and data structures.
Improvements on the bounds of [29] are developed in [10],

As shown by Dietzfelbinger and Schellbach, however, one cannot use this in-
sight blindly. They demonstrate that natural families of universal hash functions,
namely multiplicative hash functions and standard linear hash functions over a
prime field, fail even for fully random key sets, when the key set is sufficiently
dense over the universe of keys [14]. In such cases, there is not sufficient entropy
for the results of [29] to hold, so there is no contradiction. The implications
of these results to practical settings certainly appear to be a worthy of further
study.

Open Question 6: Determine better bounds on the amount of randomness
needed for cuckoo hashing to be effective, either in terms of the requirements of
the underlying family of hash functions, the amount of randomness in the data,
or both.



7 Parallelized Variations of Cuckoo Hashing

As a final area for future work, there appears to be renewed interest in parallel
algorithms for constructing hash tables and related data structures, inspired by
the development of multi-core processors and other mainstream hardware that
allows parallelization, such as graphics processor units (GPUs). In [2], we design
a practical parallel scheme for constructing hash tables on GPUs motivated in
part by cuckoo hashing techniques. The setting is offline, with all items available.
Essentially, items perform the random walk cuckoo hashing approach in parallel:
each item tries to place itself in its first choice; each item that fails to capture
its first choice location tries to place itself it its second choice, and then it third
choice. (Three choices per item were used in this implementation.) Any unplaced
item then tries to kick out the item placed at its first choice, and then its second
choice, and so on. In order to ensure quick convergence, a two-level scheme was
used, where items are first partitioned using a separate hash function, in order
to give with high probability a bounded number of items (in this case 512) per
partition. The parallel cuckoo hashing approach is then run in parallel on each
partition. This random partitioning trades additional space for efficiency. For
details, see [2].

While there is a fair amount of historical work on parallel hashing and load
balancing schemes (see, for example, [1, 28]), the significant advances made in
the last decade in terms of analysis and understanding of the power to move
items suggests that we can obtain both stronger results and tighter analyses
in theory for such parallel hashing schemes. Moreover, there may be significant
opportunities for the design of efficient parallel hash table construction schemes
for real hardware systems. Given the inherent potential for parallelization with
multiple-choice hash tables in general and cuckoo hashing in particular, this
appears to be an interesting area for future growth.

Open Question 7: Design and analyze efficient schemes for constructing and
maintaining hash tables in parallel architectures, particularly modern multicore
architectures.

8 Conclusion

This note provides a smattering of open questions related to the theme of cuckoo
hashing. There are certainly others, and more waiting to found. Indeed, at this
very conference, there are a number of papers specifically on the theme of cuckoo
hashing and on the more general themes of dictionary data structures and hash-
based data structures. There remains plenty of interesting work to do in this
area, which offers both rich theory and practical payoff.
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