
Popularity is everything
A new approach to protecting passwords from statistical-guessing attacks

Stuart Schechter
Microsoft Research

Cormac Herley
Microsoft Research

Michael Mitzenmacher
Harvard University

ABSTRACT
We propose to strengthen user-selected passwords against
statistical-guessing attacks by allowing users of Internet-
scale systems to choose any password they want—so
long as it’s not already too popular with other users.
We create an oracle to identify undesirably popular
passwords using an existing data structure known as
a count-min sketch, which we populate with existing
users’ passwords and update with each new user pass-
word. Unlike most applications of probabilistic data
structures, which seek to achieve only a maximum ac-
ceptable rate false-positives, we set a minimum accept-
able false-positive rate to confound attackers who might
query the oracle or even obtain a copy of it.

1. INTRODUCTION
User-selected passwords are subject to statistical guess-

ing attacks, a form of dictionary attack in which an at-
tacker sorts the password dictionary by presumed, or
previously-observed, popularity and guesses the most
popular passwords first. To defend against a statistical
guessing attack it is important to

1. limit the number of guesses that the attacker can
issue against each account and

2. minimize the cumulative fraction of accounts that
use the most popular passwords.

The latter requires influencing user behavior and is the
motivation behind myriad password-selection policies,
password-strength meters, and user guidance on increas-
ing password obscurity. Existing tools to influence user
selection of passwords take a circuitous path to this
goal. Password-composition policies are criticized for
their usability [2, 7] and have significant unintended
consequences. Faced with a requirement to choose longer
passwords, users may be more likely to rely on dictio-
nary words or other lower entropy strings [16].

When administrators respond by requiring the use of
a special character to increase entropy users may sim-
ply take dictionary words and replace letters with a pre-
dictable special character (‘password’→‘p@ssword’),

achieving little added entropy. If this is forbidden, users
may instead map special characters to a relatively small
set of concepts: ‘#’→{lb,hash}, ‘*’→{star,all}, ‘∧’→
{hat,top,up}, and so on. In some cases, this may even
reduce entropy. Password policies have become a cat
and mouse game where administrators impose stricter
and stricter requirements and users, trying to achieve
memorability, often confound their efforts by using all-
too-similar strategies.

Password-strength meters provide guidance based on
rules similar to those used to construct password poli-
cies, but the threat model under which they provide
this ‘strength’ is unclear. Thus, most online strength
meters will deem a string of 32 random lowercase let-
ters a ‘weak’ password, yet Windows Live ID will report
that “@Aaaaaa” is a strong password and Yahoo will re-
port that “P@ssword” is a strong password.

We propose taking the direct approach to discourag-
ing the use of dangerously-popular passwords: notifying
users when the passwords they’ve chosen, or their ex-
isting password, is already undesirably popular among
a large, existing, user base. We use a probabilistic data
structure, the count-min sketch [13] (related to a Bloom
filter), to efficiently track password popularity within
the user base. We select a sketch large enough to limit
the maximum frequency of false positives, as these force
users to unnecessarily choose a new password. We also
find it useful to ensure a minimum rate of false posi-
tives to confound attackers who might query the data
structure or even obtain a copy of it.

Replacing password creation rules with popularity lim-
its has the potential to increase both security and us-
ability. Since no passwords are allowed to become too
common, attackers are deprived of the popular pass-
words they require to compromise a significant frac-
tion of accounts using online guessing. We conjecture
that usability also increases. System designers no longer
need to create increasingly complex password-selection
rules with no guarantee that they will result in truly
strong passwords. Users needn’t read, learn, or in-
terpret these rules. Instead, users are only inconve-
nienced when their password choice is one that would

1

add(s) for(i ∈ [1, k])
t [hi(s)]← 1

query(s) return
∧k

i=1 t [hi(s)]

p@$$word

h2 h4 h1 h3

0 1 0 1

(a) Before add(p@$$word), isMember(p@ssword) is false

1 1 1 1

(b) After add(p@$$word), isMember(p@ssword) is true

Figure 1: A Bloom filter representing a set of pass-
words. A set of k hash functions map the string to k
pseudorandom positions within a table t. Here k = 4.
To add a string to the set, write a 1 into the table at
these positions. To test for membership, verify that the
values at every one of these k positions is set to 1.

lead to a quantifiably unacceptable level of vulnerabil-
ity to a statistical guessing attack. Users who choose
common passwords discover that password-construction
techniques they think would yield unique passwords are
actually quite common.

Our proposal is not without precedent. Twitter, in
responding to an online password guessing attack that
exploited their failure to lock out guessers [1], now for-
bids 390 of the most common passwords. It would ap-
pear that Twitter decided that this inconveniences their
users less than the introduction of cumbersome pass-
word policies.

2. BUILDING A POPULARITY ORACLE
We propose building an oracle that, when queried

with a password, replies whether the password is too
popular. This oracle leverages statistics on existing
passwords, such as those available to the Internet-scale
authentication systems used by AOL, Facebook, Google,
Microsoft, and Yahoo, each of which have hundreds of
millions of user accounts.

One could build such an oracle as a table mapping
hashed passwords to occurrence counts, similar to a
hashed password file. Unlike hashed password files, the
collection of aggregate statistics would require abandon-
ing the use of entry-specific salts before hashing. If the
table were revealed, a dictionary attack against all en-
tries would yield the exact frequency of each broken
password.

Bloom filters provide an attractive alternative to lists
of hashed passwords because the hashes used are small
and not unique to any one password. A Bloom filter
stores a representation of a set of strings by using a

count(s) return min (t1 [h1(s)] , t2 [h2(s)] , . . . tk [hk(s)])

add(s) for i ∈ [1, k]
ti [hi(s)]← ti [hi(s)] + 1

p@$$word

h1

98 h2

h3

50

50

(a) Before add(p@ssword), count(p@$$word) = 50

p@$$word

h1

99 h2

h3

51

51

(b) After add(p@ssword), count(p@$$word) = 51

Figure 2: A count-min sketch representing the num-
ber of times each password occurs in a password
database. A set of k hash functions map the string
to k pseudorandom positions in k tables. To record
an occurrence, increment the counter at each position.
To count the estimated occurrences of a string s, find
the minimum value stored in the table at these posi-
tions. (If the count-min sketch in this illustration had
implemented a conservative add operation, the counter
associated with h1 would not have been incremented.)

table t of bits (all initially 0) and k hash functions. A
string is mapped to k pseudorandom bit positions in the
table via the hash functions. To add a string to the set
represented by the Bloom filter, a 1 is written at each of
these positions, as illustrated in Figure 1. Membership
in the set is tested by verifying that the bits at each of
these positions are all set to 1, as is true in Figure 1b
but not Figure 1a. False positives can occur if a string
is not in the set but the bits in all of the string’s k
positions are set to 1 by strings that are in the set.

In 1991, Spafford proposed using a Bloom filter [4]
to compactly store a collection of dictionary words that
should be forbidden for use as passwords [9]. Bloom
filters achieve compactness by allowing false positives—

2

they only approximate the true dictionary. Spafford was
motivated to accept false positives because, two decades
ago, storing a large dictionary of potential passwords
was costly. The binary nature of the Bloom filter em-
ployed by Spafford only allowed tests for set member-
ship; it could not be used for any measure of popularity
beyond whether a password had been seen before.

To create our popularity oracle we employ a descen-
dant of the Bloom filter, called a count-min sketch [13]1

which uses k tables of numeric counters rather than
one table of bits. Each of the k hash functions maps
strings to a separate table, as illustrated in Figure 2.
The add(s) operation increments one counter within
each table; the position of the counter within table i
is specified by hi(s), the hash function for that table.
The count(s) operation returns the minimum value of
all the counters associated with the string s (one from
each table), which is an upper bound on the number
of times s has been added to the sketch. Note that it
is possible to remove one or more instances of s from
a count-min sketch by decrementing the corresponding
counters.

Like the Bloom filter, the count-min sketch saves space
at the cost of accuracy: count(s) may exceed the actual
number of occurrences of string s, as each of the coun-
ters associated with s might be incremented by strings
other than s. The likelihood of large errors in the count
estimates can be made suitably small by choosing the
number of hash functions and the size of the filter appro-
priately; see [13] for a full analysis. To reduce estimate
errors, a count-min sketch may implement a conserva-
tive add : only increment the counter or counters asso-
ciated with string s that contain the minimum value
returned by count(s). Conservative adds preserve the
invariant that if a string is inserted m times, all coun-
ters associated with that string will have an occurrence
count of at least m [5]. However, if conservative adds
are used then strings can no longer be removed by decre-
menting counters.

To quickly populate the oracle with password data,
each existing account is associated with a Boolean field
(initially false) which indicates whether the account’s
password has been added to the sketch. If the field is
false when a user logs in, the password she used is added
to the sketch and the field is set to true.

We consider a password dangerously popular if it oc-
curs at a rate (frequency) that exceeds a threshold r—
the fractional popularity threshold. After observing N
password instances (calling add(s) N times) these un-
desirably popular passwords will have been observed at
least d = rN times—the integer popularity threshold.
This threshold grows with the number of observations.

1See also the equivalent parallel multistage filter of [5] or the
closely related spectral Bloom filter of [20].

For example, assume we want to flag passwords that
occur with probability greater than r = 1

1,000,000 (the

fractional popularity threshold) and have observed N=
100,000,000 password instances. The integer popularity
threshold d is equal to 100,000,000

1,000,000 = 100, and will grow
as more password instances are observed.

Once enough passwords have been collected to boot-
strap the oracle with sufficiently reliable data, we flag
existing accounts with undesirably popular passwords.
We may ask or require users of these accounts to choose
new passwords when they next login.

Forbidding passwords with fractional popularity greater
than r would limit an attacker who was able to issue
G guesses against each account, and who knew the G
most popular passwords, to compromise a fraction of at
most rG of accounts. For example, if no password had
been allowed with popularity greater than 1

1,000,000 , an
attacker using the most popular password can compro-
mise only 0.0001% accounts. In contrast, an attacker
who can identify and exploit a target’s single most-
popular password could compromise 0.22% of MySpace
accounts [22] or 0.9% RockYou accounts [14].

The downside of using an approximate count-min sketch,
as opposed to an exact oracle, is that approximations
occasionally lead to false positives. That is, a password
will be hashed to counters that all lie above the thresh-
old, even though the password is not actually popular.
False positives will force users to choose new passwords
unnecessarily. However, we will show in the following
section that a modest number of false positives is actu-
ally a desirable feature of the count-min sketch.

3. PREVENTING MISUSE
It should be no surprise that attackers, as well as de-

fenders, can benefit from password popularity oracles.
Indeed, the success of statistical guessing attacks will
increase if attackers can refine the order of their dictio-
naries based on actual popularity statistics.

3.1 Threat model
We assume that attackers not only have the ability to

query the oracle online, such as by entering a proposed
new password, but that they have access to a perfect
copy of the count-min sketch.

We also assume the adversary has access to exist-
ing password-popularity statistics and can use them to
build a cracking dictionary, ordered by the observed
popularity of each password. These data sets include
compromised passwords that have been semi-publicly
released: phished MySpace passwords and 32 million
plaintext RockYou passwords. Lists of the most popu-
lar passwords from these data sets have been published
widely [14, 22]. Attackers can also feed successfully-
guessed or compromised passwords from their own at-
tacks back into their statistical popularity models.

3

For online attacks, we further assume that attackers
can leverage millions of IP addresses (such as by using a
botnet) to limit the efficacy of IP-based lockout mecha-
nisms. Finally, we assume users have access to millions
of valid usernames, or a dense enough space of likely-
valid usernames, in order to avoid triggering account-
based lockout mechanisms. In other words, they can
use only the most popular passwords in order to target
millions of different accounts.

3.2 Online attacks
Even if we enforce a no-popular-passwords policy for

our own systems, an attacker could still leverage the
oracle to identify the most popular user-selected pass-
words in order to target others’ systems. Many sites
will continue to rely on rules-based password-selection
policies even if we were to allow them to query the or-
acle. One way to avoid collecting statistics about the
most popular user-selected passwords is add passwords
to the oracle only when they meet our policy; once a
password reaches the popularity threshold it will no
longer be added. However, if we were to stop counting
once the password was deemed popular, there would be
brief periods when all passwords would temporarily fall
below the popularity threshold; the integer threshold
grows with the number of observations and when it is
incremented even the highest count values would fall
one below it.

Better still is to stop incrementing the count-min sketch
shortly above the popularity counting threshold. This
counting limit must exceed the integer popularity thresh-
old by at least a small margin so that counters associ-
ated with popularity don’t fall below the threshold be-
cause of random variations in the rate at which users
select them.

By restricting the add function so that no table entry
is incremented beyond the counting limit, all passwords
that reach this limit will appear equally popular. As at-
tackers already have approximate password popularity
estimates from existing data sets, and the more popu-
lar passwords will likely exceed the limit, the adversary
does not benefit from having a copy of the sketch.

3.3 Offline attacks
An attacker who compromises a password file, and

uses a cracking dictionary to perform an offline dictio-
nary attack, can leverage a popularity oracle to identify
the most popular entries in the dictionary. The attacker
can then skip (or delay using) passwords that the ora-
cle reports as unpopular, speeding up the rate at which
passwords are cracked.

Against this threat comes help from an unlikely hero—
the very false positives that are the bane of most appli-
cations of count-min sketches, Bloom filters, and other
probabilistic data structures. While most applications

grow probabilistic data structures to be large enough to
bound the maximum false positive rate, we also require
that the count-min sketch be small enough to guarantee
a minimum false positive rate.

Assume, for example, that the count-min sketch has
a false positive rate of 1%, so that 1% of all possible
password strings yield a false positive. User-selected
passwords are more likely to be popular than random
ones. If only 10% of user-selected passwords are pop-
ular, fewer than 10% of the warnings issued to users
that their passwords are too popular will be false. This
seems reasonable given that impact of a false positive
is that the user will need to select another password.

On the other hand, consider an attacker with a crack-
ing dictionary sorted with the best popularity informa-
tion available before obtaining access to the oracle. The
attacker uses the oracle to ensure that unpopular pass-
words are only guessed after the popular ones have been
exhausted. For every 99 unpopular password strings the
attacker may filter out, one will appear to be popular
and remain. The maximum-possible improvement in
cracking performance is therefore a factor of 100. While
this is non-negligible, it is smaller than the gain achiev-
able through hardware optimization or through paral-
lelization (e.g. using botnets). It does not change the
recommended action in the event password database
exposure: all user passwords should be reset.

Attackers who try to grow their cracking dictionar-
ies by testing random passwords against the oracle will
receive orders of magnitude more false positives than
truly popular passwords.

While others have leveraged false positives inherent
in Bloom filters to protect the privacy of set member-
ship [3, 17], we are not aware of prior work that seeks to
guarantee a minimum false-positive rate for a counting
filter, such as a count-min sketch. It is thus not sur-
prising that theoretical work has not considered how to
size such data structures to guarantee a minimum false
positive rate. We can approximate the correct sizing by
building sketches using distributions (e.g. Zipf) that
approximate the popularity of passwords. We can then
choose a filter size that errs on the small side, knowing
that if the false-positive rate is too high we can extend
the sketch with an additional table and start again.

3.4 Intersection attacks
Attackers can overcome false positives by testing pass-

words against two or more popularity oracles. If false
positives are independent, the likelihood that an un-
popular password would be reported popular by each
successive oracle would decrease rapidly as a product of
their false positive rates.

Since the number of organizations that can leverage
hundreds of millions of passwords to build a popularity
oracle is small, they may be able to share a single oracle.

4

Updates could be issued in bulk to protect the privacy
of individual users across organizations.

Even if there exists only one oracle (one count-min
sketch), there is still the danger that it would become
necessary to create a new sketch in the future. For
example, substantial growth in the number of total and
unique passwords observed could cause an unacceptable
increase in the false positive rate, causing too many
users asked to choose new passwords unnecessarily.

To reduce the false positive rate by some factor b,
we simply create a new count-min sketch with a size
chosen to make b the false positive rate. We can popu-
late this sketch in a matter of days by entering existing
passwords (once per account) at the time users log in.
This new sketch would have its own integer popularity
threshold and counting limit based on the number of
passwords it has observed (the number of add opera-
tions). Once the new sketch is populated, a password
will now be deemed popular only if both sketches would
have deemed it popular. In other words, the set of pop-
ular passwords is the intersection of the sets represented
by the count-min sketches.

The offline adversary benefits from the fact that the
false positive rate has been reduced by a factor of b.
However, since the set of passwords now deemed pop-
ular is a strict subset of those deemed popular by the
original set, he learns nothing by taking the intersec-
tion.

4. ATTACK-DETECTION SKETCHES
A successful defense against statistical guessing at-

tacks requires not only the avoidance of popular pass-
words, but also mechanisms to limit the number of
guesses an attacker can issue. Limiting guesses is es-
pecially important if users aren’t forced to avoid pop-
ular passwords, or if users with accounts that predate
the no-popular-passwords policy have not been forced
select less popular passwords. To protect accounts, a
per-IP or per-account limit of guesses may be imposed,
above which the system may reduce the rate at which
guesses can be made (e.g. exponential back-off), require
a CAPTCHA, or even locked the user out. Lower limits
provide for better defense, but decreased usability.

In prior work on personal authentication (security)
questions, another form of knowledge-based authentica-
tion that, like passwords, is subject to statistical guess-
ing attacks, Schechter et al. observed that users who
require multiple responses to get the correct answer are
unlikely to guess only popular answers. They proposed
varying the permitted number of guesses inversely with
the popularity of values guessed [21]. We could use the
oracle to gauge popularity for this purpose, but we had
expressly designed it to avoid tracking popularity above
the popularity threshold. Rather than risk extending
the oracle in a manner that might aid attackers, we

introduce a new attack-detection count-min sketch.
The attack-detection sketch stores only those pass-

words used in unsuccessful login attempts, and does
not store actual account passwords. Attack-detection
sketches may be short-lived and may be created only at
times when an unusually high incidence of failed login
attempts indicates an attack is likely underway. Should
attackers choose a small set of popular passwords, these
passwords will occur with high frequency in the sketch.
We can thus reduce the number of login attempts per-
mitted in proportion to the popularity of the incorrect
passwords guessed. Attackers can respond by growing
the set of passwords they use in their attacks, but this
will require them to include ones that are progressively
less popular, reducing the efficacy of each guess.

In the extreme case in which an attacker uses a small
set of passwords he suspects to be the most popular (e.g.
5), we might even trigger a CAPTCHA before the first
login attempt that uses this password can be checked
against the password database. Legitimate users have
chosen these passwords would now face a CAPTCHA
on every login during the attack. We consider this a
feature; if a user has chosen a password that is among a
small set being targeted by attackers, having to face a
CAPTCHA on every login provides an extra incentive
to change it.

5. RELATED WORK
Checking to prevent unacceptable password choices

has a long history. Klein [6] suggests “a publicly avail-
able proactive password checker, which will enable users
. . . to check a priori whether the new password is safe.”
He proposes a combination of a dictionary check and
other rules to screen for common weak password choices.
Spafford [9] describes OPUS, a Bloom filter to compress
a dictionary of forbidden passwords. OPUS stores a
250, 000 word dictionary in 350 kBytes with a 0.5% false
positive rate. The OPUS system also supported pass-
word aging: password choices are added to the filter,
so attempts to re-use old passwords will be refused. A
related work uses the OPUS system to gather informa-
tion on actual user password choices without the risk
of leak [8]. Manber and Wu [23] describe an approach
based on Bloom filters that allows checking both exact
and approximate dictionary membership. Passwords
that are a single insertion, deletion, or substitution from
a dictionary word will be be refused. Bergadano et
al. [12] describe a decision tree approach which achieves
greater dictionary compression. However, the system
does not allow incremental additions of new dictionary
words. Instead, retraining must be performed when ad-
ditions are made.

Despite persistent and creative efforts to nudge users
toward better practices [11], password strength remains
a problem [10]. Yan [15] points out that any mismatch

5

between the dictionary used by the checker and the
attacker can result in weak passwords beng accepted.
He suggests augmenting the dictionary checks used in
proactive password checking with entropy checks as well.
Pinkas and Sander [19] propose the use of CAPTCHA’s
to slow down dictionary attacks when limiting the num-
ber of attempts is undesirable. Van Oorschot and Stub-
blebine [18] extend this work and show that using login
history can greatly reduce the number of CAPTCHA’s
presented to users (as opposed to attackers).

6. DISCUSSION AND FUTURE WORK
Verifying the hypothesized usability benefits of a no-

popular-passwords policy would require a password or-
acle to be populated with a large database of passwords
and the use of this oracle in a large usability study. We
have not undertaken such a study; all known lists of
popular passwords are stolen goods.

Our proposed approach of building popularity oracles
from count-min sketches can be used in other knowledge-
based authentication schemes, such as the ‘secret’ secu-
rity questions. These questions often have very popu-
lar answers that render them vulnerable to statistical
guessing attacks [21].

If we can sufficiently limit the benefit to attackers
of obtaining the sketch, we could publicly distribute a
compressed copy of the sketch. To compress the sketch,
we turn each counter into a single bit containing 1 if
above the popularity threshold and 0 otherwise. This
more compact version could still be queried, but not
added to. The compressed sketch could then be em-
bedded in operating systems and devices to help users
choose better passwords even when offline.

One open question is how to design an oracle that may
be queried online without revealing the queried pass-
word, or information from which it could be derived.
Another is reduce the risks to integrity when multiple
parties to contribute to the oracle, as malicious par-
ties may try to prevent popular passwords from being
detected.

7. CONCLUSION
We have proposed replacing today’s complex pass-

word policies with a simple one: allow any password the
user desires, so long as it is not an attractive target for a
statistical guessing attack. To enable this policy we de-
scribe how use a count-min sketch to build a password-
popularity oracle. We confound attackers who would
use this oracle to identify the very most popular pass-
words by ensuring that the information they desire is
not tracked by the count-min sketch. We require that
the count-min sketch have a minimum false-positive
rate, limiting the advantage attackers can obtain by fil-
tering cracking dictionaries (lists of potentially-popular
passwords) through the oracle.

8. REFERENCES
[1] Wired: Weak Password Brings ‘Happiness’ to Twitter

Hacker. http://blog.wired.com/27bstroke6/2009/01/
professed-twitt.html.

[2] Adams, A., and Sasse, M. A. Users Are Not the Enemy.
Commun. ACM 42, 12 (1999).

[3] Bawa, M., Bayardo, R., Agrawal, R., and Vaidya, J.
Privacy-preserving indexing of documents on the network.
The VLDB Journal 18, 4 (2009), 837–856.

[4] B.H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Comm. of the ACM (1970).

[5] C. Estan and G. Varghese. New directions in traffic
measurement and accounting: focusing on the elephants,
ignoring the mice . ACM Transactions on Computer
Systems (2003).

[6] D. V. Klein. Foiling the Cracker: A Survey of, and
Improvements to, Password Security. Proc. of the 2nd
USENIX Security Workshop (1990).

[7] D.A. Norman. The Way I See It: When security gets in
the way. Interactions 16, 6 (2009), 60–63.

[8] EH Spafford. Observing reusable password choices.
Proceedings of the 3rd UNIX Security Symposium (1992).

[9] EH Spafford. OPUS: Preventing weak password choices.
Computers & Security (1992).

[10] Florêncio, D., and Herley, C. A Large-Scale Study of
Web Password Habits. WWW 2007, Banff..

[11] Forget, A., Chiasson, S., van Oorschot, P. C., and
Biddle, R. Improving text passwords through persuasion.
In SOUPS ’08: Proceedings of the 4th symposium on
Usable privacy and security (2008).

[12] G. Bergadano, B. Crispo and G. Ruffo. Proactive
Password Checking with Decision Trees. Proc. CCS (1997).

[13] G. Cormode and S. Muthukrishnan. An Improved Data
Stream Summary: The Count-Min Sketch and Its
Applications. Journal of Algorithms (2005).

[14] Imperva. Consumer Password Worst Practices.
http://www.imperva.com/docs/WP_Consumer_Password_
Worst_Practices.pdf.

[15] J.J. Yan. A Note on Proactive Password Checking. NSPW
(2001).

[16] L. St. Clair and L. Johansen and W. Enck and M.
Pirretti and P. Traynor and P. McDaniel and T.
Jaeger. Password Exhaustion: Predicting the End of
Password Usefulness. In Proc. of 2nd Intl Conf. on
Information Systems Security (ICISS) (2006).

[17] Parekh, J., Wang, K., and Stolfo, S. Privacy-preserving
payload-based correlation for accurate malicious traffic
detection. In Proceedings of the 2006 SIGCOMM workshop
on Large-scale attack defense (2006), ACM, p. 106.

[18] P.C. van Oorschot, S. Stubblebine. On Countering
Online Dictionary Attacks with Login Histories and
Humans-in-the-Loop. ACM TISSEC vol.9 issue 3 (2006).

[19] Pinkas, B., and Sander, T. Securing Passwords Against
Dictionary Attacks. ACM CCS (2002).

[20] S. Cohen and Y. Matias. Spectral Bloom Filters . Proc.
ACM SIGMOD Intl Conf. on Management of Data (2003).

[21] Schechter, S. E., Brush, A. J. B., and Egelman, S. It’s
No Secret: Measuring the Security and Reliability of
Authentication via ”Secret” Questions. In IEEE
Symposium on Security and Privacy (2009), pp. 375–390.

[22] Schneier, B. MySpace Passwords Aren’t So Dumb. Wired,
Dec. (2006). http://www.wired.com/politics/security/
commentary/securitymatters/2006/12/72300.

[23] U. Manber, S. Wu. An Algorithm for Approximate
Membership Checking with Application to Password
Security. Information Processing Letters (1994).

6

