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Most on-line analysis assumes that, at each time step, all relevant information up to that time step
is available and a decision has an immediate effect. In many on-line problems, however, the time
when relevant information is available and the time a decision has an effect may be decoupled. For
example, when making an investment, one might not have completely up-to-date information on market
prices. Similarly, a buy or sell order might only be executed some time in the future. We introduce and
explore natural delayed models for several well-known on-line problems. Our analyses demonstrate the
importance of considering timeliness in determining the competitive ratio of an on-line algorithm. For
many problems, we demonstrate that there exist algorithms with small competitive ratios even when
large delays affect the timeliness of information and the effect of decisions.C© 2001 Academic Press

1. INTRODUCTION

The theory of on-line algorithms deals with situations where a decision or a series of decisions must
be made with limited information, and specifically without knowledge of future events. Implicit in this
approach is the idea that the time information becomes available relative to the time decisions take
effect can be of paramount importance in algorithm performance. In most on-line analyses, however,
the setting chosen for study is the simple one: at each time step, all relevant information up to that time
step is available, and a corresponding decision is made.

In many on-line problems the time relevant information is available and the time a decision has an
effect are decoupled. This phenomenon arises, for instance, ininvestment problemswhere one has to
decidewhetherandwhento buy an expensive piece of equipment. An example of such investment
problems is the standard on-line ski rental problem. In these investment problems, once a decision is
made for buying equipment, it can take some time before the equipment is delivered to the user. For
example, it can take a couple of days or weeks to ship a particular model of skis and even months to
deliver and install a new machine in a factory. In such cases, a decision to buy equipment has an effect
only later in time and the action corresponding to the decision is delayed.

1 A preliminary version of this paper was presented at the39th Annual Symposium on Foundations of Computer Science
(FOCS), 1998.
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This can heavily influence the performance of an on-line strategy. An on-line algorithmA is called
c-competitive if, for all inputs, the cost incurred byA is at mostc times the cost incurred by an optimal
off-line algorithm that knows the entire input in advance. To illustrate the effect of delayed action, we
consider the ski rental problem. Skis costr dollars to rent per weekend andb to buy for a season.
Suppose an avid skier skis every weekend there is good snow. Whether it is best for him or her to rent
or buy skis for the season depends on the number of good ski weekends. If the skier rentss times before
buying, the competitive ratioc is sr+b

min{(s+1)r,b} . Whenb/r is an integer, an optimal on-line algorithm is
to rent skiss= (b/r )−1 times and then buy; this yields a competitive ratio of 2− r

b . If skis taked ≥ 1
weeks to ship, the analysis is slightly more involved. If a skier decides to rents times before buying,
we must consider what happens in the interveningd other weekends before the skis arrive. Ifi of the
intervening weekends are snowy, then the worst-case ratio between the actual cost and the optimal cost
is now

max
1≤i≤d

(s+ i )r + b

min{(s+ i )r, b} .

It is easily checked that this ratio is maximized at one of the extremesi = 1, d; using this, one can
easily determine the value ofs that minimizes the competitive ratio.

In the above example, there is a delay between the time a decision is made and when it has an effect.
We refer to this as thedelayed actionmodel. The parameterd is the maximum delay after which a
decision takes effect. For this problem,d = 0 gives us the original problem without delay.

Similarly, there are problems where it is natural to consider information that arrives only after some
delay. In this scenario, at time stept we might have information about the firstt − d − 1 time steps
only, for somed ≥ 0. This phenomenon arises, for instance, in on-linefinancial gameswhere we have
to devise strategies for converting money from one currency to another or for selecting a portfolio in
the stock market [17, 18, 20, 33]. Naturally, we might not have access to the very latest exchange rates
or stock prices. We refer to this as thedelayed informationmodel. Again, the cased = 0 corresponds
to the original problem without delay.

Related timing problems occur when agroupof people or agents take decisions. The group might
come together only at particular time instances. The actions are again delayed in that they can only occur
at specific points in time. For example, in the case of investing in manufacturing machinery, one may
only be able to make budget decisions in concert with the rest of an organization at specific budgeting
periods. Another example is that of an investment club, where a group of people pool their money
together and invest in the stock market. All investment decisions can be made only at club meetings
which occur at regular intervals of time, e.g., once a month.

We use the termdelayed modelsto loosely describe models where there is this type of discontinuity
between the time information is available and the time decisions take effect. Such models are naturally
motivated by situations where one has incomplete information about the past or a decision will have
a delayed effect on the state of the system. Interestingly, they also often have a natural interpretation
in terms of distributed agents acting with limited coordination. In particular, such models correspond
nicely to distributed systems where information about the system is updated only after some delay or
at specific synchronization points.

Our contribution. In this paper, we consider several standard on-line problems and examine their
generalizations to delayed models. These generalizations are generally quite natural and lead to interest-
ing insight into the original problem. We note that in this initial exploration of delayed models, we have
focused on cases where one can modify the original on-line analysis to analyze the delayed version.
We believe that the resulting relative simplicity of many of our results demonstrates the naturalness
and utility of this model. We expect, however, that delayed models will prove more difficult than their
standard counterparts in many instances.

We briefly describe the remainder of the paper. In Section 1, we study the delayed information model
applied to the classical problem of on-line scheduling on parallel machines to minimize the makespan.
Here a scheduling algorithm must assign new jobs to processors based on stale load information.
Traditional algorithms for on-line scheduling do badly in this scenario. We develop new algorithms for
this model and prove almost matching lower bounds. In Section 1, we study the list update problem
in the delayed action model and prove nearly tight upper and lower bounds for deterministic on-line



DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 137

algorithms. We also show that a randomized on-line algorithm can only beat the deterministic lower
bound if it uses paid exchanges. In Section 1, we generalize an on-line stock market model introduced
in [17] by studying natural delayed models. Finally, in Section 1, we apply the delayed action model to
the general class of relaxed metrical task systems [6, 10]. Relaxed task systems are an abstract model
for problems where one has to decide when it is appropriate to make expensive configuration changes.
This class includes the ski rental problem, page migration [15], file replication [15], network leasing [6],
and other problems (see [10]). We extend the results of [6, 10] to apply to relaxed task systems with
delayed action, effectively handling the delayed models of an entire general class of problems.

Related work. In subsequent sections, we will mention related work relevant to the specific problems
we consider. Here, we offer a brief overview of generally relevant related work.

The importance of when information becomes available has been noted previously, especially in
the significant body of work on algorithms with lookahead, e.g. [14, 22, 24, 27]. In the case of on-line
decision models, however, the possibility of not having up-to-date information is not generally addressed.
For load balancing problems, the question has been considered for statistical models [29, 30, 36]; other
queueing based models have also been considered [4, 5, 28]. And recently, [7] considered an on-line
load balancing setting where tasks gather some information about system behavior before making a
choice of processor.

There is also a large body of work on algorithms with distributed agents, who must coordinate
their efforts in the face of some cost for communication, e.g. [3, 8, 12, 13]. These models, however,
model communication as an instantaneous event, and hence the communication cost does not directly
incorporate a notion of time and delay. Another line of research has addressed distributed decision
making when the communication among agents is limited, for example by only allowing local commu-
nication. Implicitly this allows distant agents to communicate only after a number of communication
rounds. The problems investigated include scheduling, load balancing, routing, and general optimization
[11, 19, 25, 31, 32].

2. SCHEDULING

We consider a classical problem in on-line scheduling. A sequence of jobsJ1, J2, . . .must be sched-
uled onm identical parallel machines. Whenever a job arrives, the job must be scheduled immediately
on one of the machines, without knowledge of any future jobs. Preemption of jobs is not allowed. The
goal is to minimize themakespan, i.e., the completion time of the last job that finishes.

The problem was first investigated by Graham [21]. He developed the well-knownList algorithm that
always schedules a job on the least loaded machine. Graham’sList algorithm is (2− 1

m)-competitive.
More recently, on-line algorithms that obtain competitive ratios bounded away from 2 have been devised.
The currently best known competitive ratio for this problem is 1.923 obtained by Albers [1].

In a setting with delayed information, we do not have the current loads on the processors available
to us. When we are presented with thei th job Ji , we have the loads on the machines from up todi + 1
requests ago. That is, we know the load after the jobJi−di−1 was placed. (Whendi = 0 always, we have
the original problem.) We must decide where to place jobJi based on this old information. We examine
the setting where we have a bound on how old the information is at each stage, i.e.,di ≤ d, for some
d. We will refer to the lastdi jobs whose contribution to the loads is not known asunknownjobs and
other jobs asknownjobs.

In this situation, the strategy of placing each job on the processor with the least known load does very
badly. In fact the competitive ratio of that strategy can be as bad asd+ 2− d+ 1

m (for d ≤ m− 1). The
problem is that this strategy does not take into account the potential effect of unknown jobs. We will
devise new algorithms with better competitive ratios for scheduling with delayed information.

We study two variants of the basic scheduling problem. In our first model, we assume that in addition
to the loads of the machines fromdi + 1 requests ago, we also know where the lastdi unknown jobs
were placed. This scenario describes, e.g., a centralized scheduling algorithm where the size of every
new job is not known to the scheduler immediately on arrival, but is revealed at mostd requests later. In
practice, the processing times of jobs often is not known in advance. It is possible to compute accurate
estimates on the processing times, but the computation of such estimates (by the scheduler or the user)
takes a certain amount of time.
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It is simpler to work with a less stringent, but for our purposes equivalent, scenario where we have
available a complete history of the process up todi + 1 requests ago. In this model, by using specific
kinds of deterministic algorithms that do not use the length of the current job in a new scheduling step,
we can figure out where theunknownjobs were scheduled as follows. Suppose we use a deterministic
algorithm that bases its decision on the schedule fromd + 1 requests ago, i.e. ifdi < d pretend
that the state seen by the algorithm is the schedule exactlyd + 1 requests ago. Because we have
complete information about the job history, we can also figure out the complete schedule fromd + 2
requests ago,d+ 3 requests ago, and so on. Hence we can deduce the state seen by the algorithm while
scheduling each of the previousd jobs and thereby determine where each of the lastd unknown jobs were
scheduled.

For this model, we consider an algorithm we callDelayed Listscheduling, as it generalizes Graham’s
List algorithm. Letwi be the known load on machinei . (This is the load without the unknown jobs.) Let
Sdenote the total known load on all the machines; i.e.,S=∑m

i=1wi . Letui be the number of unknown
jobs on machinei . Define thepseudo-loadon machinei to beui + (m− ui − 1)(wi /S). The algorithm
schedules the new job on the machine which has the lowest pseudo-load. (Whend = 0, the algorithm
is exactly the same as List.)

LEMMA 2.1. When the Delayed List algorithm places the current job on machine i, the load on
machine i is at most1+ ui + (m− ui − 1)(wi /S) times the optimal load.

Proof. Let x be the processing time for thej th job. Consider what happens if the algorithm tries
to place the current job on machinei . Let y be the average processing time of the unknown jobs on
machinei . Then`i = wi + ui · y+ x will be the new load on machinei .

The sum of the processing times of all the jobs in the sequence is at leastS+ ui · y + x. Thus
OPT≥ (S+ ui · y+ x)/m. Also,OPT≥ x andOPT≥ y. Hence

`i

OPT
≤ min

(
wi + ui y+ x

x
,
wi + ui y+ x

y
,
wi + ui y+ x

(S+ ui y+ x)/m

)
.

We obtain the required bound on`i
OPT by maximizing the above function over all possible values of

y andx. Let us maximize overy first. We wish to compute

max
y

min

(
wi + ui y+ x

x
,
wi + ui y+ x

y
,
wi + ui y+ x

(S+ ui y+ x)/m

)
.

Let

f1(x, y) = wi + ui · y+ x

x
;

f2(x, y) = wi + ui · y+ x

y
;

f3(x, y) = wi + ui · y+ x

(S+ ui · y+ x)/m
.

Note that each of the three functions is monotone iny. We want to find the maximum of the lower
envelope (i.e., minimum) of these three monotone curves. This must occur either at an end-point of the
intervaly = 0 or y = ∞ or at a point where two of the three functions are equal. Further, a point where
two functions are equal is a potential maximum only if the value of the third function is greater than
the two that are equal.

In fact, our analysis will show that the maximum is achieved when all three functions are equal.

1. Let us first consider the maximum value of the function for end-points of the interval. Fory=∞,
the value of the function is 1. Fory = 0, the value of the function is min((wi + x)/x, (wi + x)/
((S+ x)/m)). This is maximized whenx = (S+ x)/m. Hence the maximum value is 1+(m−1)(wi /S).

We now consider the three possible points where two of the functions are equal.
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2. Supposef1(x, y) = f2(x, y) ≤ f3(x, y). This implies thatx = y ≥ (S+ ui · y+ x)/m. Hence
f1(x, y) = f2(x, y) = ui + 1+ wi /x. Our bound is maximized for the smallest possible value ofx.
But we also havex ≥ S/(m− ui − 1). Hence, the maximum value isui + 1+ (m− ui − 1)(wi /S).

3. Supposef1(x, y) = f3(x, y) ≤ f2(x, y). This implies thatx = (S+ ui · y+ x)/m ≥ y. Hence
f1(x, y) = f3(x, y) = m− ((S− wi )/x). Our bound is maximized for the largest possible value ofx.
But we also havex ≤ S/(m− ui − 1). Hence, the maximum value isui + 1+ (m− ui − 1)(wi /S).

4. Supposef2(x, y) = f3(x, y) ≤ f1(x, y). This implies thaty = (S+ ui · y+ x)/m ≥ x. Alge-
braic manipulation yieldsf2(x, y) = f3(x, y) = ui + (m− ui )(wi + x)/(S+ x), which is increasing
in x sincewi ≤ S. Our bound is maximized for the largest possible value ofx. But we also have
x ≤ S/(m− ui − 1). Hence, the maximum value isui + 1+ (m− ui − 1)(wi /S).

In all cases`i /OPT≤ 1+ ui + (m− ui − 1)(wi /S).

We use the result of Lemma 3 to bound the competitive ratio of the algorithm.

THEOREM 2.1. The Delayed List algorithm is(2+ d−1
m )-competitive.

Proof. The algorithm schedules the current job on the machinei which has the lowest value of
ci = 1+ ui + (m− ui − 1)(wi /S) ≥ `i

OPT. Now,

m∑
i=1

ci ≤
m∑

i=1

[
1+ ui + (m− 1)

wi

S

]
= m+ d +m− 1

because
∑m

i=1wi = S. Hence there must be someci with value at most2m+ d− 1
m = 2+ d− 1

m . Thus, the
competitive ratio of the algorithm is at most 2+ d−1

m .

Theorem 2.1 shows that by spreading out the unknown jobs appropriately, we can achieve a competi-
tive ratio that grows at a “rate” ofd/m. In fact, the analysis in the proof of Lemma 2.1 shows that given
S, x, ui , andwi , one can compute precisely the worst case competitive ratio if the algorithm places the
current job on machinei . This is a function ofS, x, ui , andwi , and an exact expression can be obtained.
A more intelligent algorithm would compute this function for each machine and place the current job on
the machine that minimizes this function. Indeed, this improves the competitive ratio slightly, although
it seems difficult to develop a general bound with a better form than Theorem 2.1. Moreover, the result
of Theorem 2.1 is nearly tight, as the following lower bound shows.

THEOREM 2.2. The competitive ratio of any deterministic algorithm for the delayed scheduling
problem cannot be smaller than2+ d− 2

m+ 1 when this number is an integer less than or equal to m.

Proof. Let A be a deterministic algorithm for the delayed scheduling problem with maximum delay
d. For the lower bound, assume that whenA receives jobJi , it knows the entire schedule after jobJi−d−1

was placed. Supposed = (r − 2)m+ r for an integerr ≤ m. We will construct a request sequence
consisting of (r − 1)m+ 1 jobs such that the optimal load is essentially 1, but some machine inA’s
schedule has loadr .

The firstm− r requests are jobs of size 1. The next (r − 2)m+ r + 1 jobs have size either 1 orε,
whereε > 0 can be arbitrarily small. An adversary selects at mostr of these to have size 1 as follows.
Since a total of (r − 1)m+ 1 jobs are scheduled, there must exist one machinex to which A assigns
at leastr jobs. Note that while the second group of (r − 2)m+ r + 1 jobs is presented,A does not
know the size of any of these jobs. Among the jobs assigned byA to machinex, the adversary chooses
r jobs to be of size 1. Thus the on-line makespan isr . On the other hand, the optimal makespan for this
sequence is 1+ ((r − 2)+ 1)ε. Choosingε arbitrarily small, the competitive ratio is at leastr = 2+
d− 2
m+ 1.

We now consider a second variant of the problem and a corresponding algorithm. In this scenario,
when we are presented with a jobJi , we know the loads on the machines fromdi + 1 requests ago, but
we do not know the actual schedule or job sizes corresponding to these loads. We assume, however,
that each job knows its sequence numberi and the number of jobs already scheduled, ori − di − 1.
(Implicitly, the number of scheduled jobs is increasing, soi − di − 1 ≤ k − dk − 1 wheni < k.) Our
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algorithm will make use of this information in its scheduling decision. This model corresponds to a
distributed system where tasks may place themselves on an appropriate server before other tasks reveal
their processing times, but through simple shared counters limited information such as the values ofi
andi − di − 1 is maintained.

We provide an algorithm for this scenario called theDelayed Avoid Heavyalgorithm. We describe
what happens when thei th job Ji arrives. We say that the machine with thekth smallest load from
known jobs at this time has rankk. The algorithm uses a constantc as a parameter; this will be specified
later. We never schedule a job on the heaviestm/c machines. (For convenience, we will assume that
m/c is integral throughout.) Letb = m(1− 1/c), i.e., the number of machines excluding the heaviest
m/c. Let f (Ji ) = (2i − di ). The Delayed Avoid Heavy algorithm schedules jobJi on the machine with
rankb− ( f (Ji ) modb).

For the purpose of analysis, we will divide the jobs into groups. JobJi is placed in group number
b f (Ji )/bc.

LEMMA 2.2. Two jobs Ji and Jk in the same group are assigned to different machines.

Proof. Without loss of generality, assumei < k. When schedulingJi , the algorithm sees the
scheduleSi that results afteri − di jobs have been assigned to machines and when schedulingJk, the
algorithm sees the scheduleSk that results afterk − dk jobs have been assigned. As the earlier jobJi

cannot see a more recent schedule than the later, it is the case thati − di ≤ k− dk.
SinceJi and Jk are in the same group (sayg), g = b f (Ji )/bc = b f (Jk)/bc. ThenJi is assigned to

the machineMi of rankb− ( f (Ji ) modb) = b− ( f (Ji )− g · b) = (g+ 1)b− (2i − di ) (in schedule
Si ). Similarly, Jk is assigned to the machineMk of rank (g+ 1)b− (2k− dk) in scheduleSk.

Now, scheduleSk results from scheduleSi by the scheduling of an additional (k−dk)− (i −di ) jobs.
Observe that a machine that has rankr in a certain scheduleS has rank at leastr − i in the schedule
obtained by placingi additional jobs inS. Thus, in scheduleSk, the machineMi must have rank at
least

(g+ 1)b− (2i − di )− ((k− dk)− (i − di )) ≥ (g+ 1)b− (k+ i − dk) > (g+ 1)b− (2k− dk).

This implies that the machinesMi andMk are distinct.

LEMMA 2.3. The competitive ratio of the Delayed Avoid Heavy algorithm is at most2+ 2d
b + c.

Proof. When jobJi arrives, we know the loads on all machines except for the contributions to the
loads by the lastdi jobs. LetS be the set of the lastdi jobs together with jobJi . Observe that thef
values of any two jobs inScan differ by at mostd + di ≤ 2d. Thus the number of distinct groups that
the jobs inSbelong to is at most 2+b 2d

b c ≤ 2+ 2d
b . Since no two jobs in the same group get placed on

the same machine, the maximum number of jobs inS that get placed on the same machine is at most
2+ 2d

b , and in particular there are at most 1+ 2d
b unknown jobs on the processor that getsJi . Letwi

be the known load on the machine on which jobJi is placed. LetS be the total known load on all the
machines. Thenwi /S≤ c/m. If not, then the loads on the heaviestm/c machines must each be greater
thanSc/m, implying that the total load is greater thanS. This is clearly not possible. Now, Lemma 3
implies that, afterJi is placed onMi , the total load onMi is at most 2+ 2d/b+ c times the optimal
load. Hence the competitive ratio is at most 2+ 2d

b + c.

Substitutingb = m(1− 1/c) and optimizing forc, we get that, forc = 1+√2d/m, the competitive
ratio of the Delayed Heavy Load algorithm is bounded by 2+ 2d/m+ 2

√
2d/m. It is possible to get

slightly better bounds by being a bit more careful in Lemma 3. However, the expressions that result are
far from elegant and the improvements are very minor, so we choose to omit them. The main point is
that in this more limited model, by again spreading out the unknown jobs appropriately, we can achieve
a competitive ratio that grows at a “rate” of about 2d/m.
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3. LIST UPDATE

The list update problem is a fundamental problem in the theory of on-line algorithms. It consists
of maintaining an unsorted list so as to minimize the total cost of accesses on a sequence of requests.
Formally, we are givenn items that are stored in an unsorted linear linked list. A list update algorithm
receives a sequence ofrequests, where each request specifies one item in the list. Toservea request
the algorithm mustaccessthe requested item; i.e., it starts at the front of the list and proceeds linearly
through the items until the desired item is found. Serving an access to the item at positioni in the list
incurs a cost ofi .

In the standard problem, the list may be updated at any time. More specifically, after each request
the accessed item may be moved at no extra cost to any position closer to the front of the list. These
exchanges are calledfree exchanges. At any time, two adjacent items in the list may be exchanged with
cost 1; these exchanges are calledpaid exchanges. The goal is to serve a sequence of requests so that
the total cost is as small as possible.

We investigate a model with delayed action where the free and paid exchanges made by an on-line
algorithm in response to a request only take effect some time later. More specifically, we consider a
setting where the updates are implemented at the end of around, where every round consists of 1+ d
consecutive requests in the request sequence. This setting can also be viewed as a scenario where the
on-line algorithm can update the list only at the end of a round. Items requested during the round may be
moved closer to the front of the list using free exchanges before the next round. Items not requested in
the round can be moved only using paid exchanges. In the following we work with this latter scenario.
Note that whend = 0, we have the original standard problem.

To motivate the delayed model, consider the case where the linked list data structure is a shared object
among a number of agents. In this case agents may read the list simultaneously without any problems;
however, while the data structure is being updated, it may be necessary for consistency to lock the
structure. In this case infrequent updates may provide better overall performance. We may think of the
update operations as being batched, in which case the update actions are delayed.

In the following we first concentrate on deterministic on-line algorithms. When analyzing on-line
algorithms, we consider two types ofadversariesthat generate a request sequence and serve the generated
sequenceoff-line.

• Thestandard adversarymay update the list after each request.

• The limited adversarycan update the list only at the end of each round.

We call a deterministic list update algorithmA c-competitive against any standard (limited) adversary
ADV if, for all list lengths nand for every request sequence generated byADV, the cost incurred byA
is not greater thanc times the cost paid byADV.

For the standard list update problem, Sleator and Tarjan [35] showed that the well-known on-line
algorithm Move-To-Front (MTF) is 2-competitive. This algorithm moves an item to the front of the list
each time it is accessed. This is the best competitive ratio any deterministic on-line algorithm can obtain
in the standard model [26].

We now study the problem with delayed action.

THEOREM 3.1. Let A be a deterministic on-line algorithm for the list update problem with delayed
action. If A is c-competitive, then c≥ 1+ d. This lower bound holds for both types of adversaries.

Proof. In each round the adversary issues 1+d requests to the item that is stored at the last position
in A’s list. Thus, in each roundA incurs a cost of (1+ d)n.

At the end of each round, the adversary moves the item requested in the next round to the front of the
list using paid exchanges. Thus, its cost in each round is at mostn+ d. The ratio of the cost incurred
by A to the cost incurred by the adversary is

(1+ d)n

n+ d
= 1+ d

1+ d/n

and, for large values ofn, this expression can be arbitrarily close to 1+ d.
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Next we give an adaptation of MTF to the model of delayed action.

ALGORITHM MTF(d). At the end of each round, the algorithm moves the requested items to the front
of the list. At the head of the list, for any two itemsi and j requested in the round,i precedesj if and
only if the last request toi is more recent than the last request toj .

The Algorithm MTF(d) can also be thought of as the algorithm that batches all Move-To-Front
operations until an update is allowed.

THEOREM3.2. The algorithm MTF(d) is (2+ d)-competitive. This upper bound holds for both types
of adversaries.

Note that ford = 0 we obtain the upper bound of 2 achieved by the MTF algorithm in the standard
list update problem.

Proof. We prove the theorem for the standard adversary. For the analysis of MTF(d) it is convenient
to work with a different model for updating the list. In this modified model, an on-line algorithm may
move an item accessed in a round only on the last request to the item in that round. Let MTF’(d) be the
algorithm that moves an item to the front of the list whenever it is requested for the last time in a round.
Given any request sequenceσ , at the end of each round the lists maintained by MTF’(d) and MTF(d)
are the same. Thus, in each round the cost incurred by MTF(d) is not higher than the cost incurred by
MTF’(d). We show that the cost incurred by MTF’(d) is at most 2+ d times the cost incurred by the
adversary, for anyσ .

We assume that MTF’(d) and the adversary start with the same list. Given an arbitrary request
sequenceσ = σ (1), σ (2), . . . , σ (m), let t denote the point in timeafter the t th requestσ (t) is served.
We define a potential function8. For any timet and any itemx in the list, letr (t, x) be the next round
in the request sequence in whichx is requested. Ifx is still requested in the current round, thenr (t, x)
is equal to the current round. Letn(t, x) be the number of remaining requests tox in r (t, x). We have
n(t, x) ≤ 1+ d. An inversionis an ordered pair (y, x) of items such thatx occurs beforey in the
adversary’s list and aftery in the list maintained by MTF’(d). At any time the potential8 is the number
of inversions (y, x), where each inversion is multiplied byn(t, x), which can be seen as the weight of
inversion (y, x).

Consider any requestσ (t) and letx be the item requested. LetCMTF(t) andCADV(t) be the actual costs
paid by MTF’(d) and the adversary during the service ofσ (t). Clearly,CMTF(t) ≤ CADV(t)+inv(t−1, x),
whereinv(t − 1, x) is the number of inversions (y, x) immediately before the request. We show that
during the service ofσ (t) the potential decreases byinv(t − 1, x) due to inversions removed or due to
inversions whose weights change. Ifx is not requested for the last time in the round, then the number
of remaining requests tox in the round decreases by 1; i.e.,n(t − 1, x)− n(t, x) = 1 and the weight of
each inversion (y, x) decreases by 1. Ifx is requested for the last time in the round,n(t, x) can increase,
i.e.,n(t, x) ≥ n(t − 1, x). However,x is moved to the front of the list, which implies that all inversions
(y, x) are removed andn(t, x) does not contribute to the potential. In any case, the potential decreases
by inv(t − 1, x) during the service ofσ (t). If x is moved to the front of the list, then at mostCADV(t)
new inversions (x, z) can be created, each of which increases the potential byn(t, z) ≤ 1+ d. Since
n(t − 1, y) = n(t, y) for all y 6= x, we conclude that at any timet ,

CMTF(t)+18 ≤ CADV(t)+ (1+ d) · CADV(t)

≤ (2+ d)CADV(t).

Finally we have to consider a paid exchange made by the adversary. Each paid exchange can create
an inversion, which increases the potential by at most 1+ d, but the adversary has to pay a cost of 1.
So againCMTF(t)+18 ≤ (1+ d)CADV(t).

Summing over all the steps ofσ and noting8 ≥ 0 yieldsCMTF(σ ) ≤ (2+ d)CADV(σ ).

It is straightforward to modify the above proof to show the following:

COROLLARY 3.1. If each item is requested at most k times in a round, then MTF(d) is (1 + k)-
competitive.



DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 143

This corollary shows that if one is attempting to choose a value ofd to balance reading and writing
costs, a key parameter to consider is how often items can be requested repeatedly.

Next we consider randomized on-line algorithms and give two lower bounds. None of the randomized
on-line algorithms that have been presented so far for the standard list update problem uses paid
exchange, see e.g. [2, 34]. We show that such algorithms cannot be better than (1+ d)-competitive in
the setting with delayed action.

THEOREM 3.3. Let A be a randomized on-line algorithm for the list update problem with delayed
action and suppose that A does not use paid exchanges. If A is c-competitive against any oblivious
adversary, then c≥ 1+ d. This lower bound holds for both types of adversaries.

Proof. An adversary constructs a request sequence inphases. In each phase the adversary inspects
its current list and requests then items in ascending order. To each of then items, the adversary issues
1+d consecutive requests, which form a round. At the end of each round, the adversary moves the item
requested in the next round to the front of the list using paid exchanges. The adversary needsi − 1 paid
exchanges for the item requested in thei th round because the list items are requested in ascending order
during the phase. Thus, the adversary’s cost for serving requests in thei th round isi −1+1+d = i +d.
Hence, in each phase the adversary incurs a total cost of at most

∑n
i=1(i +d) = n(n+1)/2+nd. The on-

line algorithm can only move an item after all the 1+d requests of a round have been served. Considering
the on-line algorithm’s list configuration at the beginning of a phase, fori = 1, . . . ,n, the item stored at
positioni in the list is requested in exactly one of the rounds. If an item requested in a round is moved
closer to the front of the list at the end of a round, this cannot decrease the cost of subsequent rounds in
the phase. Thus the online algorithm’s cost in a phase is at least

∑n
i=1(1+d)i = (1+d)n(n+1)/2. The

ratio of the cost incurred byA to the cost incurred by the adversary is at least (1+d)/(1+2d/(n+1)).
For large values ofn, this can be arbitrarily close to (1+ d).

If a randomized on-line algorithm uses paid exchanges, our lower bound is slightly weaker.

THEOREM 3.4. Let A be a randomized on-line algorithm for the list update problem with delayed
action and suppose that A does use paid exchanges. If A is c-competitive against any oblivious adversary,
then c≥ (1+ d)/2. This lower bound holds for both types of adversaries.

Proof. We give a probability distribution on request sequences such that the expected cost incurred
by any deterministic on-line algorithm is at least (1+d)/2 times the expected cost incurred by an adver-
sary. The result then follows from Yao’s minimax principle [37]. The request sequence is constructed
as follows. In each round one of then items is chosen uniformly at random; this item is requested 1+d
times. The expected cost incurred by a deterministic on-line algorithm in a round is (1+d)n/2 whereas
the adversary’s cost is no more thann + d. The ratio of the cost incurred byA to the cost incurred
by the adversary is at least (1+ d)/(2+ 2d/n). For large values ofn, this can be arbitrarily close to
(1+ d)/2.

4. STOCK TRADING

We consider an on-line stock market model studied in [17] based on similar probabilistic models used
for stock price fluctuations (see, e.g., [23]). Consider a game where at each step, the price of a stock
either increases by a constant factorα > 1 or decreases by a factor 1/α. The game lasts forn steps,
and the price moves up form of these steps. At each step, one can invest a fractions of one’s wealth in
the stock and the rest in cash. If the price moves up, thereturn from that step is the factorαs+ 1− s
that the player’s wealth increases; if the price moves down, the returns

α
+ 1− s is less than 1. The

total return is the factor by which the player’s wealth increases over the course of the game. Following
[17], we say in this setting that the on-line trader plays against an (α,m, n)-adversary if an adversary
determines the price fluctuations subject to the initial constraints.

We review the relevant results from [17]. LetRα(m, n) be the optimal on-line return against the
(α,m, n)-adversary. We have boundary conditionsRα(n, n) = αn and Rα(0, n) = 1. As the optimal
algorithm obtains a return ofαm by investing fully whenever the price will go up, studying the on-line



144 ALBERS, CHARIKAR, AND MITZENMACHER

return is sufficient to find the competitive ratio. The returnRα(m, n) satisfies the recurrence

Rα(m, n) = max
0≤s≤1

min

{
(αs+ 1− s)Rα(m− 1, n− 1),

(
s

α
+ 1− s

)
Rα(m, n− 1)

}
,

and if we define the partial binomial sumB(k; n, p) = ∑k
i=0(n

i )pi (1− p)n−i , then the solution to the
recurrence satisfies

R−1
α (m, n) = B

(
n−m− 1;n− 1,

α

α + 1

)
+ αn−2mB

(
m− 1;n− 1,

α

α + 1

)
.

An interesting consequence is that even if the number of up movementsm is less than the number of
down movements, that ism < n

2, the on-line player can make a profit. In fact this holds true even if
m= 1.

We consider an extension of this model to two delayed models. In the first model, we consider the
problem when the player initially sets a fractions of his or her wealth to remain invested over the next
d+ 1 time steps and can only change the investments everyd+ 1 time steps. This model might apply,
for example, to an investor who only performs trades at specific or less frequent time intervals and is
unwilling to follow every change in the market. Also this model decribes scenarios where a group of
agents takes decisions at particular time instances, as mentioned in the Introduction. Whend = 0, we
have the original model. We call every set ofd+ 1 steps around. For convenience we letr = d+ 1 be
the round length below. Without loss of generality we assume thatn is a multiple ofr .

We let Pα(r,m, n) be the optimal on-line return for a player playing against an (α,m, n)-adversary
who can change its investment only everyr steps. (Of coursePα(1,m, n) = Rα(m, n).) For convenience
we drop theα from the notation where the meaning is clear.

Note then thatP(r,m, n) satisfies the following recurrence:

P(r,m, n) = max
s

min
i

0≤i≤r,m

P(r,m− i, n− r )(α2i−r s+ 1− s).

That is, for each round, the optimal player chooses the investments that maximizes his or her return
regardless of the number of up movements the adversary chooses.

Interestingly, the behavior in this delayed model depends precisely on whether the period lengthr is
even or odd.

LEMMA 4.1. For r even, P(r,m, n) = 1 if m ≤ n/2 and P(r,m, n) = α2m−n if m ≥ n/2.

Proof. If m ≤ n/2, then the adversary can arrange so that each round has at least as many down
moves as up moves, and hence no round has a return greater than 1. Of course the player can guarantee
a return of 1 by not investing, i.e., choosings= 0 in each round.

Similarly, if m ≥ n/2, then the player can guarantee a total return ofα2m−n by investing everything
each round, i.e., always choosings= 1. The adversary can ensure that no greater return is possible by
alternating up and down moves on the first 2(n−m) steps.

The analysis forr odd generalizes and makes use of the result from [17] corresponding to the case
r = 1 (i.e.,d = 0).

LEMMA 4.2. Let N= n
r and M= m−b r

2c n
r . For r odd, P(r,m, n) = 1 if m ≤ b r

2cN, P(r,m, n) =
α2m−n if m ≥ d r

2eN, and P(r,m, n) = Rα(M, N) otherwise.

Proof. The trivial cases wherem≤ b r
2cn or m≥ d r

2en handled as in Lemma 4.1.
Otherwise, the problem is more interesting. We first show in this case thatP(r,m, n) ≤ Rα(M, N).

Suppose that the adversary announces that in each round there will either bed d
2e or b d

2c up moves.
Then, in total, each round the invested value changes by a factor ofα or 1/α, and there areM up rounds
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out of theN total rounds. In this case, the problem reduces to the standard case (r = 1) from [17]. In
particular, the adversary can guarantee a competitive ratio of no more thanRα(M, N).

To prove the other direction,P(r,m, n) ≥ Rα(M, N), we must show that the adversary cannot gain
by using any other strategy. We use induction onn. The base case is trivial.

Now suppose the adversary usesb r
2c + j up moves in the first round. (The casesj > 0 and j < 0

are entirely similar.) By induction, the return for the subsequent rounds isRα(M − j, N − 1). Simple
algebraic manipulation (by determining the investor’s first investment) yields that the payoff from the
first round is

α2 j−1− 1

α − 1

(
R−1
α (M − 1, N − 1)− R−1

α (M, N)
)+ R−1

α (M, N).

Hence we have left to show that[
α2 j−1 − 1

α − 1

(
R−1
α (M − 1, N − 1)− R−1

α (M, N)
)+ R−1

α (M, N)

]
Rα(M − j, N − 1)≥ Rα(M, N).

This is a combinatorial identity that can be checked in a straightforward but quite tedious manner; we
spare the reader the details.

Next we consider our second delayed model. Suppose that information about trades is continuously
updated, but remainsd steps behind. That is, we only know the results from the first trade after the
(d + 1)st trade completes. Againd = 0 corresponds to the original model. Investors can again invest
a fraction of their wealth each step. (They may not have accurate knowledge of how much wealth
they have, since not all trade results are known. However, investments are possible because only the
fraction of the wealth to be invested has to be determined.) This model accounts for situations where one
receives updates on prices, but not in real-time. Surprisingly, we can show that there exist money-making
schemes for arbitrarily larged even when there is only 1 up day.

THEOREM 4.1. There exist money-making schemes for m= 1, regardless of n and d.

Proof. Let εi be the investment on thei th day. We may setεi = 0 at any point after the player sees
a result which is an up move. It will also be convenient notationally if we defineεi = 0 for i ≥ n. If the
up move is on dayj , then the total return to the player will be

(ε jα + 1− ε j )
∏

i 6= j,i≤ j+d

(
εi

α
+ 1− εi

)
.

Note that

(
εa

α
+ 1− εa

)(
εb

α
+ 1− εb

)
=
(
εa + εb

α
+ 1− εa − εb + εaεb

(
1− 1

α

)2)
. (1)

It will be convenient to assume that theεi will be chosen sufficiently small that we may simplify by
removing the nonlinear terms; that is, we proceed as though

(
εa

α
+ 1− εa

)(
εb

α
+ 1− εb

)
=
(
εa + εb

α
+ 1− εa − εb

)
.

Also,

(εaα + 1− εa)

(
εb

α
+ 1− εb

)
> 1 if εa >

εb

α(1− εb)
.
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Hence, the condition

(ε jα + 1− ε j )
∏

i 6= j,i≤ j+d

(
εi

α
+ 1− εi

)
> 1

is satisfied if

ε j >

∑
i 6= j,i≤ j+d εi

α
(
1−∑i 6= j,i≤ j+d εi

) .
This condition is easily satisfied simultaneously for all possible values ofj by choosingε1 to be suitably
small and having theεi grow geometrically at a suitably small rate (say, less thanα1/d). Also note the
values can easily be chosen so that the effects of the nonlinear terms of Eq. (1) are suitably dominated,
justifying our previous simplification.

5. DELAYED RELAXED TASK SYSTEMS

In this section, we will consider the delayed action model applied to relaxed metrical task systems [6,
10]. An example of a relaxed metrical task system is the ski rental problem described in the Introduction.
Another example of a relaxed metrical task system is thek-page migration problem [10, 15]. For this
problem, we wish to keepk copies of a page available on a network. When a processor wishes to
access a page, it requests a copy from a processor holding that page. The communication cost incurred
is proportional to the distance between processors. Alternatively, a page copy may migrate from one
processor to another at a higher communication cost proportional to the distance between processors.
In the delayed model, we assume that the time to transfer a page is nonnegligible, and hence there is a
time between when a migration begins and ends during which the old copy serves these requests.

A relaxed metrical task system is associated with a parameterD and an underlying metrical task
system with the same set of configurations. A configuration change in the relaxed task system isD
times more expensive than the corresponding change in the underlying task system. Conveniently, we
can demonstrate how to find a competitive algorithm for a relaxed metrical task system in the delayed
action model, given a competitive algorithm for the associated metrical task system. Hence we can
effectively handle an entire general class of problems, generalizing the work of [6, 10] on relaxed
metrical task systems to the setting of delayed actions. We begin by defining a metrical task system [16]
and then move on to define relaxed metrical task systems. Here we follow [10].

DEFINITION 5.1. A task system, P, consists of a set of configurations (or states)C and a distance
function between any two configurationsC1,C2 ∈ C, denoted dist(C1,C2). (This is themove cost
between the configurations.) The task system consists of a set of requests, called tasks. A taskr is
associated with a service cost in each configuration, denoted task(C, r ) (this is thetask cost). An
algorithm forP is associated with a configurationC1. Given a requestr , the algorithm serves it by
moving to configurationC2 paying a cost of cost(C1,C2, r ) = dist(C1,C2)+ task(C2, r ). If the move
cost function dist forms a metric space overC, then the task system is calledmetrical.

DEFINITION 5.2. A D-relaxedtask system,D-P, with respect to a task systemP and some parameter
D ≥ 1/2, is the task system with cost, distance, and task functions denoted costD, distD, and taskD,
respectively. distD and taskD are defined as follows: GivenC1,C2 ∈ C, distD(C1,C2) = D · dist(C1,C2).
GivenC ∈ C and a taskr , taskD(C, r ) = minC′ dist(C,C′)+ task(C′, r ).

Consider an algorithm for a task systemP. Suppose the algorithm starts out in configurationC0. It
receives a sequence of requestsr1, r2, . . .. When requestri is received, the algorithm is in configuration
Ci−1. The algorithm first moves to configurationCi and then services requestri from this configuration.
The cost of the configuration change is dist(Ci−1,Ci ) and the request service cost is task(Ci , ri ). In the
delayed action model, we distinguish between thereal state of the algorithm and thedesiredstate of
the algorithm. The algorithm should be in the desired configurationCi when it is just about to service
requestri . However, state changes may not be instantaneous, but occur only after a certain delay. Hence,
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the algorithm’s state may not beCi , but some earlier stateCi−di , wheredi is some delay parameter.
Thus, the algorithm must service the requestCi from stateCi−di . The request service cost is therefore
task(Ci−di , ri ). Eventually, the algorithm’s real state will go through the same sequence of states as the
desired state, i.e.,C0,C1,C2, . . .. Thus, we can think of the configuration change cost as dist(Ci−1,Ci ),
even though the configuration change may not occur right away. We will assume that the delay is
bounded byd, i.e.,di ≤ d for somed. Note that the cased = 0 gives us the original task system. We
consider algorithms for task systems in the delayed action model and determine their competitive ratio
as a function of the maximum delayd. For the analysis, we will assume that the adversary does not
have any delay associated with its configuration changes.

For an arbitrary metrical task systemP, the delayed action model may not be meaningful. In fact, there
are task systemsP such that, in the delayed action model, it is impossible to have a finite competitive
ratio even for delayd = 1, even though there is an algorithm with finite competitive ratio ford = 0. For
example, this could happen in the case offorcingtask systems, where the request service costs are either
0 or∞. For relaxed task systems, however, the delayed action model is meaningful, as we now show.

5.1. Cost Analysis for Delayed Relaxed Task Systems

LetP be a metrical task system. Let task(C, r ) be the cost of servicing requestr from configuration
C in P. Let Cmin(C, r ) denote any configurationC′ which minimizes dist(C,C′) + task(C′, r ). Let
taskD(C, r ) be the cost of servicing requestr from configurationC in D-P. Then taskD(C, r ) =
dist(C,C′)+ task(C′, r ), whereC′ = Cmin(C, r ).

Consider an algorithm forD-P. The total cost in servicing a sequence of requestsr1, r2, . . . , rn by
moving through the sequence of statesC0,C1,C2, . . . ,Cn is

n∑
i=1

distD(Ci−1,Ci )+
n∑

i=1

taskD(Ci , ri ) = D
n∑

i=1

dist(Ci−1,Ci )+
n∑

i=1

(
dist(Ci ,C

′
i )+ task(C′i , ri )

)
,

whereC′i = Cmin(Ci , ri ).
On the other hand, the cost of servicing the request sequence in the delayed model is

n∑
i=1

distD(Ci−1,Ci )+
n∑

i=1

taskD

(
Ci−di , ri

) ≤ D
n∑

i=1

dist(Ci−1,Ci )+
n∑

i=1

(
dist

(
Ci−di ,C

′
i

)+ task(C′i , ri )
)

≤ D
n∑

i=1

dist(Ci−1,Ci )+
n∑

i=1

dist
(
Ci−di ,Ci

)+ n∑
i=1

(dist(Ci ,C
′
i )+ task(C′i , ri )) ≤ D

n∑
i=1

dist(Ci−1,Ci )

+
n∑

i=1

i∑
j=i−di+1

dist(Cj−1,Cj )+
n∑

i=1

(dist(Ci ,C
′
i )+ task(C′i , ri )) ≤ (D + d)

n∑
i=1

dist(Ci−1,Ci )

+
n∑

i=1

(dist(Ci ,C
′
i )+ task(C′i , ri )).

Thus for the purpose of analysis, we can think of the delayed model as being equivalent to the model
without delay where the cost of moving from configurationC1 to C2 is (D + d)dist(C1,C2) and the
request service cost is the same as before. The cost estimate we get using this approximation is an upper
bound on the actual cost incurred by the algorithm in the delayed model. On the other hand, since we
compare with an adversary that does not face delays, the cost for the adversary is the same as for the
relaxed task system without delays. This considerably simplifies the analysis. In particular, this means
that if we use the same algorithm for the delayed model as for the original relaxed task system, the cost
increases by at most a factor of (1+ d

D ). Hence ifA is ac-competitive algorithm for the relaxed task
system without delays, thenA is ac(1+ d

D )-competitive algorithm for the relaxed task system in the
delayed model.

Since the results of [6, 10] show how to turn competitive algorithms for metrical task system into
competitive algorithms for relaxed metrical task systems, we now have a means of turning competitive
algorithms for metrical task system into competitive algorithms for relaxed metrical task system in
the delayed model. The above observation shows that the competitive ratio we achieve for the delayed
model is at most a factor of (1+ d

D ) times the competitive ratio for the original relaxed task system.
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In fact, it is possible to improve on this observation and get better competitive ratios by modifying
the algorithm and/or the analysis of [6, 10] to tailor them to the delayed model. We demonstrate this
below. Our results generalize the algorithms of [6, 10]; in fact, whend = 0, our arguments reduce to
theirs.

5.2. Randomized Algorithm

Let A be ac-competitive algorithm forP, and let D ≥ 1/2. We give a randomized algorithm
DelayedD-Alg that is competitive against adaptive on-line adversaries forD-P in the delayed model.
The algorithm is exactly the same as the algorithm in [6] for relaxed task systems.

ALGORITHM DELAYED D-Alg. Algorithm DelayedD-Alg simulates a version of algorithmA. At all
times, the configuration of DelayedD-Alg is equal to that of the simulated version ofA. Upon receiving
a requestr , with probability 1

2D , feedA with new requestr , and change the configuration to the new
configuration ofA. With probability 1− 1

2D , the algorithm stays in the same configuration and serves
the request from there.

THEOREM 5.1. LetP be a metrical task system, and let A be c-competitive forP against adaptive
on-line adversaries. Algorithm Delayed D-Alg is(3+ d−1

D )c-competitive for D-P with delay d, against
adaptive on-line adversaries, for D ≥ 1/2.

The proof is a modification of the proof of Theorem 4.1 in [6]. The definition of relaxed task system
we use is from [10]. This is slightly more general than the definition of relaxed task systems used in [6].
However, the proof of Theorem 4.1 in [6] can be easily modified to work for the more general definition
[9]. We briefly indicate the modifications in the proof of [6] to obtain the above theorem for relaxed task
systems with delay. We will use the same notation as in [6]; we refer the reader to [6] for definitions.

The potential function used is

8(hn, An) = (3D + d − 1) · Up(ĥn, An),

whereUp is defined by

Up(ĥn, An) = min
Ā
{Up(ĥn, Ā)+ c · dist(Ā, An)}.

When the adversary changes configuration fromAn to An+1, the change in potential is bounded by

18 ≤
(

3+ d − 1

D

)
· c · distD(An, An+1).

The expected cost of algorithm DelayedD-Alg on receiving requestrn+1 is bounded by

E(CostDel D-Alg(hn, rn+1)) ≤ 3D + d − 1

2D
· E(CostAlg(ĥn, rn+1)).

This then allows us to prove that

E(18) ≤
(

3+ d − 1

D

)
· c · taskD(An+1, rn+1)− E(CostDel D−Alg(hn, rn+1)).

5.3. Deterministic Algorithm

For any deterministic algorithmA, request sequenceσ , and requestr , let costA(σ, r ) (or costA(r )
whenσ follows from the context) be the cost incurred byA while servicingr from the configuration
reached by previously servicingσ . Also, let costA(σ ) be the total cost ofA on σ . Assuming thatA is
c-competitive forP, we define the competitive algorithm DelayedD-DAlg for D-P as follows. (The
algorithm is a modification of the algorithmD-DAlg in [10] for relaxed task systems.)



DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 149

ALGORITHM DELAYED D-DAlg. Algorithm DelayedD-DAlg simulates 2D copiesA1 . . . A2D of A.
Letβ = 2+√1+ d/D. The configuration of DelayedD-DAlg is always the same as that ofA1. When
given a new requestr , the algorithm gives it to one of theAi according to the following rule:

• if there existsi ≥ 2 such that costAi (r ) ≥ 1
βccostA1(r ), r is given to Ai (i.e., the simulated

configuration ofAi is updated). Then DelayedD-DAlg servicesr remotely, without changing its
configuration.

• otherwise,r is given toA1. Then DelayedD-DAlg servicesr and moves to the new configu-
ration of A1.

THEOREM5.2. LetP be a metrical task system and let A be a c-competitive deterministic algorithm
for P. Then algorithm Delayed D-DAlg is β2c2-competitive for the D-relaxed task system D-P.

Proof. The proof is a modification of the proof of Theorem 2.1 in [10]. It consists of two steps.
First, we show that the sum of the costs of algorithmsA1 . . . A2D is within a factor 2c from the optimal
off-line cost of servicing the requests inD-[]. Then we show that the cost of DelayedD-DAlg is within
a factor (β2/2)c from the above sum. The result will follow. For brevity, we will often refer to the
algorithm DelayedD-DAlg as simplyD-DAlg .

The following lemma is proved in [10, Lemma 2.1].

LEMMA 5.1. Letσ be a request sequence, and letσ1 . . . σ2D be(possibly empty) subsequences ofσ
such that each request fromσ appears in exactly oneσi . Also, let A be a c-competitive algorithm for
P and letcostAdv(σ ) be the optimal off-line cost of servicingσ in D-P. Then

2D∑
i=1

costA(σi ) ≤ 2c · costAdv(σ ).

The next lemma is analogous to Lemma 2.2 in [10].

LEMMA 5.2. Letσi be a sequence of requests given to Ai while running D-DAlg onσ . Then

costD−DAlg(σ ) ≤ β
2

2
c

2D∑
i=1

costAi (σi ).

Proof. We may split costD-DAlg(σ ) into costSD-DAlg(σ ) (the cost of servicing requests) and costM
D-DAlg

(σ ) (the cost of moving between configurations).

We analyze the cost incurred byD-DAlg to service a requestr . If r is given toAi , the cost of servicing
r from the current configuration ofD-DAlg is at mostβc times costAi (r ). Hence, we can bound the
total cost of servicing requests byβc

∑2D
i=1 costAi (σi ).

Therefore, it is sufficient to bound costM
D-DAlg(σ ) = (D+ d) · costA1(σ1) in terms of

∑2D
i=1 costAi (σi ).

To this end, consider algorithmsA′i which simulateAi onσi , but also service all requests fromσ1 in the
following way: wheneverr ∈ σ1 appears,A′i moves from its current configurationC toC′ = Cmin(C, r ),
servicesr and moves back toC, paying costA′i (r ) := 2 · dist(C,C′) + task(C′, r ) ≤ 2 · (dist(C,C′)+
task(C′, r )) ≤ 2 · costAi (r ). As r was given toA1, we know that

costAi (r ) ≤ 1

βc
costA1(r )

which implies

costA′i (r ) ≤ 2

βc
costA1(r ).

Hence the total cost ofA′i (denoted by costA′i (σ1)) is bounded by

costAi (σi )+
∑
r∈σ1

costAi (r ) ≤ costAi (σi )+ 2

βc

∑
r∈σ1

costA1(r ) = costAi (σi )+ 2

βc
costA1(σ1).



150 ALBERS, CHARIKAR, AND MITZENMACHER

On the other hand, the algorithmA1 is c-competitive, so costA1(σ1) ≤ c · costA′i (σ1). Hence

1

c
costA1(σ1) ≤ costA′i (σ1) ≤ costAi (σi )+ 2

βc
costA1(σ1)

and thus costA1(σ1) ≤ βc
(β−2) · costAi (σi ). Now we can bound the moving cost as follows:

costMD-DAlg(σ ) = (D + d) · costA1(σ1)

≤ 1

2

(
1+ d

D

) 2D∑
i=1

costA1(σ1)

≤ βc

2(β − 2)

(
1+ d

D

) 2D∑
i=1

costAi (σi ).

costD-DAlg(σ1) = costSD-DAlg(σ )+ costMD-DAlg(σ )

≤
(
β + β

2(β − 2)

(
1+ d

D

))
c

2D∑
i=1

costAi (σi )

= β2

2
c

2D∑
i=1

costAi (σi ).

Theorem 5.2 follows from Lemmas 5.1 and 5.2.

5.4. Other Results

Similar to the results in [10], we can get slightly better competitive ratios formonotonictask systems
(defined below), as well as randomized algorithms against oblivious adversaries.

Monotonic Task Systems

DEFINITION 5.3. A monotonic task systemis a forcing task system with a monotonicity property
between configurations as follows. A configurationC is said to be dominated byC′ if for all tasks for
which C is allowable so isC′. A forcing task system ismonotonicif for every pair of configurations
C1,C2 there exists a configurationC dominating both, and for every configurationC′1 dominated by
C1, dist(C1,C) ≤ dist(C′1,C2).

A better ratio ofγ 2c2 (whereγ = 1+√1+ d
D ) may be obtained when the underlying task system []

is monotonic. An example of a monotonic task system is the Steiner tree problem. The corresponding
relaxed version is the page replication problem. Another example is the generalized Steiner tree problem;
the relaxed version is the network leasing problem.

To get the better bound, we use a modified version of DelayedD-DAlg, which now simulatesD
algorithms A1 . . . AD and gives a requestsr to Ai for which costAi (v) ≥ 1

γ ccostA1(r ) (if such an
algorithm exists) or toA1 otherwise. The analysis is similar to that in [10].

Randomized Algorithm against Oblivious Adversary

One can define a randomized version ofD-DAlg, called D-RAlg, which is (3+ d
D )c-competitive

against an oblivious adversary. For monotonic task systems it is (2+ d
D )c-competitive. The algorithm

is exactly the same as the randomized algorithm for relaxed task systems given in [10]; hence the same
name. The algorithmD-RAlg simulates 2D algorithmsA1 . . . A2D (D algorithms in the monotonic
case). At the beginning it chooses one of them at random (sayAi ) and then always keeps the same
configuration asAi . The requests are always given to the algorithm which incurs thehighestcost. The
following lemma bounds the expected cost of the algorithmD-RAlg.
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LEMMA 5.3. The expected cost of D-RAlg is at most( 3
2 + d

2D )
∑2D

i=1 costAi (σi ).

Proof. Suppose the algorithmD-RAlg simulatesAi . We claim that the cost ofD-RAlg is at most
(D + d) · costAi (σi )+

∑2D
j=1 costAj (σ j ). We will split the total cost ofD-RAlg into two parts: the cost

of moving between configurations and the cost of servicing requests.
The total movement cost ofD-RAlg is at most (D+d)·costAi (σi ) WheneverAi changes configuration

from C to C′, D-RAlg also changes configuration fromC to C′. The cost incurred byAi is dist(C,C′)
and that byD-RAlg is (D + d) · dist(C,C′).

Consider now the total request service cost ofD-RAlg. Suppose a requestr is given toAj . The cost
incurred byD-RAlg to service this request is costAi (r ) ≤ costAj (r ). Hence the total request service cost
of D-RAlg is bounded by

∑2D
j=1 costAj (σ j ).

This proves the claim that ifD-RAlg choosesAi , the cost incurred by it is at most (D + d) ·
costAi (σi ) +

∑2D
i=1 costAi (σi ). Sincei is chosen uniformly and at random from the set 1, . . . ,2D, the

expected cost ofD-RAlg is at mostD+d
2D

∑2D
i=1 costAi (σi ) +

∑2D
i=1 costAi (σi ) which is (32 + d

2D )
∑2D

i=1
costAi (σi ).

Combining Lemma 5.3 with Lemma 5.1, the expected competitive ratio ofD-RAlg is bounded by
(3+ d

D )c.
In the case of monotonic task systems, the algorithmD-RAlg simulatesD algorithmsA1, . . . , AD.

It is easy to modify the proof of Lemma 5.3 to show that in this case, the expected cost ofD-RAlg is
bounded by (2+ d

D )
∑D

i=1 costAi (σi ). Combining this with Lemma 18, the expected competitive ratio
of D-RAlg is bounded by (2+ d

D )c.

6. CONCLUSION

We have considered the effects of delayed action and delayed information for a variety of on-line
problems, including the general class of problems corresponding to relaxed metrical task systems. Our
results demonstrate that in many cases appropriate algorithms can deal gracefully with delay to the
extent that the competitive ratio grows slowly as the delay increases. We believe that examining delayed
situations, besides yielding interesting problems, gives more insight into these on-line problems. In
particular, by studying delay one learns more about the underlying model and how reasonable it appears
as well as how robust suggested algorithms are for handling slightly different situations.

Further directions to pursue include studying the effects of delay on more challenging on-line prob-
lems, such as thek-server problem. Also, determining how to introduce notions of delay in more general
models of on-line problems may yield interesting results.
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