Information and Computatioh70, 135-152 (2001) ®
doi:10.1006/inc0.2001.3057, available online at http://www.idealibrary.cold D E ,}l

Delayed Information and Action in On-Line Algorithms?

Susanne Albefs

Institut fur Informatik, Albert-Ludwigs-Universit Freiburg, Georges-&hler-Allee 79 79110 Freiburg, Germany
E-mail: salbers@informatik.uni-freiburg.de

Moses Charikar

Computer Science Department, Stanford University, Stanford, California 94305
E-mail: moses@cs.stanford.edu

and

Michael Mitzenmachér

Harvard University, 33 Oxford St., Cambridge, Massachusetts 02138
E-mail: michaelm@eecs.harvard.edu

Received March 31, 1999

Most on-line analysis assumes that, at each time step, all relevant information up to that time step
is available and a decision has an immediate effect. In many on-line problems, however, the time
when relevant information is available and the time a decision has an effect may be decoupled. For
example, when making an investment, one might not have completely up-to-date information on market
prices. Similarly, a buy or sell order might only be executed some time in the future. We introduce and
explore natural delayed models for several well-known on-line problems. Our analyses demonstrate the
importance of considering timeliness in determining the competitive ratio of an on-line algorithm. For
many problems, we demonstrate that there exist algorithms with small competitive ratios even when
large delays affect the timeliness of information and the effect of decisiorg001 Academic Press

1. INTRODUCTION

The theory of on-line algorithms deals with situations where a decision or a series of decisions |
be made with limited information, and specifically without knowledge of future events. Implicit in th
approach is the idea that the time information becomes available relative to the time decisions
effect can be of paramount importance in algorithm performance. In most on-line analyses, how
the setting chosen for study is the simple one: at each time step, all relevant information up to that
step is available, and a corresponding decision is made.

In many on-line problems the time relevant information is available and the time a decision ha:
effect are decoupled. This phenomenon arises, for instanégyéatment problemshere one has to
decidewhetherandwhento buy an expensive piece of equipment. An example of such investme
problems is the standard on-line ski rental problem. In these investment problems, once a decis
made for buying equipment, it can take some time before the equipment is delivered to the usel
example, it can take a couple of days or weeks to ship a particular model of skis and even mont
deliver and install a new machine in a factory. In such cases, a decision to buy equipment has an
only later in time and the action corresponding to the decision is delayed.

1A preliminary version of this paper was presented at3Bth Annual Symposium on Foundations of Computer Scienc
(FOCS) 1998.

2 part of this work was done while at the Max-Planck-Institutififormatik, Saarhréken, Germany.

3 Supported by a Stanford Graduate Fellowship, an ARO MURI Grant DAAH04-96-1-0007 and NSF Award CCR-9357¢
with matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox Corporation.

4 Supported by NSF CAREER Grant CCR-9983832 and an Alfred P. Sloan Research Fellowship. Most of this work was
while employed at Compag Systems Research Center.

135

0890-5401/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.

136 ALBERS, CHARIKAR, AND MITZENMACHER

This can heavily influence the performance of an on-line strategy. An on-line algo#itisncalled
c-competitive if, for all inputs, the cost incurred lyis at most times the cost incurred by an optimal
off-line algorithm that knows the entire input in advance. To illustrate the effect of delayed action
consider the ski rental problem. Skis costlollars to rent per weekend aidto buy for a season.
Suppose an avid skier skis every weekend there is good snow. Whether it is best for him or her t
or buy skis for the season depends on the number of good ski weekends. If the skigtirraessbefore
buying, the competitive ratio is ﬁﬂyb} Whenb/r is an integer, an optimal on-line algorithm is
to rent skiss = (b/r) — 1 times and then buy; this yields a competitive ratio ef g If skis taked > 1
weeks to ship, the analysis is slightly more involved. If a skier decides tcsrmies before buying,
we must consider what happens in the interverdrajher weekends before the skis arrivei. tf the
intervening weekends are snowy, then the worst-case ratio between the actual cost and the optin
is now

(s+i) +b
1<i=d min{(s+i)r, b}’

It is easily checked that this ratio is maximized at one of the extrémesdl, d; using this, one can
easily determine the value stthat minimizes the competitive ratio.

In the above example, there is a delay between the time a decision is made and when it has an
We refer to this as thdelayed actiormodel. The parametet is the maximum delay after which a
decision takes effect. For this probleth= 0 gives us the original problem without delay.

Similarly, there are problems where it is natural to consider information that arrives only after s
delay. In this scenario, at time stepve might have information about the fitst- d — 1 time steps
only, for somed > 0. This phenomenon arises, for instance, in ondinancial gamesvhere we have
to devise strategies for converting money from one currency to another or for selecting a portfo
the stock market [17, 18, 20, 33]. Naturally, we might not have access to the very latest exchange
or stock prices. We refer to this as ttielayed informationmodel. Again, the casg = 0 corresponds
to the original problem without delay.

Related timing problems occur whergeoup of people or agents take decisions. The group mig
come together only at particular time instances. The actions are again delayed in that they can only
at specific points in time. For example, in the case of investing in manufacturing machinery, one
only be able to make budget decisions in concert with the rest of an organization at specific budg
periods. Another example is that of an investment club, where a group of people pool their m
together and invest in the stock market. All investment decisions can be made only at club me
which occur at regular intervals of time, e.g., once a month.

We use the terrdelayed model® loosely describe models where there is this type of discontinu
between the time information is available and the time decisions take effect. Such models are na
motivated by situations where one has incomplete information about the past or a decision will
a delayed effect on the state of the system. Interestingly, they also often have a natural interpre
in terms of distributed agents acting with limited coordination. In particular, such models corresj
nicely to distributed systems where information about the system is updated only after some de
at specific synchronization points.

Our contribution. In this paper, we consider several standard on-line problems and examine
generalizations to delayed models. These generalizations are generally quite natural and lead to it
ing insight into the original problem. We note that in this initial exploration of delayed models, we h
focused on cases where one can modify the original on-line analysis to analyze the delayed ve
We believe that the resulting relative simplicity of many of our results demonstrates the natura
and utility of this model. We expect, however, that delayed models will prove more difficult than tl
standard counterparts in many instances.

We briefly describe the remainder of the paper. In Section 1, we study the delayed information n
applied to the classical problem of on-line scheduling on parallel machines to minimize the make
Here a scheduling algorithm must assign new jobs to processors based on stale load informn
Traditional algorithms for on-line scheduling do badly in this scenario. We develop new algorithm:
this model and prove almost matching lower bounds. In Section 1, we study the list update prc
in the delayed action model and prove nearly tight upper and lower bounds for deterministic or

DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 137

algorithms. We also show that a randomized on-line algorithm can only beat the deterministic I
bound if it uses paid exchanges. In Section 1, we generalize an on-line stock market model intro
in [17] by studying natural delayed models. Finally, in Section 1, we apply the delayed action mod
the general class of relaxed metrical task systems [6, 10]. Relaxed task systems are an abstrac
for problems where one has to decide when it is appropriate to make expensive configuration chs
This class includes the ski rental problem, page migration [15], file replication [15], network leasing
and other problems (see [10]). We extend the results of [6, 10] to apply to relaxed task systems
delayed action, effectively handling the delayed models of an entire general class of problems.

Related work. Insubsequent sections, we will mention related work relevant to the specific probl
we consider. Here, we offer a brief overview of generally relevant related work.

The importance of when information becomes available has been noted previously, especic
the significant body of work on algorithms with lookahead, e.g. [14, 22, 24, 27]. In the case of on:
decision models, however, the possibility of not having up-to-date information is not generally addre
For load balancing problems, the question has been considered for statistical models [29, 30, 36]
queueing based models have also been considered [4, 5, 28]. And recently, [7] considered an ¢
load balancing setting where tasks gather some information about system behavior before ma
choice of processor.

There is also a large body of work on algorithms with distributed agents, who must coordi
their efforts in the face of some cost for communication, e.g. [3, 8, 12, 13]. These models, how
model communication as an instantaneous event, and hence the communication cost does not
incorporate a notion of time and delay. Another line of research has addressed distributed de
making when the communication among agents is limited, for example by only allowing local com
nication. Implicitly this allows distant agents to communicate only after a number of communica
rounds. The problems investigated include scheduling, load balancing, routing, and general optimi:
[11, 19, 25, 31, 32].

2. SCHEDULING

We consider a classical problem in on-line scheduling. A sequence 0djobs, . .. must be sched-
uled onm identical parallel machines. Whenever a job arrives, the job must be scheduled immedi
on one of the machines, without knowledge of any future jobs. Preemption of jobs is not allowed.
goal is to minimize thenakespani.e., the completion time of the last job that finishes.

The problem was first investigated by Graham [21]. He developed the well-khisbadgorithm that
always schedules a job on the least loaded machine. Grahsshagorithm is (2— %)-competitive.
More recently, on-line algorithms that obtain competitive ratios bounded away from 2 have been de
The currently best known competitive ratio for this problem.B2B obtained by Albers [1].

In a setting with delayed information, we do not have the current loads on the processors ava
to us. When we are presented with tite job J;, we have the loads on the machines from ugite- 1
requests ago. Thatis, we know the load after theJjoh _; was placed. (Whed = 0 always, we have
the original problem.) We must decide where to placeJabased on this old information. We examine
the setting where we have a bound on how old the information is at each stagk, £ed, for some
d. We will refer to the last); jobs whose contribution to the loads is not knowruaknownjobs and
other jobs ag&nownjobs.

In this situation, the strategy of placing each job on the processor with the least known load doe:
badly. In fact the competitive ratio of that strategy can be as badag — d—;;l (ford <m-—1). The
problem is that this strategy does not take into account the potential effect of unknown jobs. We
devise new algorithms with better competitive ratios for scheduling with delayed information.

We study two variants of the basic scheduling problem. In our first model, we assume that in adc
to the loads of the machines frodn + 1 requests ago, we also know where the thatnknown jobs
were placed. This scenario describes, e.g., a centralized scheduling algorithm where the size of
new job is not known to the scheduler immediately on arrival, but is revealed atimegtiests later. In
practice, the processing times of jobs often is not known in advance. It is possible to compute ac
estimates on the processing times, but the computation of such estimates (by the scheduler or th
takes a certain amount of time.

138 ALBERS, CHARIKAR, AND MITZENMACHER

It is simpler to work with a less stringent, but for our purposes equivalent, scenario where we
available a complete history of the process upite- 1 requests ago. In this model, by using specifi
kinds of deterministic algorithms that do not use the length of the current job in a new scheduling
we can figure out where thenknownjobs were scheduled as follows. Suppose we use a determini
algorithm that bases its decision on the schedule ftbm 1 requests ago, i.e. i < d pretend
that the state seen by the algorithm is the schedule exdctlyl requests ago. Because we hav
complete information about the job history, we can also figure out the complete schedulg fr@&n
requests agal + 3 requests ago, and so on. Hence we can deduce the state seen by the algorithnr
scheduling each of the previod$obs and thereby determine where each of thedastknown jobs were
scheduled.

For this model, we consider an algorithm we éadllayed Lisscheduling, as it generalizes Graham’
List algorithm. Letw; be the known load on machimng(This is the load without the unknown jobs.) Let
Sdenote the total known load on all the machines; Bes " ; wj. Letu; be the number of unknown
jobs on machiné. Define thepseudo-loadn machiné to beu; + (m — u; — 1)(wi/S). The algorithm
schedules the new job on the machine which has the lowest pseudo-load. §#hénthe algorithm
is exactly the same as List.)

Lemma 2.1. When the Delayed List algorithm places the current job on machitieei load on
machine i is at most + u; + (m — u; — 1)(w;/S) times the optimal load.

Proof. Let x be the processing time for thigh job. Consider what happens if the algorithm trie
to place the current job on machinelet y be the average processing time of the unknown jobs
maching . Then¢; = w; + u; - y + x will be the new load on machirie

The sum of the processing times of all the jobs in the sequence is atSeast - y + X. Thus
OPT=> (S+u; - y+ x)/m. Also, OPT > x andOPT > y. Hence

opT = |

£ <min<wi+uiy+x wi+Uy+X w+Uuy—+Xx)
X y "(SH+uiy+x)/m/)’

We obtain the required bound qﬁ,—T by maximizing the above function over all possible values ¢
y andx. Let us maximize ovey first. We wish to compute

: (wi+uiy+x wi +Uiy+X wi+uy+x)
maxmin , ; .
y X y (S+uiy+x)/m
Let
wi +U -y+X
fi(x,y) = ST YTE,
X
wj + Ui -y+X
fo(x,y) = AL YT,
y
fa(x, y) = wi +Ui - y+X

(S+ui-y+x)/m’

Note that each of the three functions is monotong.iliVe want to find the maximum of the lower
envelope (i.e., minimum) of these three monotone curves. This must occur either at an end-point
intervaly = 0 ory = oo or at a point where two of the three functions are equal. Further, a point wh
two functions are equal is a potential maximum only if the value of the third function is greater t
the two that are equal.

In fact, our analysis will show that the maximum is achieved when all three functions are equal

1. Let us first consider the maximum value of the function for end-points of the intervay.=Fouv,
the value of the function is 1. Foy = 0, the value of the function is min{{ + x)/x, (wi + X)/
((S+ x)/m)). Thisis maximized wher = (S+ x)/m. Hence the maximum value iss{m—1)(w; / S).

We now consider the three possible points where two of the functions are equal.

DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 139

2. Supposef1(x, y) = fa(x, y) < fa(x, y). This implies thax = y > (S+ u; - y + X)/m. Hence
fi(x, y) = fao(x, ¥) = ui + 1+ w;/x. Our bound is maximized for the smallest possible valug.of
But we also havet > S/(m — u; — 1). Hence, the maximum valueis + 1 + (m — u; — 1)(w; /9).

3. Supposefi(x, y) = fa(X,y) < fa(X, y). This implies thax = (S+ uj - y + X)/m > y. Hence
fi(X, y) = fa(x, y) = m — ((S— wj)/x). Our bound is maximized for the largest possible valug.of
But we also havex < S/(m — u; — 1). Hence, the maximum valuets + 1+ (m — u; — 1)(wi/S).

4. Supposefa(X, y) = fa(X,y) < fi(x, y). This implies thaty = (S+ u; - y + x)/m > x. Alge-
braic manipulation yields,(x, y) = fa(x, ¥) = ui + (m — u;j)(w; + X)/(S+ X), which is increasing
in X sincew; < S. Our bound is maximized for the largest possible valuec.oBut we also have
X < S/(m —u; — 1). Hence, the maximum valueus + 1+ (m — uj — 1)(w;/9).

In all cases?; JOPT<1+uj +(M—u —1)(w;/S). W

We use the result of Lemma 3 to bound the competitive ratio of the algorithm.
THeorem2.1. The Delayed List algorithm i€ + ¢) competitive.

Proof. The algorlthm schedules the current job on the machinbich has the lowest value of

m m)
> 52[1+ui+(m—1)%}=m+d+m—1

i=1 i=1

becaus& ", wi = S. Hence there must be somewith value at mos#?+d=1 = 2.+ 9= Thuys, the
competitive ratio of the algorithm is at mosH—Z%l. []

Theorem 2.1 shows that by spreading out the unknown jobs appropriately, we can achieve a col
tive ratio that grows at a “rate” af/m. In fact, the analysis in the proof of Lemma 2.1 shows that give
S, X, Ui, andwj, one can compute precisely the worst case competitive ratio if the algorithm place:
current job on machinie This is a function of5, x, u;, andw;, and an exact expression can be obtaine
A more intelligent algorithm would compute this function for each machine and place the current jo
the machine that minimizes this function. Indeed, this improves the competitive ratio slightly, althc
it seems difficult to develop a general bound with a better form than Theorem 2.1. Moreover, the |
of Theorem 2.1 is nearly tight, as the following lower bound shows.

THEOREM 2.2. The competitive ratio of any deterministic algorithm for the delayed scheduli
problem cannot be smaller them+ When this number is an integer less than or equal to m.

Proof. Let Abe adeterministic algonthm for the delayed scheduling problem with maximum de
d. For the lower bound, assume that whereceives johJ;, it knows the entire schedule after jGh 41
was placed. Supposk= (r — 2)m + r for an integer < m. We will construct a request sequence
consisting of { — 1)m + 1 jobs such that the optimal load is essentially 1, but some machiAé&in
schedule has load

The firstm — r requests are jobs of size 1. The naxt{2)m +r + 1 jobs have size either 1 er
wheree > 0 can be arbitrarily small. An adversary selects at mastthese to have size 1 as follows.
Since a total ofi{ — 1)m + 1 jobs are scheduled, there must exist one mackittewhich A assigns
at leastr jobs. Note that while the second group of-{ 2)m +r + 1 jobs is presentedi does not
know the size of any of these jobs. Among the jobs assigne8l fsymachinex, the adversary chooses
r jobs to be of size 1. Thus the on-line makespan ©9n the other hand, the optimal makespan for th
sequence is % ((r — 2) + 1)e. Choosinge arbitrarily small, the competitive ratio is at least= 2 +

d—2
m+1° u

We now consider a second variant of the problem and a corresponding algorithm. In this scel
when we are presented with a jdh we know the loads on the machines fromt 1 requests ago, but
we do not know the actual schedule or job sizes corresponding to these loads. We assume, hc
that each job knows its sequence numiband the number of jobs already scheduled, erd; — 1.
(Implicitly, the number of scheduled jobs is increasingi sed; — 1 < k — d¢ — 1 wheni < k.) Our

140 ALBERS, CHARIKAR, AND MITZENMACHER

algorithm will make use of this information in its scheduling decision. This model corresponds
distributed system where tasks may place themselves on an appropriate server before other task
their processing times, but through simple shared counters limited information such as the value
andi — d; — 1 is maintained.

We provide an algorithm for this scenario called thelayed Avoid Heavglgorithm. We describe
what happens when thi¢h job J; arrives. We say that the machine with tkih smallest load from
known jobs at this time has ralkk The algorithm uses a constards a parameter; this will be specified
later. We never schedule a job on the heaviegt machines. (For convenience, we will assume th;
m/c is integral throughout.) Leéd = m(1 — 1/c¢), i.e., the number of machines excluding the heavie
m/c. Let f(J) = (2 —d;). The Delayed Avoid Heavy algorithm schedules jhlmn the machine with
rankb — (f(J)) modb).

For the purpose of analysis, we will divide the jobs into groups. Jab placed in group number
Lf(3)/b].

Lemma 2.2. Two jobs Jand J in the same group are assigned to different machines.

Proof. Without loss of generality, assume < k. When schedulingl;, the algorithm sees the
scheduleS that results after — d; jobs have been assigned to machines and when schediittte
algorithm sees the scheduig that results aftek — dy jobs have been assigned. As the earlier jpb
cannot see a more recent schedule than the later, it is the case-tdat< k — d.

SinceJ; and J are in the same group (say, g = | f(J;)/b] = Lf(Jk)/b]. ThenJ, is assigned to
the machineVi; of rankb — (f(J;) modb) =b — (f(J) —g-b)=(g+ 1)b— (2 —d;) (in schedule
S). Similarly, Ji is assigned to the machimy of rank @ + 1)b — (2k — dy) in schedules.

Now, schedules results from schedul§ by the scheduling of an additiond € dy) — (i — d;) jobs.
Observe that a machine that has rarik a certain schedul8 has rank at least — i in the schedule
obtained by placing additional jobs inS. Thus, in schedul&, the machineM; must have rank at
least

(O+1b—(2 —d)—(k—d)— (i —d))=(g+1b—(k+i—d) > (g+1)b— (2K —d).

This implies that the machinéd; and M are distinct. |
Lemma 2.3. The competitive ratio of the Delayed Avoid Heavy algorithm is at mest% +cC.

Proof. When jobJ; arrives, we know the loads on all machines except for the contributions to
loads by the lastl; jobs. LetS be the set of the lagl; jobs together with johJ,. Observe that thd
values of any two jobs it$ can differ by at mostl + d; < 2d. Thus the number of distinct groups tha
the jobs inSbelong to is at most 2 L%J <2+ % Since no two jobs in the same group get placed c
the same machine, the maximum number of jobS that get placed on the same machine is at mc
2+ % and in particular there are at most{-l% unknown jobs on the processor that gétsLet w;
be the known load on the machine on which jhhs placed. LetS be the total known load on all the
machines. Thew; /S < ¢/m. If not, then the loads on the heaviestc machines must each be greate
than S¢/m, implying that the total load is greater th& This is clearly not possible. Now, Lemma 3
implies that, afterJ; is placed onM;, the total load orM; is at most 2+ 2d/b + c times the optimal
load. Hence the competitive ratio is at mos%z%d +c H

Substitutingo = m(1 — 1/c) and optimizing forc, we get that, foc = 1+ ./2d/m, the competitive
ratio of the Delayed Heavy Load algorithm is bounded by 2d/m + 2./2d/m. It is possible to get
slightly better bounds by being a bit more careful in Lemma 3. However, the expressions that rest
far from elegant and the improvements are very minor, so we choose to omit them. The main pc
that in this more limited model, by again spreading out the unknown jobs appropriately, we can ac
a competitive ratio that grows at a “rate” of abouwt/2n.

DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 141
3. LIST UPDATE

The list update problem is a fundamental problem in the theory of on-line algorithms. It con:
of maintaining an unsorted list so as to minimize the total cost of accesses on a sequence of re
Formally, we are givem items that are stored in an unsorted linear linked list. A list update algoritt
receives a sequence @fquestswhere each request specifies one item in the lissélflvea request
the algorithm musaccesghe requested item; i.e., it starts at the front of the list and proceeds line:
through the items until the desired item is found. Serving an access to the item at piositibe list
incurs a cost of.

In the standard problem, the list may be updated at any time. More specifically, after each re
the accessed item may be moved at no extra cost to any position closer to the front of the list.
exchanges are calldabe exchange#\t any time, two adjacent items in the list may be exchanged wi
cost 1; these exchanges are calpaid exchangesThe goal is to serve a sequence of requests so tt
the total cost is as small as possible.

We investigate a model with delayed action where the free and paid exchanges made by an ¢
algorithm in response to a request only take effect some time later. More specifically, we consi
setting where the updates are implemented at the endoafral, where every round consists offld
consecutive requests in the request sequence. This setting can also be viewed as a scenario w!
on-line algorithm can update the list only at the end of a round. Iltems requested during the round i
moved closer to the front of the list using free exchanges before the next round. Items not reques
the round can be moved only using paid exchanges. In the following we work with this latter scen
Note that wherd = 0, we have the original standard problem.

To motivate the delayed model, consider the case where the linked list data structure is a shared
among a number of agents. In this case agents may read the list simultaneously without any prol
however, while the data structure is being updated, it may be necessary for consistency to loc
structure. In this case infrequent updates may provide better overall performance. We may think
update operations as being batched, in which case the update actions are delayed.

In the following we first concentrate on deterministic on-line algorithms. When analyzing on-|
algorithms, we consider two typesardversarieshat generate arequest sequence and serve the gener
sequenceff-line.

e Thestandard adversarynay update the list after each request.
e Thelimited adversarycan update the list only at the end of each round.

We call a deterministic list update algorithAc-competitive against any standard (limited) adversal
ADV if, for all list lengths nand for every request sequence generatedldy, the cost incurred by
is not greater than times the cost paid bDV.

For the standard list update problem, Sleator and Tarjan [35] showed that the well-known o
algorithm Move-To-Front (MTF) is 2-competitive. This algorithm moves an item to the front of the |
each time itis accessed. This is the best competitive ratio any deterministic on-line algorithm can ¢
in the standard model [26].

We now study the problem with delayed action.

THeorem 3.1. Let A be a deterministic on-line algorithm for the list update problem with delay
action. If A is c-competitivehen c> 1 4 d. This lower bound holds for both types of adversaries.

Proof. Ineach round the adversary issuesd requests to the item that is stored at the last positic
in A’s list. Thus, in each round incurs a cost of (& d)n.

At the end of each round, the adversary moves the item requested in the next round to the front
list using paid exchanges. Thus, its cost in each round is at mesd. The ratio of the cost incurred
by Ato the cost incurred by the adversary is

(1+dn 1+d
n+d 14d/n

and, for large values of, this expression can be arbitrarily close te-d. =

142 ALBERS, CHARIKAR, AND MITZENMACHER
Next we give an adaptation of MTF to the model of delayed action.

ALcoritTHm MTF(d). Atthe end of each round, the algorithm moves the requested items to the f
of the list. At the head of the list, for any two iterh&nd j requested in the roundprecedeg if and
only if the last request tbis more recent than the last requesj to

The Algorithm MTF@) can also be thought of as the algorithm that batches all Move-To-Fr
operations until an update is allowed.

TrHeorem3.2. The algorithm MTHd) is (2 + d)-competitive. This upper bound holds for both type
of adversaries.

Note that ford = 0 we obtain the upper bound of 2 achieved by the MTF algorithm in the stand
list update problem.

Proof. We prove the theorem for the standard adversary. For the analysis ofiyiTis(convenient
to work with a different model for updating the list. In this modified model, an on-line algorithm rr
move an item accessed in a round only on the last request to the item in that round. Let)MiERIje
algorithm that moves an item to the front of the list whenever it is requested for the last time in a rc
Given any request sequengeat the end of each round the lists maintained by M@Fgnd MTF()
are the same. Thus, in each round the cost incurred by WTiE ot higher than the cost incurred by
MTF'(d). We show that the cost incurred by MTH)(is at most 2+ d times the cost incurred by the
adversary, for any.

We assume that MTRY{) and the adversary start with the same list. Given an arbitrary requ
sequence = o(1),0(2),...,o0(m), lett denote the point in timafter thetth request (t) is served.
We define a potential functiof. For any timet and any itenx in the list, letr (t, x) be the next round
in the request sequence in whiglis requested. Ik is still requested in the current round, thelh, x)
is equal to the current round. Left, x) be the number of remaining requestsctn r (t, x). We have
n(t,x) < 1+ d. An inversionis an ordered pairy, xX) of items such thak occurs beforey in the
adversary’s list and aftgrin the list maintained by MTFY). At any time the potentiab is the number
of inversions (¢, x), where each inversion is multiplied mft, x), which can be seen as the weight o
inversion fy, x).

Consider any request(t) and letx be the item requested. LEt;rr(t) andCapv(t) be the actual costs
paid by MTF’(d) and the adversary during the service (). Clearly,Curr(t) < Capv(t)+inv(t—1, x),
whereinv(t — 1, x) is the number of inversiong/(x) immediately before the request. We show the
during the service of (t) the potential decreases bw(t — 1, x) due to inversions removed or due tc
inversions whose weights changexIfs not requested for the last time in the round, then the numt
of remaining requests toin the round decreases by 1; i.e(t — 1, X) — n(t, X) = 1 and the weight of
each inversiony, x) decreases by 1. ¥is requested for the last time in the rounét, x) can increase,
i.e.,n(t, x) > n(t — 1, x). Howeverx is moved to the front of the list, which implies that all inversion:
(y, x) are removed and(t, x) does not contribute to the potential. In any case, the potential decre:
by inv(t — 1, x) during the service of (t). If x is moved to the front of the list, then at mdSipy(t)
new inversionsX, z) can be created, each of which increases the potentia(thy) < 1 + d. Since
n(t —1,y) =n(t, y) for all y # x, we conclude that at any tinte

Cute(t) + A® < Capv(t) + (1 4+ d) - Capv(t)
< (2+ d)Capu(t).
Finally we have to consider a paid exchange made by the adversary. Each paid exchange car
an inversion, which increases the potential by at mostd, but the adversary has to pay a cost of 1

So agairCyre(t) + A® < (1 + d)Capv(t).
Summing over all the steps efand notingd > 0 yieldsCyre(o) < (2+ d)Capv(c). H

It is straightforward to modify the above proof to show the following:

CoroLLArRY 3.1. If each item is requested at most k times in a rquhén MTHd) is (1 + k)-
competitive.

DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 143

This corollary shows that if one is attempting to choose a valuktofbalance reading and writing
costs, a key parameter to consider is how often items can be requested repeatedly.

Next we consider randomized on-line algorithms and give two lower bounds. None of the randon
on-line algorithms that have been presented so far for the standard list update problem use!
exchange, see e.g. [2, 34]. We show that such algorithms cannot be better thaj-¢bmpetitive in
the setting with delayed action.

TrHeorem 3.3. Let A be a randomized on-line algorithm for the list update problem with delay
action and suppose that A does not use paid exchanges. If A is c-competitive against any obl
adversarythen c> 1+ d. This lower bound holds for both types of adversaries.

Proof. An adversary constructs a request sequenphasesin each phase the adversary inspect
its current list and requests thatems in ascending order. To each of thigems, the adversary issues
1+d consecutive requests, which form a round. At the end of each round, the adversary moves th
requested in the next round to the front of the list using paid exchanges. The adversaiy-néqusd
exchanges for the item requested inittieround because the listitems are requested in ascending ol
during the phase. Thus, the adversary’s cost for serving requeststhtbendis —1+1+4+d =i +d.
Hence, in each phase the adversary incurs a total cost of anfosti +d) = n(n+1)/2+nd. The on-
line algorithm can only move an item after all the d requests of around have been served. Consideri
the on-line algorithm’s list configuration at the beginning of a phase, fod, .. ., n, the item stored at
positioni in the list is requested in exactly one of the rounds. If an item requested in a round is m
closer to the front of the list at the end of a round, this cannot decrease the cost of subsequent rot
the phase. Thus the online algorithm’s cost in a phase is atyéas(1+d)i = (1+d)n(n+1)/2. The
ratio of the cost incurred b to the cost incurred by the adversary is at least () /(1 + 2d/(n + 1)).
For large values af, this can be arbitrarily closeto (£ d). =

If a randomized on-line algorithm uses paid exchanges, our lower bound is slightly weaker.

TrHeorem 3.4. Let A be a randomized on-line algorithm for the list update problem with delay
action and suppose that A does use paid exchanges. If Ais c-competitive againstany oblivious gdve
then c> (1 + d)/2. This lower bound holds for both types of adversaries.

Proof. We give a probability distribution on request sequences such that the expected costinc
by any deterministic on-line algorithm is at least{) /2 times the expected cost incurred by an adve
sary. The result then follows from Yao’s minimax principle [37]. The request sequence is constru
as follows. In each round one of thétems is chosen uniformly at random; this item is requestedil
times. The expected cost incurred by a deterministic on-line algorithm in a round &)(1/2 whereas
the adversary’s cost is no more than+ d. The ratio of the cost incurred b# to the cost incurred
by the adversary is at least 1d)/(2 + 2d/n). For large values of, this can be arbitrarily close to
1+d)/2. =

4. STOCK TRADING

We consider an on-line stock market model studied in [17] based on similar probabilistic models
for stock price fluctuations (see, e.g., [23]). Consider a game where at each step, the price of a
either increases by a constant faator- 1 or decreases by a factofdl The game lasts fan steps,
and the price moves up fon of these steps. At each step, one can invest a frastidrone’s wealth in
the stock and the rest in cash. If the price moves uprghen from that step is the factars + 1 — s
that the player’s wealth increases; if the price moves down, the réturl — s is less than 1. The
total returnis the factor by which the player’s wealth increases over the course of the game. Follo\
[17], we say in this setting that the on-line trader plays againsttam(n)-adversary if an adversary
determines the price fluctuations subject to the initial constraints.

We review the relevant results from [17]. L&, (m, n) be the optimal on-line return against the
(o, m, n)-adversary. We have boundary conditidRgn, n) = «" and R, (0, n) = 1. As the optimal
algorithm obtains a return of™ by investing fully whenever the price will go up, studying the on-lin

144 ALBERS, CHARIKAR, AND MITZENMACHER

return is sufficient to find the competitive ratio. The retly(m, n) satisfies the recurrence
. S

R.(m, n) = Oma>§m|n {(as+ 1-s)R,(m—-1,n-1), (— +1- s) R.,(m, n — 1)},
<S= o

and if we define the partial binomial suB(k; n, p) = Z:‘zo(?) p'(1 — p)", then the solution to the

recurrence satisfies
) +a"MB (m— 1n-1-Y%)
a+1

An interesting consequence is that even if the number of up movemeisttess than the number of
down movements, that im < 3, the on-line player can make a profit. In fact this holds true even
m=1.

We consider an extension of this model to two delayed models. In the first model, we conside
problem when the player initially sets a fractisof his or her wealth to remain invested over the ne>
d + 1 time steps and can only change the investra@veryd + 1 time steps. This model might apply,
for example, to an investor who only performs trades at specific or less frequent time intervals ¢
unwilling to follow every change in the market. Also this model decribes scenarios where a grot
agents takes decisions at particular time instances, as mentioned in the Introductiord Wlienve
have the original model. We call every settbf- 1 steps aound For convenience we let=d + 1 be
the round length below. Without loss of generality we assumertigag multiple ofr .

We let P,(r, m, n) be the optimal on-line return for a player playing against@amf, n)-adversary
who can change its investment only evesteps. (Of cours€, (1, m, n) = R,(m, n).) For convenience
we drop thex from the notation where the meaning is clear.

Note then thaP(r, m, n) satisfies the following recurrence:

R;l(m,n):B(n—m—l;n—l,L
a+1

P(r.m.n) = max min P(r,m—i,n- @ 's+1-—s).
i

0<i<r,m

That is, for each round, the optimal player chooses the investsiatt maximizes his or her return
regardless of the number of up movements the adversary chooses.

Interestingly, the behavior in this delayed model depends precisely on whether the period ieng
even or odd.

Lemma 4.1. Forreven P(r,m,n) =1ifm <n/2and Pr,m, n) =a®"ifm > n/2.

Proof. If m < n/2, then the adversary can arrange so that each round has at least as many
moves as up moves, and hence no round has a return greater than 1. Of course the player can gt
a return of 1 by not investing, i.e., choosigg= 0 in each round.

Similarly, if m > n/2, then the player can guarantee a total retura®f ™" by investing everything
each round, i.e., always choosisg= 1. The adversary can ensure that no greater return is possible
alternating up and down moves on the firgt 2(m) steps. &

The analysis for odd generalizes and makes use of the result from [17] corresponding to the
r=1(.e.,d=0).

Lemva 4.2. LetN=lTand M=m— 5]} Forrodd P(r,m,n)=1ifm < [5|N, P(r,m,n) =
a®™ " ifm > 51N, and P(r, m, n) = R,(M, N) otherwise.

Proof. The trivial cases whemn < L%Jn orm> Pﬂn handled as in Lemma 4.1.

Otherwise, the problem is more interesting. We first show in this casé’{nain, n) < R,(M, N).
Suppose that the adversary announces that in each round there will eith%T beL%J up moves.
Then, in total, each round the invested value changes by a factarraf/«, and there arél up rounds

DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 145

out of theN total rounds. In this case, the problem reduces to the standardrcasg)(from [17]. In
particular, the adversary can guarantee a competitive ratio of no mord{liish N).

To prove the other directioR(r, m, n) > R,(M, N), we must show that the adversary cannot gali
by using any other strategy. We use inductiomoiThe base case is trivial.

Now suppose the adversary uiézxs + j up moves in the first round. (The cases- 0 andj < 0
are entirely similar.) By induction, the return for the subsequent rounBs(i81 — j, N — 1). Simple
algebraic manipulation (by determining the investor’s first investment) yields that the payoff from
first round is

QA1 1 _1
ﬁ(Ra (M-—1LN-1)- R*(M, N)) + R*(M, N).
Hence we have left to show that

-1 1 1 1 :

[ﬁ(R; (M—-1,N-1)— R (M, N)) + R, *(M, N)} R,(M —j,N —1)> R,(M, N).

This is a combinatorial identity that can be checked in a straightforward but quite tedious manne
spare the reader the detailss

Next we consider our second delayed model. Suppose that information about trades is contint
updated, but remaing steps behind. That is, we only know the results from the first trade after
(d + 1)st trade completes. Agadth= O corresponds to the original model. Investors can again inve
a fraction of their wealth each step. (They may not have accurate knowledge of how much w
they have, since not all trade results are known. However, investments are possible because o
fraction of the wealth to be invested has to be determined.) This model accounts for situations whe
receives updates on prices, but notin real-time. Surprisingly, we can show that there exist money-n
schemes for arbitrarily largeé even when there is only 1 up day.

THeorem4.1. There exist money-making schemes foerh, regardless of n and d.

Proof. Lete be the investment on th¢h day. We may sef; = 0 at any point after the player sees
a result which is an up move. It will also be convenient notationally if we defire 0 fori > n. If the
up move is on day, then the total return to the player will be

ca+l-e) [] <Z—i+l—ei).

i#ji<j+d

Note that

1\2
(E—a—i—l—ea)(é—b—i—l—eb) = (€a+6b +1—ea—eb+eaeb(1——>) (8]
o o o o

It will be convenient to assume that thewill be chosen sufficiently small that we may simplify by
removing the nonlinear terms; that is, we proceed as though

<E—a+1—ea)<6—b+1—eb>=(Ea+€b+l—ea—6b>.
o o o

Also,

(cac +1—€3) ﬂ+1—eb >1 ifea>i.
o a(l—ep)

146 ALBERS, CHARIKAR, AND MITZENMACHER

Hence, the condition
(ejo +1—€j) 1_[<€_i+1—ei> >1

et o

i#ji<j+d
is satisfied if

Zi;ﬁj,isj+d €i

0‘(1 - Zi;ﬁj,isﬂ—d fi)
This condition is easily satisfied simultaneously for all possible valu¢bgichoosing:; to be suitably
small and having the, grow geometrically at a suitably small rate (say, less tidf). Also note the

values can easily be chosen so that the effects of the nonlinear terms of Eq. (1) are suitably domi
justifying our previous simplification. m

Ej>

5. DELAYED RELAXED TASK SYSTEMS

In this section, we will consider the delayed action model applied to relaxed metrical task systen
10]. An example of a relaxed metrical task system is the ski rental problem described in the Introdu
Another example of a relaxed metrical task system isktpage migration problem [10, 15]. For this
problem, we wish to keef copies of a page available on a network. When a processor wishe
access a page, it requests a copy from a processor holding that page. The communication cost ir
is proportional to the distance between processors. Alternatively, a page copy may migrate fror
processor to another at a higher communication cost proportional to the distance between proc
In the delayed model, we assume that the time to transfer a page is nonnegligible, and hence th
time between when a migration begins and ends during which the old copy serves these request

A relaxed metrical task system is associated with a paranfiztend an underlying metrical task
system with the same set of configurations. A configuration change in the relaxed task syBten
times more expensive than the corresponding change in the underlying task system. Convenien
can demonstrate how to find a competitive algorithm for a relaxed metrical task system in the de
action model, given a competitive algorithm for the associated metrical task system. Hence wi
effectively handle an entire general class of problems, generalizing the work of [6, 10] on rel
metrical task systems to the setting of delayed actions. We begin by defining a metrical task systel
and then move on to define relaxed metrical task systems. Here we follow [10].

Derinimion 5.1, A task systemP, consists of a set of configurations (or statégnd a distance
function between any two configuratio®s, C, € C, denoted dist{;, C,). (This is themove cost
between the configurations.) The task system consists of a set of requests, called tasks. & ta
associated with a service cost in each configuration, denotedCtask(this is thetask cost An
algorithm for P is associated with a configuratid@®y. Given a request, the algorithm serves it by
moving to configuratiorC, paying a cost of codfy, C,, r) = dist(C,, Cy) + task(Co, r). If the move
cost function dist forms a metric space o¢ethen the task system is calletetrical

Derinimion 5.2, A D-relaxedtask systemD-P, with respect to a task systefhand some parameter
D > 1/2, is the task system with cost, distance, and task functions denoted dasty, and task,
respectively. digt and task are defined as follows: Give®y, C, € C, distp (Cq, C,) = D - dist(C,, Cy,).
GivenC € C and a task, taslg (C, r) = ming dist(C, C’) + taskC/, r).

Consider an algorithm for a task syst@im Suppose the algorithm starts out in configurat@n It
receives a sequence of requests,, When request; is received, the algorithm is in configuration
Ci_1. The algorithm first moves to configurati@ and then services requestrom this configuration.
The cost of the configuration change is dt(;, C;) and the request service cost is t&&k(;). In the
delayed action model, we distinguish betweenrsd state of the algorithm and traesiredstate of
the algorithm. The algorithm should be in the desired configuraiomhen it is just about to service
request;. However, state changes may not be instantaneous, but occur only after a certain delay. t

DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 147

the algorithm’s state may not li&, but some earlier staig; 4, whered; is some delay parameter.
Thus, the algorithm must service the requ@sfrom stateC;_g . The request service cost is therefore
taskCi_g , i). Eventually, the algorithm’s real state will go through the same sequence of states a
desired state, i.eGyp, Cy, Co, Thus, we can think of the configuration change cost as@ist(C;),
even though the configuration change may not occur right away. We will assume that the del
bounded byd, i.e.,d; < d for somed. Note that the case = 0 gives us the original task system. We
consider algorithms for task systems in the delayed action model and determine their competitive
as a function of the maximum delaly For the analysis, we will assume that the adversary does |
have any delay associated with its configuration changes.

For an arbitrary metrical task systdMmthe delayed action model may not be meaningful. In fact, the
are task system® such that, in the delayed action model, it is impossible to have a finite competi
ratio even for delag = 1, even though there is an algorithm with finite competitive ratialfer 0. For
example, this could happen in the caséofingtask systems, where the request service costs are eit
0 oroco. For relaxed task systems, however, the delayed action model is meaningful, as we now s

5.1. Cost Analysis for Delayed Relaxed Task Systems

Let P be a metrical task system. Let ta€kf) be the cost of servicing requesfrom configuration
C in P. Let Cnin(C, r) denote any configuratio@’ which minimizes distC, C’) + taskC’,r). Let
taslko(C, r) be the cost of servicing requestfrom configurationC in D-P. Then task(C,r) =
dist(C, C’) + taskC’, r), whereC’ = Cpin(C,).

Consider an algorithm fob-P. The total cost in servicing a sequence of requests, ..., r, by
moving through the sequence of sta®sC,, Cp, ..., Cy IS

Xn: distp (Ci_1, Ci) + itaSK)(Ci, ri)=D Xn: distCi_1, G) + i (dist(Ci . C) + task(C/, ri)) ,
i=1 i=1 i=1 i=1

whereC/ = Cyin(Gi, 1).
On the other hand, the cost of servicing the request sequence in the delayed model is

2”: disty(Ci—_1, Ci) + zn:taSK) (Ci—g.1) <D 2”: distCi_1, Ci) + z”: (dist(Ci_g. Cf) + taskC/, 17))
i=1 i=1 i=1 i=1
<D Xn: diSt(Ci,l, C|) + zn: diSt(Ci,di s C|) + Zn:(dlst(c| s CI,) + taSkCi,, ri)) <D Xn: diSt(Ci,l, C,)
i im1 iz

i=1 i=1 i=1

+ Xn: > dist(Cj_1. Cj) + zn:(dist(ci ,C)) +taskC{, 1)) < (D +d)) _dist(Ci_1. Ci)

i n
i=1 j=i—d+1 i=1 i=1
n
+) (distCi, C)) + taskC/, ri)).
i=1

Thus for the purpose of analysis, we can think of the delayed model as being equivalent to the r
without delay where the cost of moving from configurationto C, is (D + d)dist(C;, C,) and the
request service cost is the same as before. The cost estimate we get using this approximation is a
bound on the actual cost incurred by the algorithm in the delayed model. On the other hand, sin
compare with an adversary that does not face delays, the cost for the adversary is the same as
relaxed task system without delays. This considerably simplifies the analysis. In particular, this n
that if we use the same algorithm for the delayed model as for the original relaxed task system, th
increases by at most a factor of{l%). Hence if A is ac-competitive algorithm for the relaxed task
system without delays, theftis ac(1 + %)-competitive algorithm for the relaxed task system in th
delayed model.

Since the results of [6, 10] show how to turn competitive algorithms for metrical task system
competitive algorithms for relaxed metrical task systems, we now have a means of turning compe
algorithms for metrical task system into competitive algorithms for relaxed metrical task systel
the delayed model. The above observation shows that the competitive ratio we achieve for the de
model is at most a factor of (& %) times the competitive ratio for the original relaxed task syster

148 ALBERS, CHARIKAR, AND MITZENMACHER

In fact, it is possible to improve on this observation and get better competitive ratios by modif
the algorithm and/or the analysis of [6, 10] to tailor them to the delayed model. We demonstrate
below. Our results generalize the algorithms of [6, 10]; in fact, withea 0, our arguments reduce to
theirs.

5.2. Randomized Algorithm

Let A be ac-competitive algorithm forP, and letD > 1/2. We give a randomized algorithm
DelayedD-Alg that is competitive against adaptive on-line adversarie®fd? in the delayed model.
The algorithm is exactly the same as the algorithm in [6] for relaxed task systems.

ALcoriTHMm DELAYED D-Alg. Algorithm DelayedD-Alg simulates a version of algorithi. At all
times, the configuration of Delayddt-Alg is equal to that of the simulated versionAfUpon receiving
a request, with probability%, feed A with new request, and change the configuration to the nev
configuration ofA. With probability 1— %, the algorithm stays in the same configuration and serv
the request from there.

THeorem5.1. LetP be a metrical task systerand let A be c-competitive fd? against adaptive
on-line adversaries. Algorithm Delayed D-Alg&+ d—Bl)c-competitive for DP with delay d against
adaptive on-line adversariefor D > 1/2.

The proof is a modification of the proof of Theorem 4.1 in [6]. The definition of relaxed task syst
we use is from [10]. This is slightly more general than the definition of relaxed task systems used i
However, the proof of Theorem 4.1 in [6] can be easily modified to work for the more general defini
[9]. We briefly indicate the modifications in the proof of [6] to obtain the above theorem for relaxed
systems with delay. We will use the same notation as in [6]; we refer the reader to [6] for definitio

The potential function used is

®(h,, Ay) = (3D +d — 1) - Up(hn, Ay,
whereUp is defined by

Up(hn, An) = min{Up(hn, A) + ¢ - dist(A, Aq)}.
A
When the adversary changes configuration fiypto A, 1, the change in potential is bounded by
d-1 .
AD < |3+ T -C- dIStD(An, An+1).

The expected cost of algorithm DelayBdAlg on receiving request, ; is bounded by

3D+d-1

5o E(Coshig(fn. Tni1)).

E(Cosbel p-alg(hn, 'n11)) <

This then allows us to prove that

d-1
E(A®) < (3 + T) - C - tasko (Ant1, nt1) — E(Cosbe D—Alg (hn, rnga)).

5.3. Deterministic Algorithm

For any deterministic algorithrd, request sequenee, and request, let cosh(o, r) (or cosi(r)
wheno follows from the context) be the cost incurred Bywhile servicingr from the configuration
reached by previously servicirg Also, let cosi(o) be the total cost oA ono. Assuming thatA is
c-competitive forP, we define the competitive algorithm DelayBdDAlg for D-P as follows. (The
algorithm is a modification of the algorithid-DAlg in [10] for relaxed task systems.)

DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 149

AvrcoriTHm DELavED D-DAIg. Algorithm DelayedD-DAlg simulates D copiesA; ... Ayp of A.
Let8 = 2+ ./1+ d/D. The configuration of DelayeD-DAlg is always the same as that Af. When
given a new request the algorithm gives it to one of th& according to the following rule:

e if there exists > 2 such that cogf(r) > %cosp\l(r), r is given toA; (i.e., the simulated
configuration ofA; is updated). Then DelayeB®-DAlg servicesr remotely, without changing its
configuration.

e otherwiseyr is given toA;. Then Delayed-DAlg servicesr and moves to the new configu-
ration of A;.

THeorEMb5.2. LetP be a metrical task system and let A be a c-competitive deterministic algorit
for P. Then algorithm Delayed DAlg is g%c?>-competitive for the D-relaxed task systeniD-

Proof. The proof is a modification of the proof of Theorem 2.1 in [10]. It consists of two stej
First, we show that the sum of the costs of algorithdgs. . Ayp is within a factor 2 from the optimal
off-line cost of servicing the requestsDt[. Then we show that the cost of Delay@dDAlg is within
a factor 2/2)c from the above sum. The result will follow. For brevity, we will often refer to th:
algorithm Delayed-DAlg as simplyD-DAlg .

The following lemma is proved in [10, Lemma 2.1].

Lemma 5.1. Leto be arequest sequencand leto; . .. oop be(possibly emplysubsequences of
such that each request frosnappears in exactly one;. Alsq let A be a c-competitive algorithm for
‘P and letcoshgy(c) be the optimal off-line cost of servicimgin D-P. Then

2D

> cosia(0i) < 2¢ - coshay(0).

i=1
The next lemma is analogous to Lemma 2.2 in [10].

Lemma 5.2, Letoj be a sequence of requests given toavhile running DDAIg ono. Then

132 2D
CoSb-pag(c) = ¢ >~ costy, (o3).
i—1
Proof. We may split cog§.paig(o) into cosf (o) (the cost of servicing requests) and ¢hst
(o) (the cost of moving between configurations).

We analyze the costincurred B¢DAIg to service arequest If r is given toA;, the cost of servicing
r from the current configuration dD-DAIlg is at mostBc times cosk, (r). Hence, we can bound the
total cost of servicing requests B 322, costy, (o).

Therefore, it is sufficient to bound C%A,g (0) = (D +d) - costy, (01) interms onf:Dl costy, (ai).
To this end, consider algorithn#s which simulateA; ono;, but also service all requests framin the
following way: whenever e o1 appearsA; moves from its current configurati@ito C’ = Cpin(C, r),
services and moves back t€, paying cost (r) := 2 - dist(C, C’) + taskC’,r) < 2- (dist(C, C') +
taskC’, r)) < 2-costy (r). Asr was given toA;, we know that

costy (1) < ﬂ—];:COStql(r)

which implies
costy (r) < Ecosu (r)
i _ ﬂC 1 '
Hence the total cost oA (denoted by cos(c1)) is bounded by

> costy,(r) = costy (o) + %costAl(o—l).

reoy

costy (07) + r;l costy, (r) < costy, (o7) + %

150 ALBERS, CHARIKAR, AND MITZENMACHER

On the other hand, the algorithAy is c-competitive, so cogf(o1) < ¢ - costy (01). Hence

1 2
ECOSt«l(Gl) < cosly (01) < costy (oi) + Rcost%(ol)
and thus cogt (o1) < % - costy, (7). Now we can bound the moving cost as follows:

cost) pag(0) = (D + d) - costy, (01)
1 d 2D
<3 (1 - 5) ;COSM@

Bc d\ 22
56-3 (1+ 5) ;COS%(W)'

COSb-paig(01) = COSB pag(0) + COSE g ()

ﬂ d 2D
< <ﬁ+ 56 -3 (1+ 5>>Ci21:003h(0i)

2

2D
= ?c > costy, (o).

Theorem 5.2 follows from Lemmas 5.1 and 5.2

5.4. Other Results

Similar to the results in [10], we can get slightly better competitive ratiosmnotonidask systems
(defined below), as well as randomized algorithms against oblivious adversaries.

Monotonic Task Systems

Derinimion 5.3. A monotonic task systemm a forcing task system with a monotonicity propert
between configurations as follows. A configurati©ris said to be dominated by’ if for all tasks for
which C is allowable so isC’. A forcing task system isnonotonicif for every pair of configurations
C1, C, there exists a configuratioD dominating both, and for every configurati@j dominated by
C,, dist(C,, C) < dist(C}, Cy).

A better ratio ofy2c? (wherey = 1+4.,/1+2) may be obtained when the underlying task system
is monotonic An example of a monotonic task system is the Steiner tree problem. The correspor
relaxed versionis the page replication problem. Another example is the generalized Steiner tree pre
the relaxed version is the network leasing problem.

To get the better bound, we use a modified version of DeldyddAlg, which now simulatesD
algorithms A; ... Ap and gives a requeststo A; for which cosh, (v) > %cost%(r) (if such an
algorithm exists) or tdA; otherwise. The analysis is similar to that in [10].

Randomized Algorithm against Oblivious Adversary

One can define a randomized version@¥DAIg, called D-RAIg, which is (3+ %)c-competitive
against an oblivious adversary. For monotonic task systems it#s%i}c-competitive. The algorithm
is exactly the same as the randomized algorithm for relaxed task systems given in [10]; hence the
name. The algorithnD-RAlg simulates ® algorithmsA; ... A,p (D algorithms in the monotonic
case). At the beginning it chooses one of them at random Aspgand then always keeps the sam
configuration ash;. The requests are always given to the algorithm which incurkititeestcost. The
following lemma bounds the expected cost of the algoritbfRAIlg.

DELAYED INFORMATION AND ACTION IN ON-LINE ALGORITHMS 151

Lemma 5.3. The expected cost of D-RAIg is at m()%t—l- %) Zizle costy, (7).

Proof. Suppose the algorithrd-RAIlg simulatesA;. We claim that the cost dD-RAlg is at most
(D +d) - costy, (i) + Z?El costy, (o). We will split the total cost 0D-RAIg into two parts: the cost
of moving between configurations and the cost of servicing requests.

The total movement cost @-RAlg is at most D +d) - costy, (6i) WheneverA; changes configuration
from C to C’, D-RAIg also changes configuration frathto C’. The cost incurred by is dist(C, C’)
and that byD-RAlg is (D + d) - dist(C, C’).

Consider now the total request service cosbeRAlg. Suppose a requesis given toA;. The cost
incurred byD-RAIg to serwce this request is caglr) < costy (r). Hence the total request service cos
of D-RAIg is bounded b}Z 1 COSta, (0}).

This proves the claim that iD- RAIg choosesA;, the cost incurred by it is at mosD(+ d) -
costy, (o) + ZI lCOStq' (01). Sincei is chosen uniformly and at random from the set.1, 2D, the
expected cost oD-RAlg is at mostD+d Z, 1costA (o1) + Z, 1cosl,t (07) which is (2 2D) Z
costy (0;). W

Combining Lemma 5.3 with Lemma 5.1, the expected competitive ratid-8¥Alg is bounded by
B+ %)c.

In the case of monotonic task systems, the algoribwRAIlg simulatesD algorithmsA,, ..., Ap.
It is easy to modify the proof of Lemma 5.3 to show that in this case, the expected ddsRAlg is
bounded by (2~ %) ZiD:l costy, (07). Combining this with Lemma 18, the expected competitive rat
of D-RAIg is bounded by (2- 4)c.

6. CONCLUSION

We have considered the effects of delayed action and delayed information for a variety of on
problems, including the general class of problems corresponding to relaxed metrical task system
results demonstrate that in many cases appropriate algorithms can deal gracefully with delay
extent that the competitive ratio grows slowly as the delay increases. We believe that examining de
situations, besides yielding interesting problems, gives more insight into these on-line problerr
particular, by studying delay one learns more about the underlying model and how reasonable it aj
as well as how robust suggested algorithms are for handling slightly different situations.

Further directions to pursue include studying the effects of delay on more challenging on-line g
lems, such as thHeserver problem. Also, determining how to introduce notions of delay in more gent
models of on-line problems may yield interesting results.

REFERENCES

1. Albers, S. (1999), Better bounds for online schedulBig\M J. Comput29, 459-473.

2. Albers, S., von Stengel, B., and Werchner, R. (1995), A combined BIT and TIMESTAMP algorithm for the list up
problem,Inform, Process. Let66, 135-139.

3. Alon, N., Kalai, G., Ricklin, M., and Stockmeyer, L. (1992), Lower bounds on the competitive ratio for mobile user tracl
and distributed job schedulinm “Proc. 33rd Ann. Symp. on the Foundations of Computer Science,” pp. 334—-343.

4. Altman, E., and Nain, P. (1992), Closed loop control with delayed informaitiotRroceedings of the ACM Sigmetrics
Conference on Measurement and Modeling of Computer Systems, Newport, Rhode Island,” pp. 193-204, Assoc. Ci
Mach., New York.

5. Altman, E., and Stidham, S. (1996), Optimality of monotonic policies for two-action Markovian decision processes,
applications to control of queues with delayed information, “Queueing Systems: Theory and Applications.”

6. Awerbuch, B., Azar, Y., and Bartal, Y. (1996), On-line generalized Steiner probeiroc. 7th Ann. ACM-SIAM Symp.
on Discrete Algorithms,” pp. 68-74.

7. Awerbuch, B., Azar, Y., Fiat, A., and Leighton, T. (1996), Making commitments in the face of uncertainty: How to pic
winner almost every timen “Proc. 28th Ann. ACM Symp. on Theory of Computing,” pp. 519-530.

8. Awerbuch, B., Bartal, Y., and Fiat, A. (1993), Competitive distributed file allocatiotiroc. 25 ACM Symp. on Theory of
Computing,” pp. 164-173.

9. Bartal, V. (1997), personal communication.

152 ALBERS, CHARIKAR, AND MITZENMACHER

10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.

21.
22.

23.
24.
25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37

Bartal, Y., Charikar, M., and Indyk, P. (1997), On page migration and other relaxed task systétns¢. 8th Ann. ACM-
SIAM Symp. on Discrete Algorithms.”

Bartal, Y., Byers, J., and Raz, D. (1997), Global optimization using local information with applications to flow con
in “Proc. 38th Ann. Symp. on Foundations of Computer Science,” pp. 303-312.

Bartal, Y., Fiat, A., and Rabani, Y. (1992), Competitive algorithms for distributed data manageni&mgc. 24th Ann.
ACM Symp. on the Theory of Computing,” pp. 39-49.

Bartal, Y., and Rosen, A. (1997), The distribukeslerver problem—A competitive distributed translator Keserver algo-
rithms, J. Algorithms23, 241-264.

Ben-David, S., and Borodin, A. (1994), A new measure for the study of on-line algoriftigesithmicall, 73-91.

Black, D. L., and Sleator, D. D. (1989), “Competitive Algorithms for Replication and Migration Problems,” Technical Re
CMU-CS-89-201, Department of Computer Science, Carnegie-Mellon University.

Borodin, A., Linial, N., and Saks, M. (1992), An optimal on-line algorithm for metrical task systemssoc. Comput.
Mach.39, 745-763.

Chou, A., Cooperstock, J., El-Yaniv, R., Klugerman, M., and Leighton, T. (1995), The statistical adversary allows of
money-making trading schemés,“Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms,” pp. 467—-476.

Cover, T. M. (1991), Universal portfolioslath. Financ.1, 1-29.

Deng, X., and Papadimitriou, C. H. (1992), Competitive distributed decision-makirigroc. 12th IFIP Congress,”
pp. 350-356.

El-Yaniv, R., Fiat, A., Karp, R., and Turpin, G. (1992), Competitive analysis of financial gami&pc. 33rd Ann. Symp.
on Foundations of Computer Science,” pp. 327-333.

Graham, R. L. (1966), Bounds for certain multi-processing anomBi@sSystems Technol. 45, 1563-1581.

Hallddrsson, M. M., and Szegedy, M. (1992), Lower bounds for on-line graph colariri§roc. 3rd Ann. ACM-SIAM
Symp. on Discrete Algorithms,” pp. 211-216.

Hull, J. C. (1993), “Options, Futures, and Other Derivative Securities,” 2nd ed., Prentice-Hall, New York.

Irani, S. (1994), Coloring inductive graphs on-liddgorithmicall, 53-62.

Irani, S., and Rabani, Y. (1993), On the value of information in coordination gam{Bsoc. 34th Ann. Symp. on Foundations
of Computer Science,” pp. 12-21.

Karp, R., and Raghavan, P. From a personal communication cited in [34].

Koutsoupias, E., and Papadimitriou, C. H. (1994), Beyond competitive anaty4#spc. 35th Ann. Symp. on Foundations
of Computer Science,” pp. 394—400.

Kuri, J., and Kumar, A. (1995), Optimal control of arrivals to queues with delayed queue length inforrtelEBnTrans.
Automat. Contro#0, pp. 1444—1450.

Mitzenmacher, M. (1997), How useful is old informatian?Proc. 16th Ann. ACM Symp. on Principles of Distributed
Computing,” pp. 83-91.

Mirchandaney, R., Towsley, D., and Stankovic, J. A. (1989), Analysis effects of delays on load sE&thgrans. Comput.
38, 1513-1525.

Papadimitriou, C. H., and Yannakakis, M. (1991), On the value of information in distributed decision nrakifrgc. 25th
ACM Symp. on Principles of Distributed Computing,” pp. 61-64.

Papadimitriou, C. H., and Yannakakis, M. (1993), Linear programming without the niatfRroc. 25th ACM Symp. on
Theory of Computing,” pp. 121-129.

Raghavan, P. (1991), “A Statistical Adversary for On-line Algorithms,” On-Line Algorithms DIMACS Series in Discr
Mathematics and Theoretical Computer Science, pp. 79-83.

Reingold, N., Westbrook, J., and Sleator, D. D. (1994), Randomized competitive algorithms for the list update pro
Algorithmicall, 15-32.

Sleator, D. D., and Tarjan, R. E. (1985), Amortized efficiency of list update and pagingColesnun. Assoc. Comput.
Mach.28, 202-208.

Towsley, D., and Mirchandaney, R. (1988), The effect of communication delays on the performance of load balancing p
in distributed systemsn “Proc. Second International MCPR Workshop,” pp. 213-226.

. Yao, A. C.-C. (1977), Probabilistic computations: Towards a unified measure of compleXRypc. 17th Ann. Symp. on
Foundations of Computer Science,” pp. 222—-227.

	1. INTRODUCTION
	2. SCHEDULING
	3. LIST UPDATE
	4. STOCK TRADING
	5. DELAYED RELAXED TASK SYSTEMS
	6. CONCLUSION
	REFERENCES

