
The Power of One Move:
Hashing Schemes for Hardware

Adam Kirsch and Michael Mitzenmacher
Harvard School of Engineering and Applied Sciences

Cambridge, MA 02138
Email: {kirsch, michaelm}@eecs.harvard.edu

Abstract—In a standard multiple choice hashing scheme, each
item is stored in one of d ≥ 2 hash table buckets. The availability
of choice in where items are stored improves space utilization.
These schemes are often very amenable to a hardware imple-
mentation, such as in a router. Recently, however, researchers
have discovered powerful variants where items already in the
hash table may be moved during the insertion of a new item.
Unfortunately, these schemes occasionally require a large number
of items to be moved during an insertion operation, making
them inappropriate for a hardware implementation. We show
that it is possible to significantly increase the space utilization of
a multiple choice hashing scheme by allowing at most one item to
be moved during an insertion. Furthermore, our schemes can be
effectively analyzed, optimized, and compared using numerical
methods based on fluid limit arguments, without resorting to
much slower simulations.

I. INTRODUCTION

In a multiple choice hashing scheme, a hash table is built
using the following approach: each item x is associated with
d hash values, each corresponding to a bucket in the table, and
the item is placed in one of these d locations. Such schemes are
often used to ensure a more even distribution of items among
the buckets of the hash table than would result from using
a single hash function, and there are many theoretical results
along these lines [1], [3], [12]–[14], [19]. These schemes can
also be used to ensure that each bucket contains at most
one item with high probability [2]. Since multiple choice
hashing schemes are often very simple to implement, they have
often been proposed for specific applications, such as network
routers [3], peer-to-peer applications [4], and standard load
balancing of jobs across machines [12], [13].

In this paper, we consider implementing multiple choice
hashing schemes in hardware. From this perspective, a key
property of these schemes is that during a lookup operation,
if the queried item is in the hash table, then it must be in one
of its d possible locations. Furthermore, in most constructions
these locations can be accessed in parallel. Hence lookups
are trivial, requiring one parallel (or at most a constant
number of sequential) memory operations. For these reasons,
multiple choice hashing schemes have been suggested for
many hardware applications, such as in routers for IP lookups
(e.g. [3], [18], [20]), network measurement and monitoring
(e.g. [6], [18]), and other related tasks.

We seek to improve the space utilization of multiple choice
hashing schemes. In particular, we consider hashing schemes

that allow items already in the hash table to be moved during
an insertion operation. Recently, many such schemes have
been proposed in the theory literature, and the results are
extremely compelling [5], [7], [15], [16]. Thus, it is natural
to ask whether these proposed schemes are applicable to a
hardware setting.

In general, the immediate answer is no. For example, we
consider cuckoo hashing [15], which is the simplest multiple
choice scheme that allows moves. Using cuckoo hashing, for
an initially empty hash table designed to hold n items in
O(n) space, there is a non-negligible probability that during
the insertion of n items into the table, at least one of those
insertions requires Ω(log n) moves. This is true despite the fact
that, on average, only a constant number of items are moved
during an insertion [5], [7], [15]. Unfortunately, in a hardware
setting, the worst case time of an insertion operation may be
significantly more important than the average time, because
the former may essentially determine the complexity of the
implementation. In particular, moving items in the hash table,
which is generally held off-chip in slow memory, is expensive
and must be limited. Only a small constant number of moves
– indeed, arguably only one – is acceptable in practice.

A further issue with cuckoo hashing techniques is that the
analysis of variants that perform well is currently incomplete.
While one can construct proofs that they yield hash tables
that hold n items with O(n) space (with high probability), the
analysis often loses significant constant factors [5], [7], [15],
[16]. We emphasize that this is not just a theoretical concern,
as it makes the design and optimization of such structures
essentially dependent upon potentially expensive simulations.
The availability of accurate theoretical results, especially in
the design and optimization phase, can significantly aid in the
practical development of an actual implementation.

The primary purpose of this paper is to bridge the gap
between the existing theory and practice of multiple choice
hashing schemes, particularly those that allow moves. We
demonstrate simple but very effective multiple choice hashing
schemes suitable for implementation in hardware. Specifically:
• We design and analyze schemes that require moving

at most one item during each insertion operation. The
limitation of just one move suggests that the schemes
will be effective in practice. Moreover, we demonstrate
that the gains in space utilization are substantial.

• We explicitly consider the availability of a small content-



2

addressable memory (CAM), and show how to optimize
our schemes accordingly. While CAMs are common in
hardware design to cope with rare but problematic cases,
they are generally not considered in theoretical analyses.

• We use fluid limit arguments to develop numerical analy-
sis and optimization techniques that give extremely accu-
rate results. Our analysis allows us to consider questions
such as the appropriate size for a CAM and the potential
benefit of using skewed sub-tables of varying sizes in our
construction. Furthermore, our approach provides a solid
framework for exploring future hashing schemes.

II. THE STANDARD MULTILEVEL HASH TABLE (MHT)

A standard multilevel hash table (MHT) [2] for representing
a set of n items consists of d sub-tables, T1, . . . , Td, where Ti

has αin buckets. Unless otherwise specified, we assume that a
bucket can hold at most one item. For simplicity, we assume
that T1, . . . , Td place items using independent fully random
hash functions h1, . . . , hd. To place an item x in the MHT,
we simply find the smallest i for which Ti[hi(x)] is empty,
and place x at Ti[hi(x)]. If there is no such i, then we place x
onto an overflow list L. In general, we visualize T1, . . . , Td, L
as being laid out from left to right, and we often use this
orientation in our discussion. (We note that in this setting,
where each bucket holds at most one item, the standard MHT
insertion scheme corresponds exactly to the more well-known
d-left hashing scheme [3], [14], [19].) Finally, here and in most
of the paper, we concern ourselves only with inserting items
into an MHT, although all of what we do can be adapted to
deal with deletions. We discuss this further in Section VIII.

The standard MHT is very amenable to a hardware imple-
mentation. We can easily perform a lookup by doing one hash
and read for each sub-table in parallel, or sequentially if need
be. In certain settings, it may even be practical to use only a
single read operation, with the aid of an auxiliary summary
data structure that tells us which table to read from [9].
Insertions are similarly easy to perform, as we can store a bit
table in faster memory that tells us which buckets are occupied.
Thus, the only operation on the actual table required during
an insertion is just the writing of the item to the proper place.

The prior work on MHTs (notably [2] and [9]) considers
implementations where one must be able to insert n items
into some MHT with O(n) buckets and be assured that, with
very high probability (typically inversely polynomial in n),
none will overflow into L; in effect, there is no overflow
list here. Indeed, [2] shows that this can be done with an
expected constant number of re-hashings of the items for
d = log log n + O(1), and [9] modifies that analysis for the
case where no re-hashings are allowed, which is a much more
compelling scenario for hardware applications.

We consider a different approach, designed specifically for
addressing the issues that arise in hardware applications. (A
similar approach, dubbed Filter Hashing, is suggested in [7].)
If L is reasonably small (say, at most 64) with overwhelming
probability, then we can implement it using a CAM of modest
size. In this setting, it becomes useful to consider the following

asymptotic regime for theoretical analysis. Rather than setting
d = log log n + O(1), we fix d to be some small constant.
For example, in our analyses, we tend to focus on d = 4
because it gives an excellent tradeoff between performance
and practicability for the reasonable value n = 10000. Now
we think of α1, . . . , αd as being fixed constants, so that the
total size of the MHT is cn buckets, for c =

∑d
i=1 αd.

We can then imagine inserting n items into the MHT and
measuring the fraction that overflow into L. It turns out that,
as n →∞, this fraction is very sharply concentrated around a
constant w that can be calculated from a system of differential
equations. In practice, this means that for n items, if w is on
the order of, say, 10/n, then we can implement the MHT
using a modest sized CAM to represent L. Furthermore, and
much more importantly, this whole approach is so general
that we can extend it do deal with many variations on the
standard procedure for inserting items. In particular, we use
this technique to show that it is possible and practical to make
substantial performance improvements to the standard MHT
insertion procedure simply by allowing a single item to be
moved. This is the main contribution of this work.

III. HASHING SCHEMES AND DIFFERENTIAL EQUATIONS

It is well known that, in many situations, the behavior of a
randomized hashing scheme can be effectively approximated
by a deterministic system [12]. Such an approximation elimi-
nates much of the complexity that arises in many probabilistic
analyses, and also makes the results significantly more trans-
parent. We use this approach throughout this work.

To illustrate the technique, we consider the standard MHT
as described in Section II. Suppose that we start at time 0
with an empty MHT, and then insert n items into it, inserting
the jth item at time j/n, so that all items are inserted by
time 1. Let Fi(t) denote the fraction of buckets in Ti that are
occupied at time t. Now condition on the state of the MHT
just after the jth item is inserted, for some j < n. Then, for
each i, the probability that the (j +1)st item inserted into the
MHT ends up in Ti is (1−Fi(j/n))

∏i−1
k=1 Fk(j/n). Formally,

letting ~F (t) denote the vector of the Fi(t)’s, we have

E[Fi((j + 1)/n)− Fi(j/n) | ~F (j/n)]

=
(1− Fi(j/n))

αi

i−1∏

k=1

Fk(j/n).

The conditional expectation corresponds to the average change
in F (t) over the window of time [j/n, (j + 1)/n]. Thus, if n
is very large, so that changes are comparatively small, then
we would expect the following approximation to be valid:

dFi(t)
dt

≈ (1− Fi(t))
αi

i−1∏

k=1

Fk(t). (1)

Indeed, this is essentially the case. More formally, let ~f(t) =
(f1(t), . . . , fd(t)) be the solution to the system of differential
equations

dfi

dt
=

(1− fi)
αi

i−1∏

k=1

fk



3

with fi(0) = Fi(0) = 0 for each i. Then as n → ∞ and
ε → 0 we have,

Pr

(
sup

t∈[0,1]

∣∣∣~F (t)− ~f(t)
∣∣∣ > ε

)
≤ e−Ω(nε2).

Thus, the approximation (1) is valid; the fi’s are extremely
accurate approximations of the Fi’s. This is a consequence of
an extremely general mathematical result due to Kurtz [10],
[11], [17], which justifies not only the discussion here, but
also all of the other differential equation approximations that
we make in this work. This approach is typically referred to
as taking the fluid limit of the system, or as the mean-field
method.

Of course, we are glossing over some technical details in
this discussion. For example, this form of Kurtz’s Theorem
requires that the items arrive according to a Poisson process,
but this can be dealt with by an application of an appropriate
Chernoff bound for Poisson random variables. Also, one
must formally check that the conditions of Kurtz’s Theorem
are satisfied for this system. This is straightforward, as the
hypotheses of the theorem are very general.

Returning to the analysis of the standard MHT, the dif-
ferential equation approximation immediately predicts the
fraction of the n items that overflow into L; it is just
w , 1 − ∑d

i=1 αifi(1). While w is not likely to have a
simple form, we can easily compute it numerically using
standard mathematical software. Furthermore, thinking of w
as a function of α1, . . . , αd, we can attempt to minimize w
subject to the space constraint that

∑
i αi ≤ c for some fixed

constant c. In other words, we can look for the best sizes
for the sub-tables of the MHT, subject to the constraint that
the entire MHT has at most c buckets per item that we wish
to insert. Since we can easily evaluate w, we can find good
αi’s by using standard mathematical software for attempting to
minimize a black-box function. Such an optimization approach
is only possible because the differential equations are so easy
to evaluate. If we were using a less efficient method, such
as simulation, the optimization procedure would likely be too
slow to be of any real use. We use this technique to configure
and compare all of our schemes in Section VII.

IV. ALLOWING ONE MOVE: A CONSERVATIVE SCHEME

We have already argued that the standard MHT is very
amenable to a hardware implementation. Our results in Sec-
tion VII also show that it is quite effective. (This in itself
is not really new, given the theoretical analysis of [2] and
the subsequent theoretical and numerical results of [9].) Thus,
we are now in a position to push the envelope, introduc-
ing progressively more complexity into the MHT insertion
procedure to reduce the space required while still ensuring
that hardware implementations are practical. In particular, as
described in the introduction, we are inspired by the existing
literature on hashing schemes that allow moves. That inspira-
tion leads us to design alternative MHT insertion procedures
that allow a single move per insertion operation, in order to
effectively balance performance improvements to the MHT

against increased complexity in a hardware implementation.
We consider a variety of procedures, in order to gain an
understanding of the landscape and how the theory applies.

We start with a fairly conservative scheme. Each bucket
of the MHT can be either marked or unmarked. Initially, all
buckets are unmarked. When inserting an item x into the MHT,
we find the smallest i such that Ti[hi(x)] is empty, if there
is one. In this case, we simply set Ti[hi(x)] = x. If there is
no such i, we find the smallest j < d such that Tj [hj(x)] is
unmarked, if there is one. If there is no such j, we place x on
L. If there is such a j, we mark Tj [hj(x)], set y = Tj [hj(x)],
and look for the smallest k > j such that Tk[hk(y)] is empty, if
there is one. If there is no such k, then we place x on L. If there
is such a k, then we set Tk[hk(y)] = y and Tj [hj(x)] = x.

In words, this scheme tries to place x into a sub-table using
the standard MHT scheme. If this fails, it tries to bump an item
y that it collides with, replacing it and moving y to the right.
The item x tries to bump at most one other item. Because
of this, we take care to mark an item that we already know
cannot be moved to the right successfully to avoid wasting
effort. Hence the item that x tries to bump is the leftmost one
that we do not know for a fact cannot be bumped.

We say that this scheme is conservative because it is hesitant
to move an item. Indeed, the scheme only attempts to move
items as the standard MHT insertion procedure breaks down;
it makes no attempt to arrange items in advance to prevent
this from happening. As such, in practice it is fairly rare for
this scheme to actually move an item. We show this in detail
in Section VII.

As in Section III, suppose that we start at time 0 with an
empty MHT, and insert n items at times 1/n, 2/n, . . . , 1. For
convenience, we define the notation [r] = {1, . . . , r} for any
integer r. For i ∈ [d], let Fi(t) denote the fraction of buckets
in Ti that are occupied at time t, and for i ∈ [d−1], let Gi(t)
denote the fraction of buckets in Ti that are marked. Then a
straightforward, if somewhat tedious, probability calculation
tells us that the Fi’s and Gi’s can be approximated by the
solution of the following system of differential equations (with
fi(0) = 0 and gi(0) = 0).

dfi

dt
=

1− fi

αi

×




i−1∏

j=1

fj +
i−1∑

j=1




d∏

k=1





gk k < j

fk − gk k = j

fk k > j




i−1∏

k=j+1

fk




dgi

dt
=

1
αi

d∏

j=1





gj j < i

fj − gj j = i

fj j > i

Here we have used an array notation to simplify the presen-
tation of the equations, as the terms of the product are case-
dependent on the index. As before, w , 1−∑d

i=1 αifi(1) is
the asymptotic fraction of items that overflow into L.

We can also use the differential equation approach to
determine the asymptotic fraction of insertion operations that



4

require an item to be moved in the MHT. Indeed, if M(t) is
the fraction of the n items that are inserted at or before time
t and required a move in the MHT, then another calculation
tells us that M(t) is approximated by the solution m(t) of the
differential equation (with m(0) = 0)

dm

dt
=

d−1∑

i=1


1−

d∏

j=i+1

fj




d∏

j=1





gj j < i

fj − gj j = i

fj j > i

.

The asymptotic fraction of the n insertion operations that
require a move in the MHT is then m(1).

As in Section III, we can now use numerical methods to
analyze this scheme in greater detail. We present the results
in Section VII.

V. THE SECOND CHANCE SCHEME

Recall that the scheme in Section IV rarely moves an item in
the MHT, even though we have, in principle, allowed ourselves
to perform at most one move per insertion operation. Indeed,
in many hardware applications, the frequency with which we
perform moves may be much less important than the guarantee
that we never perform more than one move per insertion. With
this in mind, we introduce a scheme that is considerably more
aggressive in performing moves, while still guaranteeing that
no insertion operation requires more than one.

For intuition, consider inserting n items using the standard
MHT insertion scheme. It is fairly clear, both from the
definition of the scheme and from the differential equations
in Section II, that as the items are inserted the sub-tables fill
up from left to right, with newly inserted items cascading from
Ti to Ti+1 with increasing frequency as Ti fills up. Thus, it
seems that a good way to reduce the overflow from the MHT
is to slow down this cascade at every step.

This idea is the basis for our new scheme, which we call
the second chance scheme. The formal pseudocode is given
in Figure 1. The basic idea is that whenever an inserted item
x cannot be placed in Ti, it checks whether it can be inserted
into Ti+1. If it cannot be placed there then, rather than simply
moving on to Ti+2 as in the standard scheme, the item x
checks whether the item y in Ti[hi(x)] can be moved to
Ti+1[hi+1(y)]. If this move is possible, then we move y and
replace it with x. Thus, we effectively get a second chance at
preventing a cascade from Ti+1 to Ti+2.

From a hardware implementation perspective, this scheme
is much more practical than it may first seem. To see this,
consider a standard MHT implementation where we can
read and hash one item from each sub-table in parallel.
In this setting, we can insert an item x using the sec-
ond chance scheme by reading and hashing all of items in
T1[h1(x)], . . . , Td−1[hd−1(x)] in parallel. Once we have the
hash values for these items, we can determine exactly how x
should be placed in the table using the pseudocode in Figure 1.

Alternatively, if we have a hardware implementation that
forces us to read and hash these items sequentially, then we
can consider storing hash values for the items in a separate

1: for i = 1 to d− 1 do
2: if Ti[hi(x)] is not full then
3: Ti[hi(x)] ← x
4: return
5: y ← Ti[hi(x)]
6: if Ti+1[hi+1(x)] is full then
7: if Ti+1[hi+1(y)] is not full then
8: Ti+1[hi+1(y)] ← y
9: Ti[hi(x)] ← x

10: return
11: if Td[hd(x)] is not full then
12: Td[hd(x)] ← x
13: else
14: Add x to L

Fig. 1. Pseudocode for inserting an item x in the second chance scheme.

table with sub-tables T ′1, . . . , T
′
d−1, mimicking the MHT, that

can be accessed more quickly. Note that, for an item y in Ti,
we only need to store the value of hi+1(y) in T ′i [hi(t)]. If
hash values are much smaller than the items themselves (as is
often the case), the space needed for the T ′’s is offset by the
reduction in size of the MHT.

As before, we can use differential equations to approximate
the fraction of items that overflow into L. In the usual way,
suppose that we start at time 0 with an empty MHT, and
insert n items into it, at times 1/n, 2/n, . . . , 1. For i ∈ [d], let
Fi(t) denote the fraction of buckets in Ti that are occupied
at time t. Perhaps more subtly, for i ∈ [d − 1], we let Gi(t)
denote the fraction of buckets in Ti at time t that contain an
item y such that Ti+1[hi+1(y)] has already been found full
in line 7 of Figure 1. For such an item y, it is guaranteed
that Ti+1[hi+1(y)] is occupied at time t and thereafter; since
this behavior is different from items where hi+1(y) has never
been checked, we must record their growth separately. Another
probability calculation now tells us that the Fi’s and Gi’s can
be approximated by the solution of the following system of
differential equations (with fi(0) = 0 and gi(0) = 0).

df1

dt
=

1− f1

α1

dfi

dt
=

1− fi

αi
(fi−1 + (fi−1 − gi−1)fi)

×
i−2∏

j=1

gj + (fj − gj)fj+1 for i = 2, . . . , d

dgi

dt
=

(fi − gi)fi+1

αi

i−1∏

j=1

gj + (fj − gj)fj+1

The asymptotic fraction of items that overflow into L is then
just w , 1−∑d

i=1 αifi(1).
As before, we can also define M(t) to be the fraction of

the n items that are inserted at or before time t and require a
move in the MHT. In this case, M(t) is approximated by the



5

solution m(t) of the differential equation (with m(0) = 0)

dm

dt
=

d∑

i=2

(fi−1 − gi−1)fi(1− fi)
i−2∏

j=1

gj + (fj − gj)fj+1.

We analyze this scheme using numerical methods in Sec-
tion VII.

A. The Extreme Second Chance Scheme

We briefly describe a further enhancement of the second
chance scheme, that we call the extreme second chance
scheme. The idea is fairly intuitive. In the regular sec-
ond chance scheme, we only consider inserting an item
x into Ti if it collides with items y1 = T1[h1(x)],. . .,
yi−1 = Ti−1[hi−1(y)] and for each j < i − 1, the bucket
Tj+1[hj+1(yj)] is occupied, so that we cannot move yj to
Tj+1 and place x in Tj . Taking this idea to the extreme, we
simply allow for many more possible moves. Thus, in the
new scheme, we only consider inserting an item x into Ti if it
collides with items y1 = T1[h1(x)], . . . , yi−1 = Ti−1[hi−1(y)]
and for any j < k ≤ i− 1, the bucket Tk[hk(yj)] is occupied,
so that we cannot move yj to Tk and place x in Tj .

More formally, we have the following specification. Sup-
pose we let yi = Ti[hi(x)] if Ti[hi(x)] is not empty. Let z0

be the index of the leftmost sub-table that is currently empty
for x, with the notation that z0 = d + 1 if none of the d
choices are available. For each yi, let zi be the index of the
currently leftmost empty sub-table for yi. If z0 ≤ mini zi, then
we place x in the leftmost sub-table with an empty slot for
x. Otherwise, let yj be the item with the smallest value of zj ,
breaking ties in favor of the smallest index j. We move yj to
the leftmost sub-table with an empty slot for yj and put x in
its place. Of course, if we cannot insert x using this procedure,
then we place x on L.

There are a few negative aspects of this scheme. First, it
requires significantly more hashes and other computations than
the original second chance scheme. This may or may not be
important, depending on the context. Arguably, the gain in
space could conceivably be worth the additional complexity.
Second, from our perspective, another clear negative is that
while our differential equation analysis could be applied to
this scheme, the resulting explication of cases leads to a very
large and unwieldy set of equations. For these reasons, we
defer a more detailed analysis of it to future work and focus
our analysis on the original second chance scheme.

VI. MULTIPLE ITEMS PER BUCKET

We can also consider schemes that allow multiple items
to be stored in a bucket of the MHT. We do this primarily to
illustrate the generality of our methodology, and we emphasize
that everything that we do in this section is by way of example;
the overall approach can be adapted to an enormous variety
of different settings and schemes.

We focus on the case where a bucket in the MHT can store
at most two items, and we consider a natural modification
of the second chance scheme. (The ideas can be extended to
larger numbers of items per bucket.) We can simply modify the

procedure in Figure 1 so that when we try to insert an item x
into Ti and the buckets Ti[hi(x)] and Ti[hi+1(x)] are full, we
check both y ∈ Ti[hi(x)] to see whether either can be moved
to Ti+1[hi+1(y)], and in this case, we perform the move and
place x in Ti[hi(x)]. Of course, we need to consider the case
where both y ∈ Ti[hi(x)] can be moved, since then we have
to choose between them. For simplicity, we suppose that we
move the first y that we check that can be moved, so that we
do not even have to check the other one. Of course, one could
also consider the natural variation where we try to minimize
the number of items in Ti+1[hi+1(y)]. As before, this is only
an example, and so we focus on our slightly simpler scheme.

We can use differential equations to approximate the frac-
tion of items that overflow into L. As before, suppose that we
start at time 0 with an empty MHT, and insert n items into
it, at times 1/n, 2/n, . . . , 1. For i ∈ [d] and j ∈ {0, 1, 2}, let
Fi,j(t) denote the fraction of buckets in Ti that are occupied
at time t. For i ∈ [d− 1] and j ∈ {0, 1, 2}, let Gi,j(t) denote
the fraction of buckets in Ti at time t that contain two items, j
of which are items y such that Ti+1[hi+1(y)] has already been
found full in the equivalent of line 7 in Figure 1; for such an
item y, it is guaranteed that Ti+1[hi+1(y)] is full at time t and
thereafter. Another straightforward probability calculation now
tells us that the Fi,j’s and Gi,j’s can be approximated using
the solution of the following system of differential equations
(with fi,j(0) = 1 (j = 0) and gi,j(0) = 0, where 1 (·) denotes
the indicator function).

fi,≥j =
2∑

k=j

fi,k gi,≥j =
2∑

k=j

gi,k for j = 1, 2

fi,0 = 1− fi,≥1 gi,0 = fi,2 − gi,≥1

df1,≥j

dt
=

f1,j−1

α1

dfi,≥j

dt
=

1
αi

[
i−2∏
r=1

2∑
s=0

gr,sf
2−s
r+1,2

]

×
2∑

r=0

gi−1,r

2−r∑
s=0

fs
i,2fi,j−1 for 2 ≤ i ≤ d

dgi,≥j

dt
=

1
αi

[
i−1∏
r=1

2∑
s=0

gr,sf
2−s
r+1,2

] [
j−1∑
r=0

gi,rf
j−r
i+1,2

]

In this setting, the asymptotic fraction of items that overflow
into L is w , 1−∑d

i=1

∑2
j=1 jαifi,j(1). (Buckets containing

two items must be multiplied by a factor of two.)
If M(t) is again the fraction of the n items that are inserted

at or before time t and require a move in the MHT, then
M(t) is approximated by the solution m(t) of the differential
equation (with m(0) = 0)

dm

dt
=

d∑

i=2

[
i−2∏
r=1

2∑
s=0

gr,sf
2−s
r+1,2

]
fi,2

1∑
r=0

gi−1,r

(
1− f2−r

i,2

)
.



6

VII. EVALUATION (INSERTIONS ONLY)

In this section, we use the differential equations previously
derived to assess and compare the performance of the four
schemes we consider: the standard MHT scheme (Std), the
conservative scheme (Cons) of Section IV, the second chance
scheme (SC), and the modification of the second chance
scheme for the case of two items per bucket (SC2) discussed
in Section VI. For comparison, we also occasionally consider
the extreme second chance scheme (SCExt). For that scheme,
however, we use simulations, since the corresponding system
of differential equations is too unwieldy to present formally
in this paper (although such equations could certainly be
derived).

As mentioned previously, we solve all differential equations
numerically using standard mathematical software. Similarly,
we use standard numerical optimization procedures to compare
schemes in the following way: for each scheme and a partic-
ular d and bound on the number of buckets per inserted item
in the MHT, we choose the αi’s in an attempt to minimize
w subject to the space constraint. Specifically, we use the
NDSolve and NMinimize functions in Mathematica 5.2, with
occasional minor modifications to the default behavior of
NMinimize (such as trying multiple values for the Method
and number of iteration parameters when appropriate). We also
verify all of our numerical results through simulation.

For some perspective, the total computation time for all of
the results presented here was about a few days on a standard
workstation PC obtained in 2004. The coding time was also
quite small. Indeed, the total time spent writing and executing
all the necessary code for this entire paper was at most two or
three weeks for the graduate student author, and that includes
the learning curve on Mathematica. We point out these facts
to give evidence that this methodology is very practical and,
as we shall see shortly, also quite effective.

In what follows, we use the notation that the space of the
hash table excluding the CAM is equal to the size of cn items,
where c is a constant independent of n. For every scheme
presented except the SC2 scheme, this is the same as saying
that there are cn buckets; because the SC2 scheme holds up
to two items per bucket, the total number of buckets for the
SC2 scheme is cn/2.

We start by comparing the overflow rates w of the different
schemes for different values of c when d = 4. We focus on
the choice of d = 4 because it achieves an excellent tradeoff
performance and practicality for a hardware implementation
for a reasonable range of values of n. We also focus on values
of c that provide the big picture of how the schemes compare.
As we have suggested, further experimentation for specific
cases (different values of c, d, or different target values for w)
would be simple to compute.

The results are displayed in Figure 2. For completeness,
we present simulated results for the SCExt scheme using the
αi’s determined during the optimization of the SC scheme.
The simulated values are determined through our standard
simulation methodology, described in detail below. As is clear

1 1.2 1.4 1.6 1.8 2
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

c

w

 

 

Std
Cons
SC
SCExt (Simulated)
SC2

Fig. 2. Comparison between the asymptotic fractional overflows w and the
corresponding space multiplier c for d = 4.

from the figure, the overflow rate drops off exponentially for
all schemes as c increases. Also, each increase in complexity
to the MHT insertion scheme gives a significant reduction in
the resulting overflow rate. This difference is profound for the
SC2 scheme; the additional flexibility from having two items
to move at each level offers substantial benefits, at the cost of
some hardware complexity and the requirement that two items
can be stored in a single bucket. More interestingly, though,
the differences between the Std, Cons, and SC schemes are
enormous as c grows towards 2, and the difference is still
significant even for c much closer to 1 (say, c = 1.2).

To get a more refined comparison of the schemes, we fix a
target value of w = 0.2%, and attempt to find the smallest c
for each scheme that achieves w using NMinimize, taking c to
the nearest hundredth. Roughly speaking, this corresponds to
drawing the horizontal line w = 0.2% in Figure 2 and compar-
ing the c coordinates where that line intersects each of the lines
corresponding to the different schemes. The value for w is
chosen so that for n = 10000, which we consider a reasonable
size, the expected number items that overflow is about 20. As
we shall see later, the distribution of the number of items
that overflow in this case is approximately Poisson(20). The
probability that a Poisson(20) random variable exceeds, say,
64 is approximately (by numerical calculation) 3.77× 10−15,
which is negligible. Thus for these values, we can, in practice,
just use a CAM of size 64 to represent the overflow list L.

We present the results of our comparison of the schemes
for the target w = 0.2% for d ∈ {3, 4, 5} in Table I.
In that table, we also show the asymptotic fraction m of
the n insertion operations that require a move, as well as
the values for the αi’s determined by our optimizations. As
mentioned previously, we are principally interested in the
results for d = 4. The results for the other values for d are of
secondary importance and are presented mostly for the sake
of comparison with the results for d = 4.

Table I essentially confirms our original intuition concerning
the schemes and the overall picture suggested by Figure 2.



7

TABLE I
SCHEME COMPARISON FOR A TARGET w = 0.2%

Scheme c m α1 α2 α3

Std 2.67 0% 1.4004 0.8373 0.4616
Cons 1.75 1.84% 0.7743 0.6048 0.3740

SC 1.62 8.54% 0.7121 0.6385 0.2705
SC2 1.22 11.9% 0.2062 0.2031 0.2016

(a) d = 3

Scheme c m α1 α2 α3 α4

Std 1.79 0% 0.7856 0.5143 0.3150 0.1781
Cons 1.39 1.6% 0.5226 0.4140 0.2804 0.1775

SC 1.29 12.0% 0.4695 0.4563 0.2512 0.1082
SC2 1.06 14.9% 0.1997 0.1983 0.1008 0.0273

(b) d = 4

Scheme c m α1 α2 α3 α4 α5

Std 1.39 0% 0.536 0.335 0.253 0.158 0.110
Cons 1.24 1.45% 0.393 0.335 0.243 0.162 0.108

SC 1.16 15.2% 0.367 0.367 0.239 0.129 0.058
SC2 1.02 18.5% 0.103 0.103 0.103 0.102 0.101

(c) d = 5

In all cases, Cons gives a significant reduction in space over
Std, at the cost of performing moves during a small fraction
of insertion operations. SC2 provides a significant further
improvement over the space requirement of Cons, at the cost
of a (likely reasonable) order of magnitude increase in m.
(As indicated in Figure 2, this improvement would likely be
more dramatic if we considered smaller w, say w = 2×10−4,
which would correspond to our current setup with n = 105

instead of the current value n = 104.) Finally, SC2 gives an
even further reduction in the space requirement with a further
small increase in the frequency of moves. Note that SC2 is
slightly more complex, and requires the item size be such that
two items can naturally fit into a bucket. Furthermore, as we
promised earlier, d = 4 gives an excellent tradeoff between the
number of hash functions and the performance of the schemes.
The space requirements are much worse for d = 3, and may
not be sufficiently better for d = 5 to justify the use of another
hash function and accompanying sub-table (assuming the use
of Cons, SC, or SC2).

Of course, while our previous results rely on optimizing
the αi’s, it is likely impractical to use those exact values
in a real application. Nevertheless, it is still worthwhile to
try to optimize the αi’s within the domain of practicality. To
give a rough illustration of this, we first compute the values
of w corresponding to the various schemes and values of
c depicted in Figure 2 under the naive configuration where
α1 = α2 = α3 = α4 = c/4. We then compare these
values of w to the optimized values shown in Figure 2, and
plot a subset of them that is easy to visualize in Figure 3.
For the Std, Cons, and SC schemes, the trends are clear.
All of these schemes benefit significantly from optimization,
although the SC scheme clearly benefits much more than the
others. Although we have not plotted it, the situation for SC2
is even more extreme; the ratio for c = 1 is 1.66, and by
c = 1.15 it grows to 1457. Also, we perform a comparable

1 1.05 1.1 1.15 1.2 1.25
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

c

R
at

io
 o

f N
ai

ve
 w

 a
nd

 O
pt

im
iz

ed
 w

 

 
Std
Cons
SC

Fig. 3. Effect on w of optimizing the αi’s for d = 4 and various c values.

TABLE II
EFFECT OF OPTIMIZING THE αi’S FOR d = 4 AND TARGET w = 0.2%

Scheme Naive c Optimized c Ratio
Std 2.00 1.79 1.12

Cons 1.46 1.39 1.05
SC 1.41 1.29 1.09

SC2 1.14 1.06 1.08

simulation for the SCExt scheme, comparing the values from
Figure 2 with an estimate of the overflow rate when all sub-
tables have equal size, based on simulations. In this case, the
ratio for c = 1 is 1.03, and by c = 1.25 it grows to 8.58.

To get a more refined look at the effect of optimizing the
αi’s for the various schemes, we once again consider the target
value w = 0.2%. We compare the optimized c values from
Table I(b) with their corresponding naive values, which are
obtained by searching for the smallest value of c that achieves
the target w = 0.2% under the assumption that all of the αi’s
are equal. The results are illustrated in Table II. We see that
the savings in space from optimizing the αi’s is on the order of
10%; it would be slightly higher for smaller values of w. We
conclude that optimizing the αi’s is likely to be worthwhile in
practice, if the design naturally allows varying sub-table sizes.

Finally, as our results arise from the fluid limit approxi-
mation, it is important to verify them independently through
simulation to ensure that they are accurate. (The optimization
of the αi’s are purely numerical; it cannot be efficiently
performed through simulation.) We verify all of the results
in Figure 2 and Tables I and II in the following way. For
a given scheme and α1, . . . , αd we simulate the insertion of
n = 10000 items into an MHT with d sub-tables, where the
size of Ti is bαinc. (We round down for simplicity; the tables
are large enough that losing a bucket makes an insubstantial
difference.) We keep track of the fraction of items placed in
the overflow list L and the fraction of insertion operations
resulting in a move, and average the results over 105 trials. We
sample all hash values using the standard Java pseudorandom
number generator.

The simulation results indicate that the differential approxi-



8

mations are highly accurate. For the Std and Cons schemes, the
largest relative error for the simulated overflow rates measured
against the numerically calculated rates is 0.9% for calculated
rates more than 10−4, only 1.8% for calculated rates more
than 10−6, and 170% for the remaining rates (which is fairly
accurate, considering that the remaining calculated rates are
so small compared to the number of trials in the experiment).
Similarly, the largest relative error in the fraction of insertions
requiring a move is 0.12%. For the SC2 scheme, the situation
is more complicated, most likely due to the complexity of the
differential equations. The differential equation approximation
seems to be very accurate for the first few sub-tables of the
MHT, but the relative error degrades to about 22% for the
overflow list. Running the simulation again for n = 105 helps
immensely. (Due to time constraints, we only try n = 105

for the data points in Figure 2 and Table I.) In this case, the
relative errors in the overflow rates are less than 1% when the
calculated overflow rate is at least 10−6. The relative errors in
the fractions of insertions requiring a move are on the order
of 10−5.

Having examined the overflow rate w for the various
schemes, we now look at some of the finer properties of
the distribution of the items in the Ti’s. Suppose that the
differential equations for a scheme tell us that the fraction
of the n items inserted into Q is f , where Q is some
sub-table of the MHT or L. If the events that each of n
items ends up in Q were independent with probability f ,
then the number of items in Q would be Binomial(n, f).
If f were on the order of λ/n for some small constant λ,
then the distribution Binomial(n, f) would be approximately
Poisson(λ). For larger f , we would expect the distribution to
be normal around its mean by the central limit theorem.

Obviously, each item does not get inserted into Q with the
same probability f ; the probabilities change according to the
differential equations. However, under the heuristic assumption
that the events at each step are independent with the appropri-
ate probabilities, it is straightforward to generalize the standard
generating function proof for the Binomial convergence to
the Poisson distribution (e.g. [8, Exercise 5.12.39a]). Hence,
if f is on the order of λ/n for some small constant λ,
then we expect the distribution of the number of items in
Q to be nearly Poisson(λ). Similarly, if f is much larger,
then the distribution of the number of items in Q should
be approximately normal. Thus, we expect that for a well-
configured scheme, the distribution of the number of items in
each sub-table of the MHT should be approximately normal,
and the number of items in the overflow list L should be
approximately Poisson. In fact, the conclusion that the size of
L is approximately Poisson is absolutely critical for designing
a practical system, so that we can determine the size of the
CAM we need. Indeed, recall that the way we choose the
target probability w = 0.2% for n = 10000 in Table I is
entirely dependent on such reasoning.

We test the accuracy of this intuition through simulation. For
each of the configurations in Table I(b), we run 105 trials of the
experiment previously outlined, and record, for each trial, the

340 360 380 400 420 440 460

0.001
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 

0.997
0.999

Number of Items in T
4

P
ro

ba
bi

lit
y

Fig. 4. Normal probability plot of the number of items in T4 when simulating
the second chance scheme with d = 4, n = 10000, and target w = 0.2%.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Items in L

P
ro

ba
bi

lit
y

 

 

Data
Poisson(20)

Fig. 5. Empirical cumulative distribution function of the number of items in
L when simulating the second chance scheme with d = 4, n = 10000, and
target w = 0.2%, as compared with the cumulative distribution function of
a Poisson(20) random variable.

distribution of the n = 10000 items over the sub-tables and L.
We use this data to test our intuition that the number of items
in a particular sub-table is approximately normally distributed,
and that the number of items in L is approximately Poisson.

We focus on the second chance scheme, as the results
for the other schemes are similar. (The approximations are
not quite as good for the SC2 scheme, however, but this is
most likely caused by the same rate of convergence issue
encountered earlier in our simulation results.) In Figure 4, we
give a normal probability plot of the number of items in T4

(the plots for the other sub-tables are similar). Intuitively, the
data is plotted so that if the samples were taken independently
from a normal distribution, then all of the points would form
an approximately straight line with overwhelming probability.
Looking at the plot, the data distribution clearly appears to
be very close to a normal distribution. Similarly, in Figure 5
we plot the empirical cumulative distribution function of the



9

1 1.2 1.4 1.6 1.8 2
10

−1

10
0

10
1

10
2

10
3

10
4

c

N
um

be
r 

of
 It

em
s 

in
 L

 a
t T

er
m

in
at

io
n

 

 

Std
SC
SCExt
SC2

Fig. 6. Number of items in L after inserting 10,000 items into 4 equal-sized
tables, followed 100,000 alternations of deletions and insertions.

number of items in L and, for comparison, the cumulative
distribution function of the Poisson(20) distribution. The
similarity is immediate.

VIII. DELETIONS

We briefly discuss the implementation and evaluation of our
schemes when deletions are allowed. We emphasize that the
discussion here is preliminary, and a more complete analysis
will appear in future work.

Most of the schemes that we consider in this paper naturally
support deletions. In particular, for the standard MHT insertion
procedure and the second chance scheme and its variants, we
can delete an item simply by removing it from the MHT. The
situation for the conservative scheme is more complicated, as
the markings on the buckets must be occasionally updated. For
simplicity, we omit that scheme from our discussion.

To get a sense of how deletions can affect our schemes,
we perform a very simple simulation. We consider inserting
10,000 items into an empty MHT with 4 equal-sized sub-
tables, and then performing 100,000 alternations between
deleting a random item in the table and inserting a new
item. We average the results over 10,000 trials and show the
results in Figure 6. It is clear that our schemes provide a
significant advantage over the standard scheme, although the
improvement is less substantial than in the case of insertions
only. (The equilibrium distribution of the fullness of the
various sub-tables is much different when deletions occur.)
In future work, we will present fluid limit descriptions of this
deletion model, as well as an arguably more realistic model
where we consider the lifetime distribution of an item in the
table.

IX. CONCLUSION

We have shown that it is possible and practical to sig-
nificantly increase the space utilization of a multiple choice
hashing scheme by allowing a single move during an insertion
procedure. Furthermore, our efforts bridge the theory and

practice of such schemes, and provide a solid methodology
for future work.

ACKNOWLEDGMENTS

The authors were supported in part by grants from Cisco
Systems and Yahoo! Research. Adam Kirsch was also sup-
ported by an NSF Graduate Research Fellowship.

REFERENCES

[1] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. SIAM
Journal of Computing 29(1):180-200, 1999.

[2] A. Broder and A. Karlin. Multilevel adaptive hashing. In Proceedings
of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
43-53, 1990.

[3] A. Broder and M. Mitzenmacher. Using multiple hash functions to
improve IP Lookups. In Proceedings of IEEE INFOCOM, pp. 1454-
1463, 2001.

[4] J. Byers, J. Considine, and M. Mitzenmacher Geometric generalization
of the power of two choices. In Proceedings of the 16th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pp. 54-63, 2004.

[5] M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries
with tightly packed constant size bins. Theoretical Computer Science,
380:(1-2):47-68, 2007.

[6] C. Estan, K. Keys, D. Moore, and G. Varghese. In Proceedings of the
2004 SIGCOMM, pp. 245–256, 2004.

[7] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space Efficient Hash
Tables With Worst Case Constant Access Time. Theory of Computing
Systems, 38(2):229-248, 2005.

[8] G. Grimmett and D. Stirzaker. Probability and Random Processes. Third
Edition, Oxford University Press, 2003.

[9] A. Kirsch and M. Mitzenmacher. Simple Summaries for Hashing with
Choices. IEEE/ACM Transactions on Networking, to appear. Temporary
version available at: http://www.eecs.harvard.edu/∼kirsch/pubs/sshmc/
ton-cr.pdf.

[10] T. G. Kurtz. Solutions of Ordinary Differential Equations as Limits of
Pure Jump Markov Processes. Journal of Applied Probability, (7):49-58,
1970.

[11] T. G. Kurtz, Approximation of Population Processes, SIAM, 1981.
[12] M. Mitzenmacher. The Power of Two Choices in Randomized Load

Balancing. Ph.D. thesis, University of California, Berkeley, 1996.
[13] M. Mitzenmacher, A. Richa, and R. Sitaraman. The Power of Two

Choices: A Survey of Techniques and Results, edited by P. Pardalos,
S. Rajasekaran, J. Reif, and J. Rolim. Kluwer Academic Publishers,
Norwell, MA, 2001, pp. 255-312.

[14] M. Mitzenmacher and B. Vöcking. The Asympotics of Selecting the
Shortest of Two, Improved. In Analytic Methods in Applied Probability:
In Memory of Fridrikh Karpelevich, American Mathematical Society,
pp. 165-176, 2003. Edited by Y. Suhov.

[15] A. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122-144, 2004.

[16] R. Panigrahy. Efficient hashing with lookups in two memory accesses. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 830–839, 2005.

[17] A. Shwartz and A. Weiss. Large Deviations for Performance Analysis:
Queues, Communications, and Computing. Chapman & Hall, 1995.

[18] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast hash table
lookup using extended Bloom filter: an aid to network processing. In
Proceedings of ACM SIGCOMM, pp. 181-192, 2005.

[19] B. Vöcking. How Asymmetry Helps Load Balancing. Journal of the
ACM, 50:4, pp. 568-589, 2003.

[20] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high
speed IP routing lookups. ACM SIGCOMM Computer Communication
Review, 27:4, pp. 25–36, 1997.


