
l

t packing;
Although
onstrate

s with less
Information Processing Letters 90 (2004) 7–14

www.elsevier.com/locate/ip

Exhaustive approaches to 2D rectangular perfect packings

N. Lesha, J. Marksa, A. McMahonb,1, M. Mitzenmacherc,∗,1,2

a Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA
b University of Miami, FL, USA

c Computer Science Department, Harvard University, Cambridge, MA, USA

Received 2 August 2003; received in revised form 18 December 2003

Communicated by S. Albers

Abstract

In this paper, we consider the two-dimensional rectangular strip packing problem, in the case where there is a perfec
that is, there is no wasted space. One can think of the problem as a jigsaw puzzle with oriented rectangular pieces.
this comprises a quite special case for strip packing, we have found it useful as a subroutine in related work. We dem
a simple pruning approach that makes a branch-and-bound-based exhaustive search extremely effective for problem
than 30 rectangles.
 2004 Published by Elsevier B.V.

Keywords:Perfect packing; Strip packing problem; Branch-and-bound; Algorithms

1. Introduction tangle of widthW and minimum heightH . We further
ge-
red
on-
ck-

ec-

r).
ch

and

restrict ourselves to the oriented, orthogonal variation,
ori-
t be
are
lar
rd.
ms
.
s fit
ith
ing
ular

he
irst,
hen

con-

.

Packing problems involve constructing an arran
ment of items that minimizes the total space requi
by the arrangement. In this paper, we specifically c
sider the two-dimensional (2D) rectangular strip pa
ing problem. The input is a list ofn rectangles with
their dimensions and a target widthW . The goal is to
pack the rectangles without overlap into a single r

* Corresponding author.
E-mail addresses:lesh@merl.com (N. Lesh),

marks@merl.com (J. Marks), adam@math.miami.edu
(A. McMahon), michaelm@eecs.harvard.edu (M. Mitzenmache

1 This work done while visiting Mitsubishi Electric Resear
Laboratories.

2 Supported in part by NSF CAREER Grant CCR-9983832
an Alfred P. Sloan Research Fellowship.

0020-0190/$ – see front matter 2004 Published by Elsevier B.V
doi:10.1016/j.ipl.2004.01.006
where rectangles must be placed parallel to the h
zontal and vertical axes, and the rectangles canno
rotated. Further, for our test cases, all dimensions
integers. Like most packing problems, 2D rectangu
strip packing (even with these restrictions) is NP-ha

In this paper, we focus on the case of proble
where it is known that there areperfect packings
A perfect packing is one where the input rectangle
exactly into a rectangle of the appropriate width w
no empty space. One can think of the perfect pack
case as being a jigsaw puzzle with oriented rectang
pieces.

We provide several motivations for looking at t
special case where there exist perfect packings. F
perfect packings are natural test cases to study w
testing algorithms, as perfect packings are easy to



8 N. Lesh et al. / Information Processing Letters 90 (2004) 7–14

struct, and for perfect packings the optimal heightHopt
is known. Indeed, one of the most extensive bench-

ion
ted
r-
on
ult
use
n
run-
As

s on
ow)
o-
en
ack-
per-
re-
ine
ches
n-

nch-
eth-
ch-

two

an-

er a
se
of
al-

ain
ion.
l ap-

as
oth
rch

tics
his
ing
ed

ic.

Because the Bottom-Left heuristic is a foundation for
our work, we describe it in some detail.

g
ith

ry

e
ing

t
e
ec-
ch
hic
d
gle.

ires
n
e a
pen
in-

per
c in

for
les
d of
fore
. It

ery
g
the

ing
stics

on
ime
al-
ed
ub-
es

go-
to
mark sets for rectangular strip packing is a collect
of instances with known perfect packings construc
by Hopper [9,10]. It is therefore worthwhile to dete
mine how well specialized techniques can perform
these problems, in order to better gauge how diffic
problems in this class are. Furthermore, a valuable
of our algorithm is to quickly determine if a give
set of rectangles can be perfectly packed before
ning more expensive or less accurate algorithms.
an example, the best reported results of heuristic
the Hopper benchmarks (that we solve exactly bel
are several percent from optimal [9]. Finally, our alg
rithm naturally solves a more general problem: giv
a set of rectangles and a target rectangle, find a p
ing of a subset of those rectangles which gives a
fect packing of the target. We have found in our
lated work on packing problems that such a rout
can be useful in divide-and-conquer-based approa
to solving large problems. We describe this functio
ality more completely in [14].

We present an exhaustive approach using bra
and-bound techniques that outperforms previous m
ods. For example, our implementation solves ben
mark problems containing 25 rectangles in under
minutes, on average.

1.1. Further background

Packing problems in general are important in m
ufacturing settings; for example, one might needn

specific rectangular pieces of glass to put togeth
certain piece of furniture, and the goal is to cut tho
pieces from the minimum height fixed-width piece
glass. The more general version of the problem
lows for irregular shapes, which is required for cert
manufacturing problems such as clothing product
However, the rectangular case has many industria
plications [9].

The 2D rectangular strip packing problem h
been the subject of a great deal of research, b
by the theory community and the operations-resea
community [6,7,15]. One focus has been on heuris
that lead to good solutions in practice. One line in t
area considers simple heuristics for greedily plac
an ordered list of rectangles, the most widely us
and well-studied of which is the Bottom-Left heurist
The Bottom-Left (BL) heuristic was introduced
in [1]. To explain it, we may think of the strip bein
packed as lying in the first quadrant of the plane, w
the left bottom corner at(0,0) and the right bottom
corner at(W,0). Let us say a point iscoveredif it
lies in the interior, left boundary, or bottom bounda
of a rectangle that has been placed. A point(x, y) is
free if y � 0, 0� x < W , and it is not covered. Th
BL heuristic uses the reverse lexicographic order
on the space of points; that is, pointA lies before point
B if A is belowB, or if A andB have the same heigh
andA is to the left ofB. Given a permutation of th
rectangles, the Bottom-Left heuristic places the r
tangles one by one, with the lower left corner of ea
being placed at the first free point in the lexicograp
ordering where it will fit within the given strip an
does not overlap with a previously placed rectan
There are natural worst-case O(n3) algorithms for the
problem; Chazelle devised an algorithm that requ
O(n2) time and O(n) space in the worst case [5]. I
practice the algorithm runs much more quickly, sinc
rectangle can usually be placed in one of the first o
spots available. When all rectangle dimensions are
tegers, this can also be efficiently exploited. Hop
discusses efficient implementations of this heuristi
her thesis work [9].

Perhaps the most natural permutation to choose
the Bottom-Left heuristic is to order the rectang
by decreasing height. This ensures that at the en
the process rectangles of small height, which there
affect the upper boundary less, are being placed
has long been known that this heuristic performs v
well in practice [6]. It is also natural to try sortin
by decreasing width, area, and perimeter, and take
best of the four solutions; while usually decreas
height is best, in some instances these other heuri
perform better.

Another line of research on heuristics focuses
local search methods that take substantially more t
but have the potential for better solutions: genetic
gorithms, taboo search, hill-climbing, and simulat
annealing. The recent thesis of Hopper provides s
stantial detail of the work in this area [9,10], as do
the recent paper [11].

Another focus has been on approximation al
rithms. The Bottom-Left heuristic has been shown



N. Lesh et al. / Information Processing Letters 90 (2004) 7–14 9

rted
eti-
rly

el-
n

rs
des
nch-
ob-
ap-
nd
on.

t be
has
by
ch-
hey
for
und-
in-

d
to

les
r
old
sed

nd-
are
.

aps
We

formalize this Smallest-Gap heuristic more carefully
below, and consider its effectiveness in conjunction

lgo-
ith
for

the
ing.

d-
be
not
ce-
nd-
mi-
ap

ot

s a
act
re

a
ect

es
a

ng

s-
c-
r-

for
xists
BL
the

s a
Fig. 1. Gaps that require filling.

be a 3-approximation when the rectangles are so
by decreasing width (but the heuristic is not comp
tive when sorted by decreasing height) [1]. Other ea
results include algorithms that give an asymptotic 5/4-
approximation [2] and an absolute 5/2-approxima-
tion [17]. Recently, Kenyon and Remilia have dev
oped an asymptotic fully polynomial approximatio
scheme [12].

Finally, the work most related to our own conside
branch-and-bound algorithms. Recent work inclu
that of Fekete and Schepers, who suggest bra
and-bound techniques for bin and strip packing pr
lems [8]. They test their general approach on the kn
sack problem, and not strip packing problems, a
hence we are unable to provide a direct comparis
Our pruning approach appears faster but may no
as effective in some cases. Work similar to ours
also been done simultaneously by Korf [13] and
Martello et al. [16], who use branch-and-bound te
niques to determine optimal packings. Because t
consider the problem of finding optimal packings
more general cases than perfect packings, our bo
ing techniques differ; we expect that they could re
force each other for both types of problems.

Well into our own work on the problem, we foun
an idea in the branch-and-bound literature related
our own. A key feature that arises in placing rectang
is gaps, shown pictorially in Fig. 1. In a 1975 pape
on branch-and-bound techniques, Bitner and Reing
suggest an approach for finding perfect packings ba
on trying to fill the smallest gap first [3]. If no
rectangle can be placed in the gap, their branch-a
bound algorithm can backtrack, and smaller gaps
more likely to be found impossible to fill quickly
Our approach is similar in that we analyze the g
after each placed rectangle to improve pruning.
with our approach.

2. An exhaustive branch-and-bound algorithm

We present an exhaustive branch-and-bound a
rithm that performs extremely well on problems w
fewer than 30 rectangles. It is especially designed
finding perfect packings. We also discuss how
scheme generalizes where there is no perfect pack

2.1. Finding perfect packings exhaustively

To begin, we consider the use of BL for fin
ing perfect packings. Because our algorithms will
exhaustive branch-and-bound algorithms, we do
use Bottom-Left as a heuristic, but apply the pla
ment rule used by the heuristic within our branch-a
bound-based algorithm, as clarified below. (We si
larly derive a placement rule from the Smallest-G
heuristic as well.)

Although there are examples for which BL cann
produce the optimal packing underanyordering [1,4],
this is not the case when the optimal packing i
perfect packing. We have not seen the following f
in the literature, although it may simply be a folklo
result.

Theorem 1. For every perfect packing, there is
permutation of the rectangles that yields that perf
packing using the BL heuristic.

Proof. Sort the lower left corners of the rectangl
in the perfect packing lexicographically. This gives
permutation ordering that will yield that packing usi
the BL heuristic. ✷

This theorem indicates that applying BL exhau
tively to all possible permutations of the given re
tangles will find a perfect packing if one exists. Fu
thermore, it suggests an important optimization
exhaustive search because it shows that there e
an ordering that yields a perfect packing with the
heuristic such that every rectangle is placed with
lower left corner in thefirst free pointin the lexico-
graphic ordering. (The BL heuristic generally place



10 N. Lesh et al. / Information Processing Letters 90 (2004) 7–14

rectangle at the first free pointin which it fits.) Thus, an
ordering can be rejected as soon as any rectangle does

r-
L
ck-
ive
be-
rch

G)
int

and
ed
s of

L
ally

s
f the
SG

one,
at

ties
ny
thm

k-
gles
ris-
os-
the
is a
ect

s,
gles
tion
he
er-

on-
ed

ec-

ac-
the
on-
ing
have
can
ch
on

he
fix.
ter
an
all
e

g
c-
in

. 2.

h

or

n-
ent

to
e of

h-
dy-
not fit in the first free point. Even though this orde
ing could possibly yield a perfect packing with the B
heuristic, we are guaranteed to find this perfect pa
ing with some other ordering during our exhaust
search. In the branch-and-bound algorithm given
low, we use this idea to dramatically prune the sea
space.

A similar theorem holds for the Smallest-Gap (S
heuristic. Expanding our notation, let us call a po
(x, y) valid if it is free; y < Hopt; x = 0 or (x, y) lies
on the right boundary of some placed rectangle;
y = 0 or(x, y) lies on the top boundary of some plac
rectangle. In the special case of integral dimension
all rectangles,(x, y) is valid if it is free,y < Hopt, and
(x − 1, y) and(x, y − 1) are not free. Note that the B
heuristic places each rectangle at the lexicographic
earliest valid point. With each valid point(x, y) we
associate agap length, which is the minimum value
of w such that(x + w,y) is not free. Note that gap
can arise between rectangles and the boundary o
rectangle being packed. Given a permutation, the
heuristic attempts to place the rectangles one by
with the lower left corner of each being placed
the valid point with the smallest associated gap (
broken in some fixed but arbitrary fashion). If at a
point such a placement is not possible, the algori
fails.

As with the BL heuristic, if there is a perfect pac
ing, then there is some permutation of the rectan
which yields that perfect packing under the SG heu
tic. Indeed, more generally, given any rule for cho
ing a valid point based on the current placement of
rectangles, if there is a perfect packing, then there
permutation of the rectangles which yields that perf
packing under that rule.

2.2. Branch-and-bound with gap pruning

To efficiently consider all possible permutation
we use a branch-and-bound framework. Rectan
are placed one at a time, so that after any itera
a prefix of some permutation has been placed. T
branch is on the next rectangle in the prefix of the p
mutation. For perfect packings, we only need to c
sider placing rectangles at the valid point determin
by BL (or SG). At each step we next consider the r
Fig. 2. The width and height of a gap to be filled.

tangle of largest area that has neither been placed
cording to the current prefix nor has been tried as
next rectangle in the prefix; while any order is reas
able, we have found slightly better performance us
the decreasing area order. In the case where we
several rectangles with the same dimensions, we
work more efficiently by associating a type with ea
distinct pair of rectangle dimensions, and branching
the type.

The algorithm computes a lower bound on t
unused space in any completion of the current pre
For perfect packings, if this lower bound is grea
than zero, so that no completion of the prefix c
yield a perfect packing, then we can bypass
completions of that prefix, greatly reducing the tim
for the exhaustive search.

We now describe our more powerful prunin
method. While observing our algorithm run intera
tively, we determined that much time was wasted
the following type of scenario, demonstrated in Fig
We say that a gap of widthw at valid point(x, y) has
heighth if h < Hopt − y is the largest value for whic
all points on the segment from(x, y) to (x, y + h)

lie on the right boundary of some placed rectangle
x = 0; and all points on the segment from(x+w,y) to
(x +w,y +h) lie on the left boundary of some recta
gle orx +w = W . Suppose that the current placem
of rectangles requires a gap of widthw and heighth
to be filled for a perfect packing. If there is no way
combine unplaced rectangles to obtain a rectangl
width w with height at leasth, then there is no way to
obtain a perfect packing.

To handle this situation, we have found it wort
while to implement a simple procedure based on



N. Lesh et al. / Information Processing Letters 90 (2004) 7–14 11

namic programming that provides a loose upper bound
on the tallest possible rectangle of widthw that can be

t for
h-

ible
of
r-

that
nd-

on-

s

.

ase

er,
ace

nd
are

p
can
to
he
ys:
nt
g a
ed
nd
om

ordering is effective in our experiments. Indeed, the
dynamic programming step is so efficient that it can

n in
ing
tive.
ap-
hat
er
bset
ere

e
the

e at

nd-
ow
for
-
nd
ro-

stic
ect
de-
at,
is

ec-
ced
eo-
d-
the
the

ast
r of

is
-
since
that
ion-
ec-
ar-
en
ave
constructed with the unplaced rectangles. Note tha
both the BL and SG heuristic, bounding in this fas
ion is more useful than bounding the widest poss
rectangles of heighth, because we create more gaps
small width than small height early in the prefix orde
ing. Although both can be used, our experience is
the best performance is achieved by using only bou
ing on the width of the gaps.

Our approach is easily described as follows. C
sider a list of the unplaced rectanglesR1,R2, . . . ,Rn

in some order. Letw(Ri) andh(Ri) be the width and
height ofRi . We find valuesBj,k that are upper bound
on the maximum height rectangle of widthj � 1 that
can be constructed using the firstk � 1 rectangles
HenceBw(R1),1 = h(R1) andBj,1 = 0 if j �= w(R1).
For k > 1, we choose:

Bj,k+1 = Bj,k if j < w(Rk+1);
Bj,k+1 = Bj,k + h(Rk+1) if j = w(Rk+1);
Bj,k+1 = Bj,k + min

(
Bj−w(Rk+1),k, h(Rk+1)

)

if j > w(Rk+1).

Theorem 2 follows from an obvious induction:

Theorem 2. For all j, k � 1, Bj,k is an upper bound
on the maximum height rectangle of widthj that can
be constructed usingR1,R2, . . . ,Rk .

The bound above is loose, because in the c
wherej > w(Rk+1), a rectangleRi with i � k may be
contributing to both terms in the summation. Howev
note that in the case where there is no way to pl
the remaining rectangles to obtain a widthw, then in
factBw,n will equal 0. Further, the bounds can depe
on the order in which the remaining rectangles
considered following the procedure above.

CalculatingBj,n for everyj up to the biggest ga
after each placement and checking that all gaps
at least potentially be filled allows the algorithm
avoid prefixes that cannot yield perfect packings. T
bound above can be improved slightly in various wa
for example, taking the best bound from differe
orderings of the unplaced rectangles, and addin
bit more sophistication to avoid overcounting caus
by many rectangles with small width. We have fou
that the technique above applied once to a rand
be performed after each rectangle placement, withi
the inner loop, to great effect. More complex bound
techniques may prove too expensive to be as effec

Our dynamic programming technique may be
plicable in other branch-and-bound algorithms t
find optimal non-perfect packings by giving low
bounds on the amount of wasted space when a su
of rectangles have been placed. For example, if th
is a gap of widthj andBj,n is 0, then the height of th
gap is a lower bound on the unused space inside
gap. Similarly, if the height of the gap ish andBj,n

is z, then the unused space inside the gap must b
leasth − z.

Although we do not report results on branch-a
bound for non-perfect packings, we describe here h
the BL-based algorithm can be used to search
them. (Unlike the algorithms of [13] or [16], our ap
proach does not guarantee that it will eventually fi
an optimal packing, because BL cannot always p
duce the optimal packings. Hence is it only a heuri
approach for finding good packings.) For non-perf
packings, the maximum allowed empty space is
fined by the best packing found so far. We note th
in general, for any packing achievable by BL, there
an ordering that yields that packing in which each r
tangle is placed at least as high as all previously pla
rectangles. (This is an obvious generalization of Th
rem 1 for non-perfect packings.) This justifies inclu
ing any unused space below a placed rectangle in
lower bound for the unused space associated with
current prefix.

2.3. Solution-richness

Our experience is that problems that have at le
one perfect packing typically have a great numbe
them. Informally, we say that a class of problems
solution-richif it has this property. Solution-rich prob
lems are more amenable to exhaustive searches,
there are many good solutions to find. We believe
in many cases perfect packing problems are solut
rich, since often rectangles combine into a larger r
tangle that can be symmetrically reconfigured in v
ious ways to obtain a different perfect packing. Ev
the small problem instances we consider below h
hundreds of solutions.



12 N. Lesh et al. / Information Processing Letters 90 (2004) 7–14

One class of problems that is provably solution-
rich is those withguillotinablesolutions. A guillotin-

ned
h of
the
ble
et-

ct

s

he
e

are

of
d in

ple
east
ls.

k-
ions
on-
can

g to
d to
n-

rget
t
g
the

nch
or

2.5. Perfect packings of subregions

ck-
ns
4].
o be
nd
his
t in-
ur
he
n-
If a
unt
nd

hod
can

be-
ec-
on
ter

rat-
er-
d by
oti-
b-

arks
r-

n-
by

ing
c-
set
97
on-
1
on-

go-
rk
f 5
the
d to
o-
able solution has the property that it can be obtai
by a sequence of cuts parallel to the axes, eac
which crosses either the entire length or width or
remaining connected rectangular piece. Guillotina
solutions are important for some manufacturing s
tings [9]. A problem with one guillotinable perfe
packing must have many.

Theorem 3. Any guillotinable problem on n rectangle
with a perfect packing has at least2n−1 perfect
packings.

Proof. The proof is a simple induction. Consider t
first cut of the guillotinable solution. This divides th
problem into two subproblems, one withk rectangles
and one with� rectangles, wherek + � = n. These
subproblems have 2k−1 and 2�−1 perfect packings
respectively by the induction hypothesis, and there
two ways to put the two subproblems together.✷

We note that the non-guillotinable problems
Hopper that we use as benchmarks are constructe
such a way that they are also solution-rich. A sim
induction shows that these benchmarks have at l
2(n−1)/2 perfect packings. We omit the simple detai

2.4. Near-perfect packings

Our methods for efficiently handling perfect pac
ings can be applied when the rectangle dimens
are integers to determine if the optimal packing c
tains only a small amount of unused space. This
be achieved by simply introducing a number of 1× 1
squares, with the number of squares correspondin
the amount of unused space that needs to be fille
give a perfect packing. For example, if the input co
sists of rectangles with total area 2498, and the ta
width is 50, one can add two 1× 1 squares and tes
whether a perfect 50× 50 packing is possible usin
our algorithm. The additional rectangles increase
branching factor, although note that all 1× 1 rectan-
gles can be treated as of the same type, so the bra
ing increase fork 1×1 rectangles is not as large as f
k rectangles with distinct sizes.
-

We describe briefly how we use our perfect pa
ing routine as a subroutine for finding good solutio
to larger packing problems. More details are in [1
The user (or a program) can choose a subregion t
filled, and the perfect packing routine attempts to fi
a perfect packing for this subregion. Note that in t
case, there may be rectangles available that are no
volved in the perfect packing for the subregion. O
algorithm works without changes in this setting; t
goal is now just to find a prefix of the available recta
gles that yields a perfect packing of the subregion.
perfect packing is not found in a reasonable amo
of time, a good non-perfect packing can be fou
quickly using the general branch-and-bound met
described above. In many cases, a perfect packing
be found for an initial subregion, because at the
ginning of the process the many extra available r
tangles yield great flexibility. Packing the subregi
perfectly allows more available room in packing la
subregions.

2.6. Experimental results

We now present experimental results demonst
ing the effectiveness of our methods for finding p
fect packings. We use the benchmarks develope
Hopper, since, as we have discussed, part of the m
vation for this work was to determine what size pro
lems make suitable benchmarks. (Other benchm
for strip packing, including benchmarks with no pe
fect packings, are currently collected at [18].) All i
stances have perfect packings of dimension 200
200. The instances are derived by recursively splitt
the initial large rectangle randomly into smaller re
tangles; for more details, see [9]. This benchmark
contains problems with size ranging from 17 to 1
rectangles. We evaluate our algorithms on the n
guillotinable instances from this set, collections N
(17 rectangles) through N3 (29 rectangles), each c
taining 5 problem instances.

As shown in Table 1, our branch-and-bound al
rithm quickly finds perfect packings for all benchma
instances with 17 and 25 rectangles and 4 out o
instances with 29 rectangles. Our table provides
number of iterations, or placed rectangles, require
find the perfect packings for both the BL and SG alg



N. Lesh et al. / Information Processing Letters 90 (2004) 7–14 13

Table 1
Exhaustive branch-and-bound for perfect packings with gap prun-

st-
bove

lve

ed
ver
ere

the
of

pti-

n-
so-
he

n
s to
ns

m-
ely,
g

rob-
l-
es
,
m
ne
ast
un-
ude

ly
ark

ore
is

on
ing

Table 2
Exhaustive branch-and-bound for perfect packings with gap prun-

and

lve

m
ms
ems
n-
re-

se-
gh
em
ey
st-

the
the
ost
y
the
n
os-
G)

be
s

31
e

BL
g

her
y

er,
the
ing
es
ise
ns

he
le
er,

any
ing, using the BL heuristic and the SG heuristic. The be
performing previous methods produce solutions at best 5% a
optimal [9]

Dataset Size Num. Iterations to solve Iterations to so
solved (BL) (SG)

N1 17 5/5 259.0 272.8
N2 25 5/5 3,663,088.6 2,735,841.2
N3 29 4/5 17,655,800.5 6,779,316.5

rithms. In terms of time, the N1 instances are all solv
in less than a second; the N2 instances require on a
age under two minutes; and the N3 instances that w
solved required on average under 10 min.3 (The last
29-rectangle problem was not solved even when
programs were run for several hours.) As typical
experimental work, we expect the code could be o
mized to run much faster.

We were significantly aided by the solutio
richness of the instances. Our algorithm found a
lution after exploring, on average, about 1% of t
search space.

The gap-pruning is also extremely effective. O
average, our algorithm requires 11,988.6 iteration
solve the N1 cases with BL and 11,621.6 iteratio
with SG with these pruning methods turned off, co
pared to only 259.0 and 272.8 iterations, respectiv
on average with the pruning. Additionally, prunin
seemed necessary to solve most of the larger p
lems within a few hours. Without the pruning, our a
gorithm was only able to solve two of the N2 cas
with BL and four with SG within an hour. Similarly
for the N3 problems, without pruning our algorith
solved none of the problems with BL and only o
with SG in 200,000,000 iterations (which took at le
2.5 hours to perform). Roughly speaking, the pr
ing seems to provide at least an order of magnit
speedup for problems of this size.

Overall, SG seems to outperform BL. It certain
requires fewer iterations to solve these benchm
problems. It is possible that BL is amenable to m
efficient implementation, but we suspect that SG
slightly superior to BL for finding perfect packings.

3 All times reported in this paper are for experiments run
a Linux machine with a 2000 MHz Pentium processor runn
unoptimized Java code.
-

ing, using both the BL and LB heuristics in parallel and the SG
SVG heuristics in parallel

Dataset Size Num. Iterations to solve Iterations to so
solved (BL-LB) (SG-SVG)

N1 17 5/5 428.6 433.0
N2 25 5/5 943,883.8 531,743.0
N3 29 5/5 25,318,913.2 12,549,170.6

We found in our experiments that our algorith
took many more iterations to solve some proble
than the average, and could not solve some probl
even with very large numbers of iterations. We co
jectured that the effectiveness of pruning a given p
fix might depend significantly on the rule used to
lect the valid point to place the rectangles. Althou
BL and SG both failed to solve the same probl
in N3, these two rules are quite similar in that th
often choose the same valid point. A more intere
ing comparison is between BL, which chooses
bottom-most and then leftmost valid point, and
variation choosing the leftmost and then bottom-m
valid point, which we call LB. BL and LB have ver
different behaviors on the same prefix and hence
total amount of pruning may differ dramatically o
the same problem. Similarly, we can contrast cho
ing based on the smallest horizontal gap (which is S
and the smallest vertical gap, which we call SVG.

For example, the problem in N3 which could not
solved with BL or SG within 200,000,000 iteration
(even with pruning) was solved by LB in 2,440,3
iterations and by SVG in 4,255,661 iterations. W
experimented with an implementation that runs
and LB (or SG and SVG) in parallel, alternatin
iterations. This approach is worse than using eit
rule by itself if the number of iterations required b
each rule are within a factor of two of each oth
which seems to be the typical case. However,
performance can be dramatically better than us
one rule on the problems on which that rule do
very poorly. Thus, we expect this approach to ra
the median but lower the mean number of iteratio
required.

Table 2 shows results from our experiments. T
N1 problems are sufficiently easy that this two-ru
approach is worse than BL or SG alone. Howev
on average, the N2 problems were solved with m



14 N. Lesh et al. / Information Processing Letters 90 (2004) 7–14

fewer iterations by the two-rule approach. This is
primarily due to the fact that one problem in N2 took

ith
ns
e

im-
ular
gs.
h a
if

on
ve-
ms
, ei-
ed

ted

ck-
5.

h-

s.

nt
07.

[6] E.G. Coffman, M.R. Garey, D.S. Johnson, Approximation al-
gorithms for bin-packing: an updated survey, in: G. Ausiello,

-
49–

s,

III:
hes

ry
sis,

ta-
m,

r
ith
er

o-
of

o-
lan-

x-
ngu-
3.
g
003)

he
3)

o

vastly more iterations for both BL and SG than w
two rules. For example, BL took 13,676,756 iteratio
to solve the problem while LB took 411! For N3, th
two-rule approach solved all the problems.

3. Conclusion

We have described and experimented with a s
ple branch-and-bound approach for 2D rectang
strip packing problems in the case of perfect packin
The branch-and-bound algorithm is enhanced wit
dynamic programming mechanism for determining
gaps can be filled that proves surprisingly effective
benchmark problems. We expect that further impro
ments to the method that may allow larger proble
to be handled with branch-and-bound techniques
ther by improving the upper bounding method us
for gaps or finding other ways to lower bound was
space.

References

[1] B.S. Baker, E.G. Coffman Jr., R.L. Rivest, Orthogonal pa
ings in two dimensions, SIAM J. Comput. 9 (1980) 846–85

[2] B.S. Baker, D.J. Brown, H.P. Katseff, A 5/4 algorithm for two-
dimensional packing, J. Algorithms 2 (1981) 348–368.

[3] J.R. Bitner, E.M. Reingold, Backtrack programming tec
niques, Comm. ACM 18 (11) (1975) 651–656.

[4] D.J. Brown, An improved BL lower bound, Inform. Proces
Lett. 11 (1980) 37–39.

[5] B. Chazelle, The bottom-left bin-packing heuristic: an efficie
implementation, IEEE Trans. Comput. 32 (8) (1983) 697–7
M. Lucertini, P. Serafini (Eds.), Algorithm Design for Com
puter Systems Design, Springer-Verlag, Berlin, 1984, pp.
106.

[7] H. Dyckhoff, Typology of cutting and packing problem
European J. Oper. Res. 44 (1990) 145–159.

[8] S.P. Fekete, J. Schepers, On more-dimensional packing
exact algorithms, available as a preprint at Mathematisc
Institut, Universität zu Köln, preprint key zpr97-290.

[9] E. Hopper, Two-dimensional packing utilising evolutiona
algorithms and other meta-heuristic methods, Ph.D. the
Cardiff University, UK, 2000.

[10] E. Hopper, B.C.H. Turton, An empirical investigation of me
heuristic and heuristic algorithms for a 2D packing proble
European J. Oper. Res. 128 (1) (2000) 34–57.

[11] M. Iori, S. Martello, M. Monaci, Metaheuristic algorithms fo
the strip packing problem, in: P.M. Paradolos, V. Korotk
(Eds.), Optimization and Industry: New Frontiers, Kluw
Academic, Dordrecht, 2003, pp. 159–179.

[12] C. Kenyon, E. Remilia, Approximate strip-packing, in: Pr
ceedings of the 37th Annual Symposium on Foundations
Computer Science, 1996, pp. 31–36.

[13] R.E. Korf, Optimal rectangle packing: initial results, in: Pr
ceedings of the International Conference on Automated P
ning and Scheduling (ICAPS-03), Trento, Italy, 2003.

[14] N. Lesh, J. Marks, A. McMahon, M. Mitzenmacher, New e
haustive, heuristic, and interactive approaches to 2D recta
lar strip packing, MERL Technical Report TR2003-05, 200

[15] A. Lodi, S. Martello, M. Monaci, Two-dimensional packin
problems: a survey, European J. Oper. Res. 141 (2) (2
241–252.

[16] S. Martello, M. Monaci, D. Vigo, An exact approach to t
strip packing problem, INFORMS J. Comput. 15 (3) (200
310–319.

[17] D. Sleator, A 2.5 times optimal algorithm for packing in tw
dimensions, Inform. Process. Lett. 10 (1980) 37–40.

[18] http://www.or.deis.unibo.it/research_pages/ORinstances/
2sp.zip.


