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Abstract—In this paper, we consider the capacityC of the
binary deletion channel for the limiting case where the deletion
probability p goes to 0. It is known that for any p < 1/2, the
capacity satisfiesC ≥ 1−H(p), where H is the standard binary
entropy. We show that this lower bound is essentially tight in
the limit, by providing an upper bound C ≤ 1− (1− o(1))H(p),
where the o(1) term is understood to be vanishing asp goes to
0. Our proof utilizes a natural counting argument that should
prove helpful in analyzing related channels.

I. I NTRODUCTION

The binary deletion channel is modeled as follows: the
sender has an input ofn bits, each of which is independently
deleted by the channel with a fixed probabilityp; the receiver
obtainsℓ ≤ n bits, without error and in the order in which they
were sent.1 For example, if 10101010 was sent, the receiver
wold obtain 10011 if the third, sixth, and eight bits were
deleted. The deletion channel, while simple to describe, has
proven remarkably challenging to analyze. Indeed, unlike the
standard binary erasure and error channels, there is as yet no
known closed form for the capacity of the binary deletion
channel as a function ofp, or even a computationally efficient
method for numerically calculating the capacity to a given
precision. See the survey [7] for more background.

In this paper we consider bounds on the capacity of the
deletion channel in the regime wherep → 0. There has long
been known a lower bound on the capacity of1 − H(p) for
p < 1/2, whereH is the standard binary entropy [1], [5], [10].
In this paper, we show that this lower bound is essentially
tight in the limit, by providing an upper boundC ≤ 1− (1−
o(1))H(p), where theo(1) term is understood to be vanishing
as p goes to 0. This result helps characterize the interesting
behavior of the deletion channel. Recent work has shown that
in the regime wherep → 1, the deletion channel is “like” an
erasure channel, in that the capacity can be bounded between
c1(1−p) andc2(1−p) for appropriate constantsc1, c2 < 1 [2],
[4], [8]. Here, we show that asp → 0 the deletion channel is
like a binary symmetric error channel, in terms of its capacity,
in a much stronger sense.

Upper bounds for the binary deletion channel have only
recently become the subject of study. The first upper bounds
specifically for this channel were considered in [2], which also
considered the asmyptotic regime asp → 1. Further techniques

1Several works used in place ofp for the deletion probability.

introduced in [4] also allowed analysis of the asymptotic as
p → 0; this work gave the best previous bound ofC ≥ 1 −
4.19p as p → 0. Our work, based on a different technique,
offers an essentially tight bound in this regime.

After this paper had orginally been submitted, a preprint by
Kanoria and Montanari was posted online [6], proving a result
analogous to ours, in that they also show that the capacity for
the deletion channel has an upper bound of(1 − o(1))H(p)
in the regime asp goes to 0. In private communication,
the authors also have explained that a weaker upper bound
of 1 + (3/4)p log2 p + o(p log2 p) can be derived from the
framework provided by [2]. The proof of [6] makes use of an
entirely different approach to ours, and both should provide
new insights in how to push forward on studying deletion
channels and related synchronization channels.

II. PROOF OF THEUPPERBOUND

A. Problem Statement and Notation

The capacityC of the deletion channel, where each bit is
deleted with some fixed probabilityp < 1/2, satisfiesC ≥ 1−
H(p). Our goal is to show that this lower bound is essentially
tight in the limit wherep → 0. Specifically, we wish to show
C ≤ 1 − (1 − o(1))H(p), where theo(1) is understood to be
a term that is vanishing asp goes to 0.

We will consider codebooksC ⊆ {0, 1}n consisting of
messages ofn bits and will be of sizeN = |C|. We may
think of a deletion patternA as an increasing subsequence of
[n] = {1, 2, . . . , n}, representing which bits arenot deleted.
We denote adeletion patternby a finite increasing sequence of
positive integers,A = a1, a2, . . . , aℓ. The length of sequence
is len(A) = ℓ, and the number of deletions isq = n− ℓ. The
set of deletion patterns of lengthℓ is denoted by

Pℓ,n = {a1, a2, . . . , aℓ ∈ [n] | a1 < a2 < . . . < aℓ} .

The set of all patterns isPn =
⋃n

ℓ=0 Pℓ,n. For p ∈ (0, 1), the
deletion channel can be thought of as choosing a pattern from
Pn according to a distributionµp,n, where each patternA is
chosen with probability(1 − p)len(A)pn−len(A).

For a stringX ∈ {0, 1}n, XA represents the transmission
of X through a deletion channel with deletion patternA
in the obvious way: theith bit of transmission isXai

.
Two transmissionsXA and YB are identical if and only if
Xai

= Ybi
for all i ≤ len(A) = len(B). The model of



transmission is that a codewordZ ∈ C is chosen uniformly
at random, a patternA ∈ Pn is chosen according toµp,n,
and thenZA is received. The decoding algorithm attempts to
recoverZ. Without loss of generality, we may assume that it
is deterministic, i.e., and say it computes a functionR from
the set of received word to codewords. Thesuccess probability
is PrZ,A[R(ZA) = Z].

Let lg(x) denote the logarithm ofx base 2, andH denote the
standard entropy function,H(x) = −x lg x−(1−x) lg(1−x).
We writePrx∈U S [T (x)] to denote the probability of predicate
T holding, overx chosenuniformly at random from setS.

We make use of the fact that the information capacity and
transmission capacity of the deletion channel are the same [3].
Hence, to prove an upper bound on the capacity, we can simply
show that a code of sufficiently high rate does not exist. The
upper bound on the capacity therefore follows easily from the
following theorem, which implies that no code of rate greater
than1 − (1 − o(1))H(p) can exist.

Theorem II.1. Suppose in the setting above there exists a
decoding algorithm that succeeds with probability at least
δ for a deletion channel with deletion probabilityp and
codeword lengthn ≥ 12 lg(4/δ)/p. Let q′ = (1 + γ)np
where γ = 3 lg(4/δ)/(np). Then the number of codewords
N satisfies

lg N ≤ n − np(1 − γ) − lg

(

n

np(1 − γ)

)

+ lg
4

δ
+ lg β

whereβ is given by

β = ⌈3q′ lg
ne

q′
+ lg

4

δ
⌉

(

6⌈3q′ lg ne
q′

+ lg 4
δ ⌉

q′

)3q′+1

In particular, lg N
n ≤ 1 − (1 − op(1))H(p), where theop(1)

term is understood as going to 0 asp goes to 0.

We point out no effort has been made to optimize the
constants above.

B. Fixed-length deletion channel

For ease of analysis, we first consider the case where the
number of received bits is fixed in advance. We then relate
this result to the channel with i.i.d. deletions.

In this subsection, we assumen, ℓ and q = n − ℓ are
known and fixed. We define the(q, n) deletion channel in
the natural way: codewordZ ∈ C and patternA ∈ Pℓ,n are
chosen uniformly at random, andZA is received. A decoding
algorithm is successful when, on inputZA, it outputsZ. We
now prove the following:

Theorem II.2. Let q ≤ n and suppose there exists a decoding
algorithm that succeeds on the(q, n) deletion channel with
probability at leastδ > 0, wheren ≥ 12 lg(2/δ)/p. Then the
size of the codebookN = |C| satisfies

lg N ≤ n − q − lg

(

n

q

)

+ lg
2

δ
+ lg α,

whereα is given by

α = ⌈3q lg
ne

q
+ lg

2

δ
⌉

(

6⌈3q lg ne
q + lg 2

δ ⌉

q

)3q+1

.

While the lg α term in Theorem II.2 is somewhat difficult,
some manipulation gives that whenq = pn, the result yields
lg N ≤ n(1 − (1 − o(1))H(p)) as desired. To see this, note
that thelg

(

n
q

)

term isn(1− o(1))H(p) using standard results
(see, e.g., [9][Lemma 9.2]). Thelg α term is dominated by
O(q · lg lg(n/q)) = O(np lg lg(1/p)), so the entire expression
n(1 − (1 − o(1))H(p)).

We provide some high-level intuition behind the analysis.
It is worth first expressing the intuition in terms of the
standard binary symmetric error channel. The argument is
based on a reduction. Suppose one had a codebook for this
channel withN codewords ofn bits and a decoding algorithm
that could correct for any collection ofpn errors perfectly.
We could use this codebook and decoding algorithm as a
means to represent information as follows. Since there are
(

n
pn

)

≈ 2H(p)n possible error sequences, one could encode
(approximately, up to lower order terms)lg(N2H(p)n) bits
of information into n bits by taking a codeword, purposely
introducing a collection ofpn errors, and using the resulting
string to represent the information; one could recover the
original information by running the decoding algorithm to
determine the original codeword and the locations of the errors
introduced. Hence, we must have thatlg(N2H(p)n) ≤ n, or
lg N

n ≤ 1−H(p). This argument, when made suitably rigorous
and taking into account the possibility of decoding errors,is a
slightly atypical but perfectly reasonable way of viewing the
standard Shannon bound.

We utilize the same type of argument here. We show for the
deletion channel that if we had a codebook ofN codewords
with a corresponding decoding algorithm, then when the
deletion probabilityp is suitably small, from the received
string and decoding algorithm we can also recover the deletion
patternA itself with nonnegligible probability. Intuitively, this
means that if one had a codebook of sizeN , one could use it
to represent information in the same manner as above, so the
capacity, given bylg N

n , is also bounded by (approximately)
1 − H(p). This argument has a few more complexities in the
setting of the deletion channel. For example, if one of the
codewords is the all 0’s string, we learn nothing about the
deletion pattern from the received string. Hence, part of our
argument is that there are not so many such “bad” strings
where we cannot recoverA.

To begin we introduce thedistancebetween two deletion
patterns of equal length,A and B, denoted by∆(A, B), by
defining it to be the number of disagreements betweenai and
bi:

∆(A, B) =
∣

∣

{

i | ai 6= bi

}∣

∣ .

We do not define∆(A, B) for patterns of unequal length. This
definition has the following property.



Lemma II.1. Take any two length-ℓ deletion patterns,A and
B. For uniformly randomX ∈ {0, 1}n,

PrX∈U{0,1}n [XA = XB] ≤ 2−∆(A,B).

Proof: Consider picking the random bits ofX in order,
one at a time. We call each valuei with ai 6= bi a discrepancy.
Each discrepancy imposes the constraint fork = max(ai, bi)
and j = min(ai, bi) that when bitXk is chosen, it must be
equal to bitXj . This happens with probability exactly1/2,
independent of which previous constraints have or haven’t
been satisfied. Moreover, each discrepancy imposes a con-
straint on a different bit, because each bit is constrained to
be equal to at most one of the previous bits; ifi < j then
max(ai, bi) < max(aj , bj). By independence, the probability
that all constraints are satisfied is2−∆(A,B).

A key technical step is bounding the number of patterns
“close” to a given patternA.

Lemma II.2. For any patternA ∈ Pℓ,n and integert ≥ 1,
the number of patternsB ∈ Pℓ,n such that∆(A, B) ≤ t is at
most

(t + 1)

(

2q + t + 1

2q + 1

)(

q + t

q

)

.

Proof: Fix A. Let q = n− ℓ be the number of deletions.
Call a biti ∈ [n] cleanwith respect toA andB if there is some
j ∈ [ℓ] such thataj = bj = i, i.e., the bit is transmitted in both
patterns, in the same position. Call a bitdirty otherwise. Let
D(A, B) denote the set of dirty bits with respect to patterns
A andB. All deletions occur in the dirty bits. The idea is to
upper bound the number ofsetsof dirty bits and then upper
bound the number of deletion patterns within them.

Intuitively, the idea is that the there are not too many dirty
bits and they all must lie “near” to the deletions inA, since a
great many bits are clean. There is a simple upper bound on
the number of dirty bits:

∆(A, B) ≤ t ⇒ |D(A, B)| ≤ q + t. (1)

This is because, if there areu discrepancies, then there areq−
u bits that are dirty because they are deleted in both patterns,
and at most2u dirty bits corresponding to the discrepancies
whereai 6= bi (namelyai and bi). Hence there are at most
q + u ≤ q + t dirty bits.

Next, we upper bound the number of possibilities for dirty
setsD(A, B). In particular, we will show, that for any fixed
A,
∣

∣

{

D(A, B) | B ∈ Pℓ,n ∧ ∆(A, B) ≤ t
}∣

∣ ≤ (2)

(t + 1)

(

2q + t + 1

2q + 1

)

.

Together with (1), this implies that the number of possible
patternsB within t of A is at most(t + 1)

(

2q+t+1
2q+1

)(

q+t
q

)

,
because allq deleted bits occur within the set of dirty bits,
there are at most(t+1)

(

2q+t+1
2q+1

)

such sets, and each set is of
size at mostq + t.

It remains to show equation (2). For integersi ≤ j, denote
by [i, j] the discrete block{i, i + 1, . . . , j}. For i > j, let

[i, j] = ∅. The set of bits[n] can be partitioned into alternating
discrete blocks of all clean and all dirty bits (it may start with
a clean or dirty block). LetQ = {d1, d2, . . . , dq} denote the
set of q bits deleted byA. Clearly these are all dirty bits.
Moreover, between any two clean blocks, there must be a bit
of Q. To see this, consider bitsi < j < k such thati andk
are clean andj is dirty. Now ai = bi andak = bk, and some
bit betweeni andk must have been deleted from one of the
patterns or elseaj = bj and j would be clean. If a bit was
deleted from patternB, then a bit from patternA must also
have been deleted in order for the patterns to align at bothi
andk. Thus, between each two clean blocks, there must be an
element ofQ.

Hence, each dirty block contains at least one bit fromQ,
with the possible exception of a dirty block containing1 and
a dirty block containingn. The setD(A, B) can then be
described by2(q + 1) nonnegative integers, sayr0, r1, . . . , rq

and l1, l2, . . . , lq+1, where the dirty bits are

D(A, B) = Q ∪ [1, r0] ∪ [n − lq+1 + 1, n] ∪
q
⋃

i=1

(

[di + 1, di + ri] ∪ [di − li, di − 1]
)

.

Such a description is not unique (e.g., the above intervals may
overlap), but there is always at least one such description that
marks each dirty bit exactly once. That it, the description is
frugal, meaningr0 + lq+1 +

∑q
1(ri + li) = |D(A, B)| − q. A

well-known combinatorial fact is that the number ofr-tuples
of nonnegative integers that sum tos is

(

r+s−1
r−1

)

. Hence, if
we fix the number of dirty bits to bed = |D(A, B)|, then
the number of frugal descriptions is at most the number of
(2q + 2)-tuples that sum tod − q, or

(

2q + 1 + d − q

2q + 1

)

.

As d ≤ q + t from equation (1), the number of frugal
descriptions is at most

(

2q + t + 1

2q + 1

)

.

The number of possible sets of dirty bits is then at most the
number of possibilities ford ∈ [q, q + t], which is t+1, times
the number of frugal descriptions, which is at most

(

2q+t+1
2q+1

)

.
This gives equation (2).

Again, our high-level goal is to show that if one can decode
one can also, with non-negligible probability, recover the
deletion patternA itself. So far we have shown that there are
not too many deletion patterns close to any deletion pattern.
Now we will use this to show that, for most codewords, we can
recover the deletion pattern based on the received sequence.
Naturally, this will lead us to an upper bound on the number
of possible codewords.

Of course, there are certainly bad possible codewords, like
the all 0’s string, where we cannot recover the deletion pattern
based on the received sequence. To begin, we show there are
not too many such strings.



Definition II.1. For t ≥ 1, We sayX ∈ {0, 1}n is t-bad
if there exist two deletion patternsA, B ∈ Pℓ,n such that
∆(A, B) ≥ t andXA = XB.

For example, the all 0’s and all 1’s strings are both bad for
all t ≤ ℓ.

Lemma II.3. For any t ≥ 1, there are at most
(

n
q

)2
2n−t

different t-bad stringsX ∈ {0, 1}n.

Proof: It is equivalent to show that the probability that a
randomX is t-bad is at most

(

n
q

)2
2−t. For any fixed length-ℓ

patternsA, B of distance∆(A, B) ≥ t, the probability that a
randomX hasXA = XB is at most2−t by Lemma II.1. By
the union bound over all pairs of patterns,

PrX∈U{0,1}n

[

∃A, B ∈ Pℓ,n XA = XB

]

≤

(

n

q

)2

2−t,

proving the lemma.
The following easy lemma proves useful for bounding the

probability of both successfully decoding and recovering the
deletion pattern.

Lemma II.4. Let ρ by a joint distribution overS × T , for
finite setsS, T , such that the marginal distribution overS is
uniform. Letg : T → S be a function. Then,

Pr(a,b)∼ρ[g(b) = a] ≤
|T |

|S|
.

Proof: This follows from the fact thatg(b) = a if and
only if a is in the range ofg, which has size at most|T |, and
hence happens with probability at most|T |/|S|.

We are now prepared to prove Theorem II.2.
Proof of Theorem II.2:We create a hypotheticalguesser

that, givenZA for Z ∈ C andA ∈ Pℓ,n chosen uniformly at
random, will be able to guess bothZ andA with nonnegligible
probability. Letq = n− ℓ be the number of deleted bits. Take
t = ⌈3q lg ne

q + lg 2
δ ⌉.

On input X , the guesser can run the decoding algorithm
to compute the proposed decodingR(X), and then outputs
g(x) = (R(X), B), where B is the lexicographically first
pattern that satisfiesR(X)B = X if one exists, or is the pattern
B = 1, 2, . . . , ℓ, otherwise. The success probability of the
guesser may be lower-bounded as follows. Let the uniformly
random codeword and deletion pattern beZ ∈ C andA ∈ Pℓ,n,
respectively. The decoding succeeds (R(ZA) = Z) and the
codewordZ ∈ C is not t-bad with probability at least

PrZ∈UC [R(ZA) = Z∧Z is not t-bad] ≥ δ−

(

n

q

)2
2n−t

N
≥

δ

2
.

This holds because the probability of success isδ, the prob-
ability of a t-badC ∈ C is at most

(

n
q

)2
2n−t/N by Lemma

II.3, and by our choice of parameters. To see this, note that
(

n
q

)2
≤ (ne/q)2q and if N ≥ 2n−q lg(n/q), then the above in-

equality above holds. IfN < 2n−q lg(n/q), the inequality may
not hold, but in this case the theorem follows trivially. By the
definition of t-bad,B must satisfy∆(A, B) ≤ t−1. However,

by Lemma II.2 and again the fact that
(

n
k

)

≤ (ne/k)k, the
number of such patterns is at most

(t − 1)

(

2q + t

2q + 1

)(

q + t − 1

q

)

≤ t

(

e
2q + t

2q + 1

)2q+1 (

e
q + t − 1

q

)q

≤ t

(

6t

q

)3q+1

.

Recall that, as given in the statement of the theorem,α =

t
(

6t
q

)3q+1

.
Conditioned on the decoding suceeding and the codeword

not beingt-bad, each deletion pattern is equally likely, and
hence the lexicographically first pattern is correct with proba-
bility at leastα−1. Hence, the total success probability of the
guesser is at least

PrZ∈UC,A∈UPℓ,n
[g(ZA) = (Z, A)] ≥ δα−1/2.

However, using Lemma II.4 with the setsS = C × Pℓ,n and
T = {0, 1}ℓ, we also have that this probability is at most

2ℓ

N(n

q)
. Rearranging terms, we have

lg N ≤ ℓ − lg

(

n

q

)

+ lg
2

δ
+ lg α.

C. Proof of Theorem II.1

Going from the exact case of Theorem II.2 to the case where
the number of deletions is itself random as in Theorem II.1
merely involves taking advantage of the concentration of the
number of deletions around its meanp.

Proof of Theorem II.1: Suppose we have a decoding
algorithm for the deletion channel that succeeds on codebook
C with probability δ > 0. We let γ =

√

3 lg(4/δ)/(np).
Assuming as in the theorem statement thatn ≥ 12 lg(4/δ)/p,
we haveγ ≤ 1/2. Standard multiplicative Chernoff bounds
(such as [9][Corollary 4.6]) guarantee that, with probability
at leastδ/2, a random deletion pattern will haveq ∈ [(1 −
γ)pn, (1 + γ)pn]. Hence there must be someq∗ in this range
such that the success probability of the exact(q∗, n) deletion
channel is at leastδ/2.

Let α∗ be given by

α∗ = ⌈3q∗ lg
ne

q∗
+ lg

4

δ
⌉

(

6⌈3q∗ lg ne
q∗

+ lg 4
δ ⌉

q∗

)3q∗+1

.

By Theorem II.2

lg N ≤ n − q∗ − lg

(

n

q∗

)

+ lg
4

δ
+ lg α∗.

Noting thatα∗ is maximized for the largest possible value of
q∗ in the range and the other terms are maximized for the
smallest values ofq∗ we have

lg N ≤ n − lg

(

n

np(1 − γ)

)

− np(1 − γ) + lg
4

δ
+ lg β



where

β = ⌈3q′ lg
ne

q′
+ lg

4

δ
⌉

(

6⌈3q′ lg ne
q′

+ lg 4
δ ⌉

q′

)3q′+1

andq′ = (1 + γ)np. To conclude, note that

lg

(

n

np(1 − γ)

)

= n(H(p) + o1(p)),

and that, similarly to as we have described previously, the first
two termsn− lg

(

n
np(1−γ)

)

dominate the right hand side of the
equation; thelg β term can be seen to beO(np log log(1/p)) =
o(nH(p)). Dividing through byn we obtain lg N

n ≤ 1− (1 −
op(1))H(p).

III. C ONCLUSION

We have considered deletion channels in the limit as the
deletion probabilityp → 0 and shown that its capacity
is at most 1 − (1 − o(1))H(p). The intuition behind our
argument is simple; one could use a code for such a channel
to store information in both the message and deletion pattern,
which can be recovered with non-trivial probability given a
decoding algorithm. This necessarily limits the capacity of
the underlying code. In the full version of the paper, we
consider the natural generalizations to insertion channels and
other related channels.
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